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Background

• Much of our current capability comes from our formation flight programs.

∗ UCLA developed flight control computer for investigations of aircraft formation flight

for drag reduction.

∗ Currently developing formation flight instrumentation system for use on test flights

with F-18 research aircraft, in partnership with Boeing and NASA DFRC.

∗ Facilities have expanded to include extensive bench testing and hardware in the loop

testing.

∗ Vehicle testing facilities on automobiles and in UAVs.

• Currently attempting coordinated autonomous flight of a pair of UAVs.

∗ Vehicles are the “Mule” at UCLA and the “Frog” from Naval Postgraduate School.





Formation Flight Instrumentation System

• Designed to provide highly accurate relative position, velocity, and attitude between

aircraft.

• Primary purpose is formation flight for drag reduction.

∗ Requires very accurate relative information, with less emphasis on inertial informa-

tion.

• Uses integrated GPS/IMU system.

∗ GPS provides common inertial and timing reference for all vehicles

∗ IMU provides measurements of high frequency motion and angular motion.

∗ Differential Carrier Phase GPS provides extremely accurate relative range measure-

ments.



FFIS Functional Description
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• The radio modem provides communication with the

second aircraft

∗ Can also provide communication with external

equipment.

• The basic functioning of the FFIS is independent

of the airframe interface.



FFCC Hardware Architecture
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• FFCC is FFIS with control capability in-

cluded.

∗ Control for Mule is done through

pulse-width-modulation output to

standard R/C (hobby) actuators.

∗ Control law is implemented in main

CPU.

• The GPS requires a serial connection. A

single-board computer allows communi-

cation without complicated software ad-

ditions to main CPU.

Shown is current architecture; the dashed box includes additions for F-18 flight and upgrades
to new IMU.



Hardware-in-Loop Simulation Facility
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• Currently configured for F-18 sim-

ulations.

∗ Aerodynamic simulation will be

replaced with Mule simulation.

• For Mule simulation will be ex-

tended to include actuator hard-

ware, rather than simulated actu-

ators.

• Can (easily?) be extended to other

aircraft and other vehicle dynamics.



Satellite Constellation Simulator

• 24 channels, divided between two RF outputs.

∗ Configured to provide L1 and L2 signals from six satellites on each RF port.

∗ RF ports feed directly to antenna ports on GPS receivers.

• Position, orientation, and rates of change delivered via ethernet from vehicle model

workstations.

• SCS provides the 1 pulse-per-second signal to synchronize all parts of the simulation.



Aircraft Simulation Workstations

• Dual-processor Xeon workstations.

• Linux operating system.

∗ Free, fast, flexible, runs in many flavors on a great deal of hardware.

∗ Allows full control of background processes and direct access to hardware.

∗ Sometimes difficult to get drivers for add-on cards.

• Synchronized every second to 1PPS signal from SCS.

• IMU signals simulated using D/A card in A/C workstations.

∗ When IMU is upgraded to Litton LN-200, IMU simulation will be done using external

device.



The Mule

• Remotely piloted aircraft, originally purchased for another program.

∗ Aerodynamics designed to mimic ultra-light solar-powered aircraft.

• Physical characteristics

∗ 17-foot wingspan, inverted V-tail.

∗ Two-cylinder, 200-cc (approximately 13 hp) engine.

∗ Current takeoff weight: 155 lb. (includes 10-lb payload)

∗ Total payload: Greater than 30 lb.

• Used in flight tests on Formation Flight program since 1996.

∗ Autonomous flight using previous flight control computer in 1997.







UAV Test Facilities

• Conducted at the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIR-

PAS)

∗ Center run by Naval Postgraduate School

∗ Flights take place at McMillan Airfield on Camp Roberts, near Paso Robles, Cali-

fornia

• Several very convenient features:

∗ Airspace management

∗ Frequency management

∗ Physical infrastructure: power, hangar, paved runway.

• UAV’s operated by professional R/C pilots.





Hybrid Test Facilities

• Esssential tradeoff in a testbed is to include sufficient complexity to rigorously test

algorithms without bringing in difficulty in analysing results.

∗ A very simple hardware device may not provide sufficient flexibility.

∗ A more complex hardware device introduces difficulties of modeling, construction,

actuation, maintenance, et cetera.

• We desire vehicles of military interest – this is not feasible in a manageable testbed.

• Our major “hardware” restriction is likely to be communication.

∗ Vehicle modeling can be done well, given sufficient time and incentive.

∗ Communication is very environment dependent, and subject to bandwidth con-

straints, interference, power limitations, and other difficulties.

• We attempt to create a testbed that allows us to test our algorithms, rather than our

mechanical abilities.



Proposed Facility – “Pseudo-Vehicles”

• Use computation to simulate vehicles; use hardware to implement communications.

∗ Single-board computers are inexpensive and sufficiently powerful to model fairly

complex vehicles.

∗ Each “vehicle” will maintain its own state information, sensor models, and some

local environment modeling.

∗ SBCs will communicate with each other using wireless. Uncertainty can be allowed

to arise naturally, and can be imposed through software or physically.

• Such an approach allows for complex, high-capability vehicles and includes necessary

hardware uncertainty.



Proposed Facility – Environment

• One or more powerful coordinating computers will handle the environment and tell each

machine if it has been damaged, what its sensors should see, et cetera.

• Coordinating machines will communicate with the SBCs via hardline ethernet. Given

current network capacity, it is feasible to update environment variables within a reason-

able control time frame.

• Existing hardware in the loop capability can be incorporated to create a “truth model”

against which the performance of the pseudo-vehicles can be evaluated.


