
Logical Programming
Environments

Jason Hickey, Richard Murray

John Hauser



PRL May 9, 2001SEC.2

What Formal Methods Offer

• Confidence:
– reliability: we know what a system is supposed to do,

and it does it
– tools: specifications, code, and verification

• Automation:
– code analysis, synthesis, and optimization
– interactive design assistance

• High-confidence design requires systematic and structured
approaches at all time scales (run time, design time)



PRL May 9, 2001SEC.3

Logical Programming Environments

• A LPE provides an collaborative, interactive design
environment

• An LPE includes:
– A logical library where programs, proofs, and

reasoning tools can be stored and shared in a
collaborative development

– A formal compiler that provides an open platform for
producing executable code from programs,
specifications, and proofs

– An automated reasoning system that is used to
develop formal proofs that programs meet their
specification



PRL May 9, 2001SEC.4

An example

• Ensemble provides group communication
– Like a multi-point version of TCP
– Communication is reliable

• Used in NY, Swiss stock exchanges

• French air-traffic control

• Navy’s AEGIS command, control



PRL May 9, 2001SEC.5

Formal tools

• Nuprl Logical Programming Environment

• All properties (and meta-proofs of algebra) are formal



PRL May 9, 2001SEC.6

Formal automation

• Protocols are pluggable
components

• Protocol layers are in ML

• ~70 components, 1000s
protocols

• About 30 layers in a
protocol; roughly 300
lines of ML each

• Use refinement to
verify/synthesize ML
code



PRL May 9, 2001SEC.7

Applying the LPE to distributed control

• Develop
– A library of verified control components
– A hierarchy of languages for cooperative control

problems
– A set of tools and heuristics for automated analysis

and synthesis

• Design by successive refinement
– Requirements propagate down
– Assumption violations propagate upward (at design

time and at run time)
– Interference prevents straightforward composition



PRL May 9, 2001SEC.8

Multi-vehicle wireless testbed

• 8-10 vehicles, integrated
computing and
communications, including
wireless Ethernet (802.11), and
Bluetooth

• 2-4 fixed communication nodes,
capable of broadcasting on
multiple channels

• A set of overhead cameras that
can be used to provide position
information to the vehicles
(perhaps simulating GPS)

• A command console with computing
and communication nodes



PRL May 9, 2001SEC.9

Multi-vehicle wireless testbed



PRL May 9, 2001SEC.10

Current status

• Understand (to some extent)

– high-level specifications

– asynchronous
communications

– MPC

• Current focus

– communication in
rapidly-changing
networks

– design models for
cooperative control



PRL May 9, 2001SEC.11

Multi-vehicle routing

• Network topology is
rapidly changing

– Consensus
– Message routing
– Real-time

prioritized traffic
– Make use of

topology
predictions



PRL May 9, 2001SEC.12

Problem formulation for UAV

• Formalize a
rejoin



PRL May 9, 2001SEC.13

Top-level spec

Mission Objective
Assumptions: joperationalt V j ¸ 4
Goal: 8v 2 V:9t · T :operationalt v ) jv:post ¡Dj < ²

• The model provides the basis for reasoning

• Languages provide the connection to syntax

• Top-level specification:



PRL May 9, 2001SEC.14

Second-level refinement

• Second-level: specify computation as a reactive state
machine

• Verify that the decomposition satisfies the spec



PRL May 9, 2001SEC.15

Step refinement

Choose destination vector
Assumptions: bandwidth > bandwidthmin
Goal: Pre : Default Eff : dv projected formation point
Pre : Enemy detected Eff : Abort
Pre : 2 or more vehicles failed Eff : Abort

Move into formation
Assumptions: bandwidth > bandwidthmin
Goal: Pre : Default Eff : Continue to reform
Pre : Within tolerance Eff : Resume formation
Pre : Enemy detected Eff : Abort

• Each state is refined to an executable spec



PRL May 9, 2001SEC.16

Logical Programming Environment

• The LPE is a framework for
supporting formal design

– Type theory is a
common language for
specification and
synthesis

– Enables collaborative
development of verified
control libraries and
design automation tools

– The compiler is an
assistant, and the link to
executable code



PRL May 9, 2001SEC.17

Design layers



PRL May 9, 2001SEC.18

Migration path for legacy code: FC

• Import C programs into
a high-confidence,
formal environment

• Allow all C programs
– pointer arithmetic
– arbitrary coercions

• Map to a safe-
functional language

• Add: transactions,
migration

e :: letv : t a in e

j letv s in e

j letv : t unop a in e

j letv : t a binop a in e

j let type typdefs in e

j let fun fundefs in e

j letv : t f a1; : : : ; an in e

j let closure v : t f a1; : : : ; an in e

j let external v f : ty a1; : : : ; an in e

j f a1; : : : ; an

j internal f a1; : : : ; an

j if a1 relop a2 then e1 else e2



PRL May 9, 2001SEC.19

A formal C compiler



PRL May 9, 2001SEC.20

Multi-language environments



PRL May 9, 2001SEC.21

Summary

• LPE: leverage existing formal methods and tools for
cooperative control problems

– The goal is to provide a library of verified control
primitives, and design automation procedures

• Migration path
– The compiler provides the guide for migrating code


