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Abstract

This paper proposes a method for building with mul-
tiple vehicles a probability map of uncertain dynamic
environments. It is assumed that each vehicle has a
limited sensor range and therefore lacks global infor-
mation. The vehicles share their measurement infor-
mation to build a probability map. The probability
map is updated using sensor information and a priori
statistics of the dynamic environment.

1 Introduction

Autonomous vehicles are used to perform hazardous
missions such as operations in nuclear power plants, the
exploration of Mars, and surveillance of enemy forces.
The main difficulty in such uses of autonomous vehicles
is that most environments requiring them have uncer-
tain geography, unknown obstacles, unexpected pop-
up enemies, etc. This uncertainty in information leads
naturally to the consideration of probabilistic models.

How to build a probability map of an environment has
been actively studied in the robotics community. The
most widespread method for building a probability map
of an uncertain environment is grid-based occupancy
maps (See [3], [7] and [10]). Occupancy values for
each grid cell are determined based on sensor readings
and by applying the conditional probability of occu-
pancy using Bayes’ rule. These values are determined
by the sensor characteristics, the location of the sen-
sors and the measurement methods. In the unmanned
aerial vehicle (UAV) community, Hespanha et al. [5]
constructed a probabilistic map of radar sites by using
Bayes’ rule and a likelihood function which was defined
by considering radar range and other radar character-
istics. However, most map building methods consider
static environments and little research has been done
on map building of uncertain dynamic environments.
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Thrun [9] adopted a simple exponential decay factor
which puts more weight on recent sensor readings in or-
der to cope with dynamic environments. As the author
acknowledges, this approach does not fully model dy-
namic environments but just adapts to changes. Cox et
al. [1] used a Bayesian multiple hypothesis framework
to build and maintain a world model of a dynamic en-
vironment. Their approach, however, focused on mod-
eling dynamic environments by simple geometric prim-
itives and extracting features from multiple hypothesis
and sensor readings.

In order to estimate the state of a dynamic system, a
system model that describes state transition with time
and measurement model that relates the state of the
system with noisy measurement are required. A linear
or nonlinear state-space model and the Bayesian ap-
proach are usually used for a system model and mea-
surement model, respectively. When a linear or non-
linear state-space model of the obstacle is available, a
Kalman-Bucy filter or extended Kalman filter can es-
timate the location of obstacle. However, it is difficult
to obtain such a deterministic state-space model un-
der uncertain environment with limited information.
Therefore, a probabilistic model of the obstacle should
be used for a system model to describe evolution of
the state with time, and it can be obtained from a
priori statistics of obstacle’s movement. This paper
presents a dynamic map building method incorporat-
ing sensor reading and a priori statistics of the envi-
ronment, which estimates location of obstacles. The
method assumes that a vehicle can recognize obstacles
as static or dynamic from sensor readings. If it detects
a moving obstacle, the vehicle estimates a probabil-
ity distribution of the obstacle’s location in the future
based on a priori statistics.

The paper is organized as follows: Section 2 explains
the notation used throughout the paper. Section 3 pro-
vides the main result. It gives an algorithm to build
a probability map in uncertain dynamic environments
by using sensor readings and a priori statistics of the



environment. Section 4 describes the simulation plat-
form which includes statistics of obstacle movements,
calculation of necessary probability density functions,
etc. Simulation results are provided in Section 5. Dis-
cussion, future problems and concluding remarks are
found in Section 6.

2 Definitions and Notation

Given that there are l moving obstacles. We assume
that the number of total obstacles is known before-
hand and that obstacles are indistinguishable from
each other. Let R be the region of consideration,
O = {1, 2, · · · , l} the index set of obstacles, and D =
{1, 2, · · · , k}, where k ≤ l, the index set of detected
obstacles at current time. Let V be the region of view
region. Note that D and V are time-varying. We de-
note sampling time by ∆t, the current time by T∆t,
measured data at k-th sampling time by mk, and se-
quence of measured data up to time T∆t by m(T ), viz.,
m(T ) = {m1,m2, · · · ,mT }. Measured data mi is com-
posed of the position and heading angle of the vehicle
at time T∆t, and the two-dimensional Cartesian posi-
tion and heading angle for each obstacle in view of the
vehicle.

3 Probability Map Building

The probability map indicates the probability distri-
bution of obstacle’s location. This section describes a
method to build a probability map. Suppose that the
vehicle receives measurement data at every sampling
time, ∆t, and has limited measurement range. It is as-
sumed that there are no static obstacles in the environ-
ment, as is common for unmanned aerial vehicles. The
vehicle updates its probability map of the environment
at each measurement time based on what information
it has. This information includes sensor readings and
a priori statistics of the dynamic environment.

Due to the limited sensor range, the vehicle may not
detect all obstacles. Whenever the vehicle senses an
obstacle, uncertainty on the location of the obstacle
greatly decreases. The uncertainty is not zero due to
sensor noise. The vehicle modifies the probability map
based on this location information. If the vehicle no
longer detects an obstacle, uncertainty of the obsta-
cle’s location, which was sensed at a previous time, in-
creases since obstacles are moving. In such a case, the
vehicle should estimate the obstacle’s location based on
a priori statistics on obstacle movement and previous
information on the location of the obstacle from sen-
sor readings. It should calculate the probability that
obstacles will move to a certain location at the next
time step given the current probability map and a pri-

ori statistics. Therefore, the probability map building
procedure consists of two steps. The first is measure-
ment update based on sensor readings and a Bayesian
measurement model, and the second is time propaga-
tion by using a probabilistic system model of the ob-
stacle obtained from a priori statistics. This is similar
to measurement update and time update in Kalman-
Bucy filters. However, Kalman-Bucy filters use more
specific system, which is hard to obtain with uncertain
information on the system.

3.1 Measurement Update
The vehicle estimates the posterior distribution of the
position (xT , yT ) and direction of obstacles θT at cur-
rent time T given the data available up to the current
time T . Let xT = (xT , yT , θT ). The posterior dis-
tribution of the position and direction of obstacles at
time T∆t given sensor data m1,m2, · · · , mT can be ex-
pressed by

fi(xT |m1, m2, · · · ,mT ) = fi(xT |m(T )).

Bayes’ rule enables us to estimate obstacle position and
direction recursively. In order to apply Bayes’ rule,
we have to assume conditional independence between
fi(mk |x) and fi(mk′ |x) when k 6= k′. This assumption
is commonly made in approaches to occupancy grid
map building. Note that this assumption is not valid
in localization for mobile robots when other moving
objects are in the environment [4], [9].

The recursive form of the probability density function
for the location of obstacles given measured data can
be obtained as follows:

fi(xT |m(T ))
= fi(xT |m1,m2, · · · ,mT )

=
fi(mT |m1, · · · ,mT−1, xT )fi(xT |m1, · · · ,mT−1)

fi(mT |m1, · · · ,mT−1)

=
fi(mT | xT )fi(xT |m1, · · · ,mT−1)

fi(mT |m1, · · · ,mT−1)

=
fi(mT | xT )fi(xT |m(T−1))

fi(mT |m(T−1))
. (6)

The term in the denominator of Eq. (6) can be ex-
pressed as

fi(mT |m(T−1))

=
∫∫∫

fi(mT | ζ, ξ, ϕ)fi(ζ, ξ, ϕ |m(T−1)) dζ dξ dϕ

Therefore, we have

fi(xT |m(T ))

=
fi(mT | xT )fi(xT |m(T−1))∫∫∫

fi(mT | ζ, ξ, ϕ)fi(ζ, ξ, ϕ |m(T−1)) dζ dξ dϕ
.

(7)



1. Set T = 0 and initialize DISTi(x, y, θ, T ), i ∈ O;

2. (Measurement Update) After getting measurement mT ,

αi ←− fi(mT | xT , yT , θT ) ·DISTi(x, y, θ, T ) (1)

βi ←−
∫∫∫

fi(mT | ζ, ξ, ϕ)DISTi(ζ, ξ, ϕ, T ) dζ dξ dϕ (2)

DISTi(x, y, θ, T ) ←− αi/βi (3)

for ∀ i ∈ O;

3. (Time Propagation)

DISTi(x, y, θ, T + 1) ←−
∫∫∫

fi(x, y, θ | ζ, ξ, ϕ, m(T ))DISTi(ζ, ξ, ϕ, T ) dζ dξ dϕ (4)

for ∀ i ∈ O;

4. (Probability Map Building)

MAP (x, y, T + 1) ←− 1−
l∏

i=1

(
1−

∫ 2π

0

DISTi(x, y, θ, T + 1) dθ

)
; (5)

5. Increase T by one and repeat the step 2, 3 and 4;

Algorithm 1: Algorithm for Probability Map Building

Here, fi(mT | xT ) is the probability density function
that the vehicle will have measurement mT when an
obstacle is at position (xT , yT ) and in direction θT at
time T . This is a sensor characteristic and is a function
of the location and heading angle of the vehicle since
mT contains the data on the vehicle.

3.2 Time Propagation
Due to limited view range, the vehicle has to estimate
the location of obstacles after it loses sight of them. If
the vehicle has no information or statistics on obstacle
behavior it cannot estimate possible obstacle locations.
Therefore, the more information on obstacle behavior
is known, the more precise estimation of the future ob-
stacle location is possible. From the total probability
theorem, the prior distribution of the position and di-
rection can be given by

fi(xT+1 |m(T )) =
∫∫∫ (

fi(xT+1 | ζ, ξ, ϕ, m(T ))

· fi(ζ, ξ, ϕ |m(T ))
)

dζ dξ dϕ.

Here, fi(ζ, ξ, ϕ |m(T )) is the posterior probability den-
sity function after measurement at time T in Eq. (7).
The term fi(xT+1 |ζ, ξ, ϕ, m(T )) is related to state tran-
sition with time and is the probability that the obstacle
will be at the position (xT+1, yT+1) and in direction
θT+1 at time (T + 1) when the vehicle has measure-
ment mT and the obstacle is at the position (ζ, ξ) and
in direction ϕ at time T . This can be calculated if in-

formation is on the velocity of obstacles, statistics on
changes of direction, and so on.

3.3 Probability Map
By combining the measurement update and time prop-
agation procedures described above, the probability
map building algorithm in uncertain dynamic environ-
ments can be summarized in Algorithm 1. It can be
easily noted from the algorithm that the probability
map can be constructed recursively.

3.4 Cooperative Map Building
For cooperative map building, we assume that all
vehicles share their measurement data with one an-
other, and measurement sampling time is synchronized.
Thus, at each sampling time, each vehicle acquires mea-
sured data from its own sensors and from all other ve-
hicles, and then performs the measurement update and
time propagation procedure. This results in one global
probability map.

Sending vehicles only to unexplored areas to minimize
exploration time is not effective as the explored area
changes in dynamic environments. All areas need to be
continually re-explored to update the probability map.
For this reason, exploration time is not an appropriate
measure of efficiency in dynamic environments. There-
fore, mission goals have priority over global map build-
ing which should be incorporated into path planning,
as in reference [6].



4 Simulation Platform

4.1 Description of Simulation Platform
The game named “RoboFlag” will be used as a sim-
ulation platform for validating the algorithm [2]. The
game has two teams, Red and Blue. The Red team’s
objective is to infiltrate Blue’s territory, grab the Blue
flag and bring it back to the Red Home Zone, and visa
versa. See Figure 1. During the game, the following ob-
jects will be on the playing field: 8 Red robots, 8 Blue
robots, 8 scoring balls, and 8 obstacles. Each robot
has its own local information such as its position, ori-
entation, translational velocity and angular velocity. It
also has information on the position and orientation
of obstacles within its conic sensor range with radius
Rs and angle Ωr. The origin is located at the center
of the region and orientation is measured counterclock-
wise from the horizontal axis with range between 0 and
2π.

In order to apply the algorithm described in the
previous section, two probability density functions,
fi(mT |xT ) and fi(xT+1 |ζ, ξ, ϕ,m(T )), are needed. The
former means the probability density function imply-
ing that the vehicle will have measurement mT when an
obstacle is at the position (xT , yT ) and in direction θT

at time T . This is a characteristic of the sensors; thus
it can be obtained. The latter implies the probability
density function that the obstacle will be at the posi-
tion (xT+1, yT+1) and in direction θT+1 at time T + 1
when the vehicle has measurement mT and the obstacle
is at position (ζ, ξ) and in direction ϕ at time T . This
can be obtained if there is information on the velocity
of obstacles, statistics of angle changes, and so on.

The dynamics of the obstacles are as follows: the
initial positions of l moving obstacles are uniformly
distributed on the rectangular region R with (field
width)×(field length). A new random location for each
obstacle is determined at time tswitch, where tswitch is
a Poisson process with parameter λ∆t. Each obstacle
moves toward its new target positions with velocity vm

at time tswitch. The target destination of each obstacle
has uniform distribution as well. Therefore, the prob-
ability that the obstacle will head to the direction of ψ
when switching occurs and it is at the position (v, w)
is proportional to the segment length from the point
(v, w) to the boundary with angle ψ.

4.2 Calculation of Probabilities
Let s be the random variable that has value 1 when
switching occurs in the time interval (T∆t, (T + 1)∆t)
and 0 when switching does not occur. Let us define dx,
dy and R by

dx(ψ, v)
4
=

∣∣xm − v · sgn(cos ψ)
∣∣,

dy(ψ, w)
4
=

∣∣ym − w · sgn(sin ψ)
∣∣,

++

Figure 1: Simulation Platform

and

R(ψ, v, w)
4
=

{
dx(ψ, v)/| cos ψ|, if dx| tan ψ| ≤ dy

dy(ψ, w)/| sin ψ|, otherwise
,

respectively. Then, the probability density function

f(ψ | v, w, s = 1, t) =
R(ψ, v, w)∫ 2π

0
R(θ, v, w) dθ

, 0 ≤ ψ < 2π

(8)
gives the probability that the obstacle will head in
the direction of ψ when switching occurs at time t ∈
(T∆t, (T +1)∆t) and it is at the position (v, w) at time
t.

Now let us calculate the probability density function
fi(xT | ζ, ξ, ϕ, m(T )). It can be said that

fi(xT | ζ, ξ, ϕ, m(T ))

= fi(xT | ζ, ξ, ϕ, s = 1,m(T ))P (s = 1 | ζ, ξ, ϕ,m(T ))

+ fi(xT | ζ, ξ, ϕ, s = 0,m(T ))P (s = 0 | ζ, ξ, ϕ,m(T ))

and this can be approximated by

fi(xT | ζ, ξ, ϕ, m(T ))

≈ fi(xT | ζ, ξ, ϕ, s = 1, m(T ))λ∆t

+ fi(xT | ζ, ξ, ϕ, s = 0, m(T ))(1− λ∆t) (9)

since we assume that tswitch is a Possion process and
the probability that switching occurs more than twice
in the interval with length ∆t is very small if ∆t is
small.

As the obstacle will keep its direction unless switching
occurs, it can be said that

fi(xT | ζ, ξ, ϕ, s = 0,m(T )) = δ(x− x0)δ(y − y0) (10)

where x0 = ζ+(vm∆t) cos ϕ and y0 = ξ+(vm∆t) sin ϕ.
If switching occurs at t ∈ (T∆t, (T + 1)∆t), it can be



said that

fi(xT | ζ, ξ, ϕ, s = 1,m(T ))

=
∫ (T+1)∆t

T∆t

(
fi(xT | ζ, ξ, ϕ, s = 1,m(T ), t)

· f(t | ζ, ξ, ϕ, s = 1,m(T ))
)

dt. (11)

Since we assume that switching time is a Poisson pro-
cess with parameter λ∆t and that T∆t is a fixed point,
we have (see [8])

f(t | ζ, ξ, ϕ, s = 1,m(T )) =
(λ∆t)e−λ∆t(t−T∆t)

1− e−λ(∆t)2
. (12)

From Eq. (10) and Eq. (8), we obtain

fi(xT | ζ, ξ, ϕ, s = 1,m(T ), t)

=
R(θ, v, w)∫ 2π

0
R(ψ, v, w) dψ

δ(x− x0)δ(y − y0) (13)

where

v = ζ + vm(t− T∆t) cos ϕ,

w = ξ + vm(t− T∆t) sin ϕ,

x0 = v + vm((T + 1)∆t− t) cos θ,

y0 = w + vm((T + 1)∆t− t) sin θ.

5 Simulation

In simulation, the following values were used: ∆t = 0.5,
λ = 1.6, field length = 60, field width = 40, and
vm = 5. The region R is divided into 1 × 1 square
cells. The vehicle begins with the initial probability
map with all cells having values 1/2400 at time 0. Fig-
ure 2 (a) shows the probability map when the vehicle
detects an obstacle within its sensor range. As soon
as it detects the obstacle, the vehicle turns its head-
ing angle to avoid the obstacle and loses it from sensor
range. After that, the vehicle estimates the possible lo-
cation of the obstacle and updates the probability map.
Figure 2 (b)-(d) show the probability maps after time
propagation of 0.5, 1 and 1.5 seconds, respectively. All
three plots show the directional preference of the ob-
stacle as can be expected from statistics of obstacle
movement. Simulations were performed with MatLab.
Computation time for the algorithm depends on the
number of cells with non-zero probabilities since time
propagation procedure calculates probabilities from all
cells with non-zero values.

6 Conclusion

A method to build a probability map in uncertain dy-
namic environments was proposed. The proposed al-
gorithm constructs a probability map by incorporating

(a)

(c)

(b)

(d)

(a)

(c)

(b)

(d)

Figure 2: Probability map (a) when the vehicle detects
an obstacle. (Measurement update), and (b)
when the vehicle loses tracking of the obstacle
after 0.5 second time propagation, (c) 1 sec-
ond time propagation and (d) 1.5 second time
propagation.

measurement data from sensor readings and a priori
statistics of the environment. This algorithm is recur-
sive; thus it can be implemented easily. How to cal-
culate necessary probability density functions from the
statistics of a dynamic environment was also explained.
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