L. Vandenberghe ECE133A (Fall 2024)

6. QR factorization

e triangular matrices

e QR factorization

e Gram-Schmidt algorithm

e modified Gram—Schmidt algorithm

e Householder algorithm

6.1



Triangular matrix

a square matrix A is lower triangular if A;; =0 for j > i

Aqq 0 0 0
A= : 0 0
Ap-11 An-12 Apin-1 O

Anl An2 An,n—l Ann

A is upper triangular if A;; = 0 for j < i (the transpose AT is lower triangular)

a triangular matrix is unit upper/lower triangular if A;; = 1 for all i
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solve Ax = b when A is lower triangular with nonzero diagonal elements

Algorithm

X1
X2

X3

Forward substitution

b1/A1
(by — A1x1) /A2
(b3 — A31x1 — Azax2)/A33

(bn —Ap1x1 — Apxp — - — An,n—lxn—l)/Ann

Complexity: 1 +3+5+---+ (2n — 1) = n? flops

QR factorization
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Back substitution

solve Ax = b when A is upper triangular with nonzero diagonal elements

Algorithm
Xn = bn/Ann
Xn—-1 = (bn—l - An—l,nxn) /An—l,n—l
Xn—2 = (bp—2—Ap—2n-1%Xn-1 — An—2.n%n) [ An—2.n—2
x1 = (b1 =Apxy—Apxz—---—Apxn) /Al

Complexity: n” flops

QR factorization
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Inverse of triangular matrix

a triangular matrix A with nonzero diagonal elements is nonsingular:
Ax=0 = x=0
this follows from forward or back substitution applied to the equation Ax =0
e inverse of A can be computed by solving AX = I column by column
A[x1 Xy - xn]:[el ey - en] (x; is column i of X)

e inverse of lower triangular matrix is lower triangular
e inverse of upper triangular matrix is upper triangular

e complexity of computing inverse of n X n triangular matrix is

n2+(n—1)2+~~-+1~%n3ﬂops

QR factorization
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QR factorization

if A € R™" has linearly independent columns then it can be factored as

' Ri1 Rip -+ Ry |
() R R
A=la @ - a]| | 7 ]
0 0 --- Ry, |
e vectors ¢q1, ..., g, are orthonormal m-vectors:

lgill =1, qlq;j=0 ifi#j

e diagonal elements R;; are nonzero
e if R;; < 0, we can switch the signs of R;;, ..., R;,, and the vector g;

e most definitions require R;; > 0; this makes Q and R unique

QR factorization



QR factorization in matrix notation

if A € R™" has linearly independent columns then it can be factored as

A=0R

Q-factor

e Q is m x n with orthonormal columns (Q7Q = I

e if A is square (m = n), then Q is orthogonal (010 = 00’ =1)

R-factor

e R is n X n, upper triangular, with nonzero diagonal elements

e R is nonsingular (diagonal elements are nonzero)
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QR factorization

[ -1

1
-1
1

—1
3
-1
3

J DN W =

Example

—1/2
1/2
~1/2
1/2

|l a1 92 g3 || O

OR

1/2
1/2
1/2
1/2

“120r s 4 0
“12000 2 8
1/2 0O 0 4

12 |1
Ri1 Ri2 Ri3
Ry Rp3
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Full QR factorization

the QR factorization is often defined as a factorization
~ R
A=[0Q O] [ \ ]

e A = QR isthe QR factorization as defined earlier (page 6.7)
e (O has size m x (m — n), the zero block has size (m —n) x n
e the matrix | 0 O | is m x m and orthogonal
e MATLAB’s function qr returns this factorization

e this is also known as the full QR factorization or QR decomposition

in this course we use the definition of page 6.7

QR factorization
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Applications

in the following lectures, we will use the QR factorization to solve

e linear equations
e |least squares problems

e constrained least squares problems

here, we show that it gives useful simple formulas for

e the pseudo-inverse of a matrix with linearly independent columns
e the inverse of a nonsingular matrix

e projection on the range of a matrix with linearly independent columns

QR factorization
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QR factorization and (pseudo-)inverse

pseudo-inverse of a matrix A with linearly independent columns (page 4.22)
AT = (ATA)7 AT
e pseudo-inverse in terms of QR factors of A:

AT = (@R)(QR)'(OR)"
= (R'Q"oR)"'R"Q!

= (R'R'R'Q" (0T =1
= RI'RTRTQT (R is nonsingular)

e for square nonsingular A this is the inverse:

AT =R =R"0"

QR factorization
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Range

recall definition of range of a matrix A € R™*" (page 5.16):
range(A) = {Ax | x € R"}

suppose A has linearly independent columns with QR factors Q, R

e () has the same range as A:

y € range(A) y = Ax for some x
y = QRx for some x

y = Qz for some z

[ 111

y € range(Q)

e columns of Q are an orthonormal basis for range(A)

QR factorization
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Projection on range

e combining A = QR and AT = R~1QT (from page 6.11) gives
AA"=QRR™'Q" = 00"

note the order of the product in AA™ and the difference with ATA = I

e recall (from page 5.17) that QQ” x is the projection of x on the range of O

X

Y
AATx = 00T x

range(A) = range(Q)

QR factorization
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QR factorization of complex matrices

if A € C"™*" has linearly independent columns then it can be factored as
A=0R

e O € C"™" has orthonormal columns (Q7Q = 1)
e R € C"™"is upper triangular with real nonzero diagonal elements
e most definitions choose diagonal elements R;; to be positive

e in the rest of the lecture we assume A is real

QR factorization
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Algorithms for QR factorization

Gram-Schmidt algorithm (section 5.4 in textbook and page 6.16)
o complexity is 2mn? flops

e not recommended in practice (sensitive to rounding errors)

Modified Gram-Schmidt algorithm (page 6.27)
o complexity is 2mn? flops

e better numerical properties

Householder algorithm (page 6.34)
o complexity is 2mn? — (2/3)n> flops
e represents Q as a product of elementary orthogonal matrices

e the most widely used algorithm (used by the function qr in MATLAB and Julia)

in the rest of the course we will take 2mn? for the complexity of QR factorization
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Gram-Schmidt algorithm

Gram-Schmidt QR algorithm computes Q and R column by column

e after k steps we have a partial QR factorization

Ry Ry - Ry |
a1 a2 -~ a|=|a1 @2 - a ]| | 7 2k
0 0 Ry

this is the QR factorization for the first £k columns of A

e columns gy, ..., g are orthonormal

e diagonal elements R, Ry2, ..., Ry are positive

e columns ¢y, ..., q; have the same span as ay, ..., a; (see page 6.12)
e in step k of the algorithm we compute gy, Rk, ..., Rik

QR factorization
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Computing the kth columns of O and R

suppose we have the partial factorization for the first K — 1 columns of Q and R

e column k of the equation A = QR reads

ar = Rixq1 + Rokqga + -+ -+ Rik—1.kqk-1 + Rikqk

e regardless of how we choose Ry, ..., Rx_1 k, the vector
gk = ax — Rikq1 — Rokqo — -+ - — Ri—1,kq k-1
will be nonzero: ay, as, ..., a; are linearly independent and therefore

ai ¢ span(aiy,...,ar—1) =span(qi,...,qk-1)

e g is g, normalized: choose Ry = |||l and gr = (1/Rii)qx

e i and gy are orthogonal to gy, ..., gx—1 if we choose Ry, ..., Rx—1k as

T T T
Rix = q7ak, Ry = g5 ag, RPN Ri-1,k = q4_10k

QR factorization



Interpretation

on the previous page, G, = Rirqi was computed as

gk = ax—Rixq1 — Roxqa — -+ — Rk—1.kqk-1
= ar—qi(qar) — q2(grar) — -+ — qk-1q,_,ax
T
= (I - QIQT - 612qg — Qk—lqk_l) Ak

= (1— lg91 92 qi-1] [q1 92+ ch_1]T) a

this is the residual of a; after subtracting its orthogonal projection on

span(q1,q2, .- -, qk-1)
= range(|q1 92 -+ qr-1])

span(ai, as,...,ag1)

QR factorization
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Gram-Schmidt algorithm

Given: m x n matrix A with linearly independent columns ay, ..., a,
Algorithm
fork=1ton
Ry = Q{ak
Ry, = qgak
Ri-1x = 61£_1ak
Gk = ax— (Rixq1+Rokqa+--+ Ri—1.4q9k-1)
Rie = |Gkl
I
dk = Y9k
Rk
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Example

example on page 6.8:

-1 -1 1]
1 3 3
[ a2 o] = )5
13 7]
' Ri1 Rz Rz |
= | g1 92 g3 || 0 Rx Ry
0 0 Rs
First column of O and R
1] [ —1/2 |
- | . 1 _ 1/2
gi=ar=| _; |- Ra=lal=2 q= R 1= _1§2
1| - 1/2

QR factorization 6.20



Example

Second column of O and R

e compute Rip =qlar =4

e compute

g> = ay — Ryxq1 =

e normalize to get

QR factorization

Ry = |42l =2,

-

1 —~1/2 |
3 1/2
I ~-1/2
3 1/2 |
1
g2 =5—q2 =
R

i

1/2
1/2

12

I 1
S VS —Y
L J
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Example

Third column of Q and R

e compute Ri3=¢qlaz=2and Ry3 = gaz =8

e compute

g3 = a3z — R13q1 — Ry3qp =

e normalize to get

QR factorization

R33 = ||g3]| =4,

J WD W =

q3 =

i
1/2
~1/2

1/2 |

1/2
1/2

i

~1/2
1/2
1/2 |

IR

| 1/2 )
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Example

Final result

i ; ; Ri1 Ri2 Ry3
1 -1 5| = |l 91 92 ¢3 || 0 R Ry
1 3 7 0 0 R
“1/2 172 -1/2
_ 1/2 1/2 —1/2 é ; g
12 12 12 oo,
12 172 12 |1
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Complexity

Complexity of cycle k (of algorithm on page 6.19)
e k — 1 inner products with a;: (k —1)(2m — 1) flops
e computation of g;: 2(k — 1)m flops

e computing Ry and gi: 3m flops

total for cycle k: (4m — 1)(k — 1) + 3m flops

Complexity for m x n factorization:

n(n—1) + 3mn

i((4m —)(k=1)+3m) = (“4m-1)
k=1

~  2mn? flops

QR factorization
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Numerical experiment

e we use the following MATLAB implementation of the algorithm on page 6.19:

[m, n] = size(A);
Q = zeros(m,n);
R = zeros(n,n);
for k = 1:n
R(1:k-1,k) = Q(:,1:k-1)’ * A(:,k);
gtilde = A(C:,k) - Q(:,1:k-1) * R(1:k-1,k);
R(k,k) = norm(gtilde);
Q(C:,k) = qtilde / R(k,k);
end;

e we apply this to a square matrix A of size m = n = 50

e A is constructed as A = USV with U, V orthogonal, S diagonal with

S;; = 10710G=D/(n=1) 9 4
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Numerical experiment

plot shows deviation from orthogonality between g; and previous columns

ex = max |ql-qu|, k=2, ...,n
1<i<k

loss of orthogonality is due to rounding error
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Modified Gram-Schmidt algorithm

a variation of the Gram—-Schmidt algorithm for the QR factorization

Ry Ry - Ry, |

R A

a1 a2 -+ an|=|a1 @2 - qn] O co
O O ¢t Rnn_

e has better numerical properties than the Gram—Schmidt algorithm
e computes Q column by column, R row by row

e computes vectors G as

Ge = (I - qr-1q5_)) - (I — q205)(I = q1q1 )ai

(see exercise on page 5.20)
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Modified Gram-Schmidt algorithm

after k — 1 steps, the algorithm has computed a partial factorization

A = [al"'ak—l |ak"'an ]

Ri1- Rik-1 Rix -+ Ryy

[ q1 - qk-1 | O ] () Rk—i,k—l Rk;l,k Rk.—l,n

0 I/
e columns of Oy are residuals of ay, . . ., a, after projection on span(qy, ..., gk—_1)
o Gy is the first column of Oy
e westartwithk =0and Q; = A
e the factorization is complete when k = n
e in step k, we compute
qks Riks  Rig+1, -+ Rins Ok+1
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Modified Gram-Schmidt update

careful inspection of the update at step k£ shows that

Q~k: [ dk Qk+1 ]

Rk Ri (k+1):n
0 Il

partition Oy as QO = |Gx B| with Gy the first column and B of size m X (n — k):

dk = 9k Rk B = qiRy (k+1)m + Ok+1

e from the first equation, and the required properties ||gx|| = 1 and Ry > O:

1

Rir = |lGkll, Gk = —qk
Ryk

e from the second equation, and the requirement that ¢; Q.1 = O:

Ri (k+1):n = 6]£B, Oi+1 = (I - qug)B = B — qi Ry, (k+1):n
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Summary: modified Gram-Schmidt algorithm

Algorithm (A is m X n with linearly independent columns)

define O = A; for k = 1 to n,

e compute Ryx = |Gkl and gx = (1/Rix)dr where gy is the first column of Oy,
e compute

[Rik+1 - Rin| = q. B, Ok+1 =B = qi |Rick+1 -+ Rin
where B is Q; with first column removed

MATLAB code (Q(:,k:n) is used to store Q;)

Q =A; R = zeros(n,n);
for k = 1:n

R(k,k) = norm(Q(:,k));

Q(C:,k) = Q(:,k) / R(k,k);

R(k,k+1:n) = Q(:,k)’ * Q(:,k+1:n);

QC:,k+1:n) = Q(:,k+1:n) - Q(C:,k) * R(k,k+1:n);
end;
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Example

example on page 6.8

[a1 ) Cl3]= 11

~] DN W =

Step 1: first column of Q, first row of R

[ —1/2
(a1 ar a3] = _}ﬁ

1/2

= L] 0o ][R

-
oS =
=1L

T N =
AN ON DN
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Example

Step 2: second column of O, second row of R

172 1/2| =2 ] :
(a1 ay a3 ] = | M2 W22 0 2|8
boo2 93 -1/2 12| 2 | |51
12 172 2|1 -
| Ru Rz | Ri
= | g1 q2|03 ]| 0 Rxn|Rx
0 0 1
Step 3: third column of Q, third row of R
—1/2 1/2 -1/2 ]
| | - 1/2 1/2 —1/2 (2) ‘21 é
a4 = o120 12 00 4
12 12 172 |1
' Ri1 Ri2 Ri3
= | g1 g2 g3 || 0 Ryp Ry
0 0 Rs
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Complexity

Complexity of cycle & (of algorithm on page 6.30)
e computing Ry; and gy: 3m flops

e computing Ry k+1, ---, Rkn: (n — k)(2m — 1) flops
o computing Ox+1: 2(n — k)m flops

total for cycle k: (4m — 1)(n — k) + 3m flops

Complexity for m x n factorization:

nin—1) + 3mn

Zn]((4m—1)(n—k)+3m) = (4m-1)
k=1

~  2mn? flops

QR factorization
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Householder algorithm

e the most widely used algorithm for QR factorization (qr in MATLAB and Julia)
e less sensitive to rounding error than Gram—-Schmidt algorithm

e computes a “full” QR factorization (QR decomposition)

~

A=|0 Q][ﬁ] | 0 O | orthogonal

e the full Q-factor is constructed as a product of orthogonal matrices

| © 0 |=HH - H,

each H; is an m X m symmetric, orthogonal “reflector” (page 5.10)
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Reflector

H=1-2w! with|v] =1

e Hx is reflection of x through hyperplane {z | v/ z = 0} (see page 5.10)
e H is symmetric
e H is orthogonal

e maitrix—vector product Hx can be computed efficiently as
Hx =x — 2(vTx)v

complexity is 4p flops if v and x have length p
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Reflection to multiple of unit vector

given nonzero p-vector y = (y1,y2,...,Yp), define
[ y1 +sign(y)lyll |
1
w = y.2 : V=—W
: lwl]
Yp

e we define sign(0) =1

e vector w satisfies
Iwll* =2 (wly) = 2|yl (Iyll + y1])

e reflector H = I — 2vv! maps y to multiple of e; = (1,0,...,0):

2(wly)
lw]|?

Hy=y- w=y—w=-sign(yi)l|lylle

QR factorization
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Geometry

first coordinate axis

<
—sign(y1)|lylle
hyperplane {x | w'x = 0}

the reflection through the hyperplane {x | w/x = 0} with normal vector

w =y +sign(yn)llylle;

maps y to the vector —sign(y)||y||eq
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Householder triangularization

e computes reflectors Hy, ..., H, that reduce A to triangular form:

H,H, |- -HA= l R ]

e after step k, the matrix HyHy_ - - - H1 A has the following structure:

4

A

> —>

k n-—=k

0

k

(elements in positions i, j fori > j and j < k are zero)

QR factorization
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Householder algorithm

the following algorithm overwrites A with l g ]

Algorithm: for k =1 to n,

1. define y = A, @and compute (m — k + 1)-vector vy:

w =y +sign(y1)|lyller, Vg = ——W

2. multiply A i:n With reflector I — 2vjv::

e T
Ak:m,k:n = Ak:m,k:n — 2"'k("'kAk:m,k:n)

QR factorization
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Comments

e in step 2 we multiply Ag. ., With the reflector 7 — 2vjv: :

(I — 2VkV£)Ak:m,k:n = Ak:m,k:n — 2Vk(V£Ak:m,k:n)

e this is equivalent to multiplying A with m x m reflector

T
1 0 0 0
Hk_[() I—2ka£]_l_zlvk]!vk]

e algorithm overwrites A with
R
0

and returns the vectors vy, ..., v,, with v, of length m — k + 1
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example on page 6.8:

Example

-1 -1

1 3

A= -1 -1
1 3

J DN W =

= H{HyH3 [

we compute reflectors Hy, H,, H3 that triangularize A:

QR factorization

HiHyH A =

Ri1 Ri2 Ry3
0 Ry Ry
0 0 R33
0 0 0

R
0

|
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Example

First column of R

e compute reflector that maps first column of A to multiple of e;:

__1- __3-
1 1

y = -1 |’ W:y_”yllel: 1| V] =
L 1

e overwrite A with product of I — 2v;v! and A

(2 4
0 4/3
0 2/3

0 4/3

A= (1-2vv])A =

QR factorization

2
8/3
16/3

20/3
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Example

Second column of R

e compute reflector that maps A;.4 > to multiple of ey:

[ 4/3 ] [ 10/3 | i 1'5'
y=1|2/3 |, w=y+|yller=| 2/3 |, vo=—w=—o|1
4/3 4/3 [wl| V30| »

e overwrite Ay.42.3 With product of 7 — 2v,v) and Az ».3:

(2 4 2

1 0 0 -2 -8

A l 0 I-2vyv ]A 0O 0 16/5
0 0 12/5
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Example

Third column of R

e compute reflector that maps As3.4 3 to multiple of e;:

| 16/5 _ | 36/5 B 1 B 1 3
y = 12/5 |’ w=y+|yller = 12/5 | VS_MW_\/_l_O 1

e overwrite Az.4 3 with product of I — 2V3V§ and A3.43:

(2 4 2

I 0 0 -2 -8
A"[o 1—2V3v§]A‘ 0 0 -4
0 0 O
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Final result

HiyHyH A

QR factorization

SO O

-

-

SO O

1 0
0 I-2vyv

1 0
0 I-2vpv)

2 -8
0 16/5

|

4 2 ]

0 12/5 |

2
0
0
0

g ] (I — 2V1V{)A

4 2
4/3  8/3
2/3 16/3

4/3 20/3 |
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Complexity

Complexity in cycle k (of algorithm on page 6.39): the dominant terms are

e 2(m—k+1)—1)(n—k+1) flops for product v (Ax.m,k:n)
e (m—k+1)(n—-k+1)flops for outer product with v,

o (m—k+1)(n—-k+1)flops for subtraction from Ag.;; k:n

sumis roughly 4(m — k + 1)(n — k + 1) flops

Total for computing R and vectors vy, ..., vy:

SAm—k+Dn-k+1) ~ /n4(m—t)(n—t)dt
k=1 0

2
= 2mn2—§n3 flops
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Q-factor

the Householder algorithm returns the vectors vy, ..., v, that define
| 0 O |=HH,---H,

e usually there is no need to compute the matrix [ @ O ] explicitly
e the vectors vy, ..., v, are an economical representation of [ O 0 ]

e products with [ QO O ] or its transpose can be computed as

| O O |x=HHy - - Hyx

[0 0| y=H,H,_,---Hyy
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Multiplication with Q-factor

e the matrix—vector product H;x is defined as

Hox = I/ 0 X1:k-1 _ Xik-1
k 0 [I- 2VkVT Xk:m Xk:m — 2(V£xk5m)vk

e complexity of multiplication Hyx is 4(m — k + 1) flops:

e complexity of multiplication with H;H; - - - H,, or its transpose is

n
4(m -k + 1) ~ dmn — 2n? flops
k=1

e roughly equal to matrix—vector product with m X n matrix (2mn flops)
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