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Optimal Mode Changes for Highway Transportation
Safety

Vishwesh Kulkarni Sommer Gentry

Abstract— The problem of designing a decentralized advance
hazard warning system for highway transportation systems
entails the development of efficient switching controllers. In this
paper, we represent the vehicle dynamics by a finite number of
modes, each of which is represented by a low order transfer
function and a constant time delay. The problem of highway
safety analysis then gets translated into that of the stability
analysis of a parameterized hybrid system. We present an analysis
framework and some preliminary original results.

Index Terms— highway safety, Lyapunov functions, hybrid
systems, stability

I. I NTRODUCTION

A. Motivation

The prevalent brake-light dependent slowdown warning
system is not very effective in preventing multiple vehicle
collisions. Indeed, rear-end and angle collisions annually
account for close to 10 million vehicle crashes in the US
[13]. A root cause is that, typically, a driver learns of the
hazard by observing brake-lights of only the front vehicle.
Severity of the collisions can be reduced if the vehicles
have the ability to emit, and respond to, a warning signal
over a zone whenever it faces or induces a hazard. The US
Department of Transportation has announced the intention of
equipping over10% passenger vehicles and25% trucks with
an advanced slowdown warning system by the year 2010. This
paper is motivated by the design of a robust decentralized
slowdown warning technology that will significantly improve
the highway safetyand incur a low false alarm rate.

B. Proposed Approach

Our hypothesis is that the combined behavior of a vehicle
and a driver can be reliably represented by a finite number
of operating modes, each of which can be well approximated
by a low order transfer function along with a constant time
delay. We consider an arbitrarily large section of a highway
and represent the vehicle dynamics therein as an array system
indexed in space and time. We assume that the vehicle features
are comparable and the operating conditions are uniform. As
a result, the hybrid system dynamics are spatially invariant.
We represent the dynamics by a family ofpartial differential
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Fig. 1. Fatalities involved in rear-end and angle collisions. Over 10 million
such crashes occur every year in the US.

equations(PDE’s) and use a spatial Fourier transform to recast
the family of PDE’s into a family ofordinary differential
equations(ODE’s) parameterized by the frequency parameter.
The notion of highway safety is equivalent to that of the
stability of this hybrid system.

The parameterized state space can be partitioned into cells
that share, at most, only each other’s boundaries, and the
hybrid system has a piecewise affine form in each of the cells.
This formulation facilitates the stability analysis using multiple
Lyapunov functions, much on the lines of [7]. It turns out that
the piecewise quadratic Lyapunov function dependent stability
analysis techniques given in [2], [5], and [7] are conservative
if applied directly; the reason being that a direct application
requires that the Lyapunov functions be independent of the
frequency parameter and, consequently, the full benefit of
using multiplelocal Lyapunov functions, as opposed to using
a singleglobal Lyapunov function, is not realized. Essentially,
this paper draws on the techniques developed in [1], [4], and
[7] to help solve the transportation safety problem on hand.

C. Organization of the Paper

This paper is organized as follows. The notation is intro-
duced in Section II-A. The key relevant concepts are defined in
Section II-B. A model for highway safety analysis is described
in Section III-A and the safety analysis problem is formu-
lated in Section III-B. The problem solutions are presented
in Section V, immediately after the prior art description in
Section IV. Comparisons with the existing works are presented
in Section VI. The paper is concluded in Section VII.
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II. PRELIMINARIES

A. Notation

The notation is introduced as and when necessary. Capital
letter symbols, such asF and G, denote operators whereas
small letter symbols, such asx and y, denote real signals
which may possibly be vector valued or matrix valued. The
set of all real (complex) numbers is denotedR (C) and the
set of all integers is denotedZ. The notation

.= stands for

’defined as’. The inner product〈x, y〉 .=
∫ ∞

−∞
y(t)T

x(t) dt.

The norm‖x‖ .= 〈x, x〉. The vector space of signals for which
the Euclidean norm exists is denotedLn

2 . The vector space
Ln

2 is generally referred to asL2. Fourier transform ofx is
denotedx̂. Conjugate transpose of a vector or matrix(·) is
denoted(·)∗; its transpose is denoted(·)T . The (i, j)-th entry
of a matrix (·) is denoted as either(·)i,j or (·)ij , depending
on the ease of reading. Given a two dimensional array(·), the
neighborhoodNk of the element(·)i,j denotes the set

{(·)mn | |m− i| ≤ k and |n− j| ≤ k}.
A block diagonal matrixD ∈ Rn×n having matricesDii on its
diagonal is denoted diag(D11, D22, . . . , Dnn). Time derivative
of the signalx is denotedẋ. The class of bounded linear
operators mapping the vector spaceX into the vector space
Y is denotedL(X,Y ); the classL(X, X) is referred to as
L(X). Domain of an operatorA is denotedD(A). The group
theoretic and system theoretic notions and concepts that are
left undefined may be found in [3] and [8].

B. Definitions

Definition 1: A C0-semigroupT (t) on a Hilbert spaceZ is
said to beexponentially stableif there exist positive constants
M andα such that

‖T (t)‖ ≤ Me−αt ∀t ≥ 0.

The supremum over all possible values ofα is said to be its
stability margin. ¤

Definition 2: [Piecewise Affine Systems, [7]]
The classSH of hybrid systems is defined by family of
ordinary differential equations as:

ẋ(t) = Aix(t) + ai ∀x(t) ∈ Xi

where Ai ∈ Rn×n, ai ∈ Rn, and {Xi}i∈I ⊂ Rn is a
partition of the parameterized state-space into a finite number
of closed, and possibly unbounded, polyhedral cells with
pairwise disjoint interior. The set of cells that include the
origin is denotedI0 and its compliment is denotedI1. ¤

Definition 3: [Parameterized Hybrid Systems]
The classSHθ of hybrid systems is defined by family of
ordinary differential equations, parameterized by the frequency
parameterθ ∈ [−π, π], as:

ẋθ(t) = Ai,θx(t) + ai,θ ∀xθ(t) ∈ Xiθ

where Aiθ ∈ Rn×n, aiθ ∈ Rn, and {Xiθ}i∈I ⊂ Rn is a
partition of the parameterized state-space into a finite number
of closed, and possibly unbounded, polyhedral cells with
pairwise disjoint interior. ¤

III. M ODEL DESCRIPTION ANDPROBLEM FORMULATION

A. Model Description

The state space description of our model is as follows. The
state vectorx comprises the position, the velocity, and the
acceleration of each vehicle. In thenormalmode of operation,
a vehicle adjusts its velocity and acceleration based on the state
variables of the vehicles within anN1-neighborhood. We refer
to this mode of operation as normal because in real life, as of
now, a vehicle driver gets only so much visual feedback —
assuming he is not driving an SUV, so to say. In this mode,
the dynamical state space equations describing thek-th vehicle
are:

ẋk(t) = A0,0xk(t) + A−1,0xk−1(t) + A1,0xk+1(t) (1)

whereA0,0, A−1,0 andA1,0 are constant matrices of appro-
priate dimensions. When all of the vehicles are in the normal
mode, the state-space description is given by:

ẋ(t) = ÃNx(t) (2)

where the associated real valued matrixÃN of the operator
ÃN : L2 → L2 is the band block diagonal matrix

ÃN
.=
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with the entries(·)i,j = 0 ∀j such that |j − i| > 6.
When a particular vehicle enters thecautiousmode, the width
of this band increases for the corresponding entries in the
system matrix. Specifically, the vehicle adjusts its velocity and
acceleration based on the state variables of the vehicles within
anNK-neighborhood. In this mode, the dynamical state space
equations describing thek-th vehicle are:

ẋk(t) = A0,0xk(t) +
K∑

i=1

A−i,0xk−i(t) +
K∑

i=1

Ai,0xk+i(t) (3)

where A0,0, A−i,0 and Ai,0 are constant matrices of ap-
propriate dimensions. In principle, every element of the set
{A0,0, A−1,0, A1,0} may be different in the normal mode from
its cautious mode value. However, we denote them just the
same in order to keep the notation simple. When all of the
vehicles are in the cautious mode, the state-space description
has the form:

ẋ(t) = ÃCx(t) (4)

where the associated real valued matrixÃC of the operator
ÃC : L2 → L2 is band block diagonal with the entries(·)i,j =
0 ∀j such that|j − i| ≥ 6K. Stability margin of the system
increases monotonically with the number of vehicles in the
cautious mode and, in particular, stability margin of the system
described by (4) is higher than that of the system described
by (2). Taking a spatial Fourier transform with the vehicle
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positions as the frequency parameter, the parameterized hybrid
system equations are given as:

ẋθ(t) = Ãiθxθ(t) ∀ xθ ∈ Xiθ (5)

where the associated diagonal matrixÃiθ has entries

(·)m,m
.= A0,0 +

K∑

k=1

A−k,0e
−jkθ +

K∑

k=1

Ak,0e
jkθ (6)

on its diagonal whereθ ∈ [−π/K, π/K] and the parameter-
ized state space has the partition{Xiθ}. Note that the system
given by (5) and (6) is an instance of the classSHθ. We denote
this system asS. As the vehicles change modes andθ ranges
over [−π/K, π/K], the associated matrix of the system takes
values inside a polytope. We denote this polytope asAΘ.

B. Problem Formulation

Problem 1: Determine the computationally tractable analyt-
ical conditions under which the systemS is stable. ¤

IV. PRIOR ART

Lemma 1: [Lemma 5.1.2, [3]]
TheC0-semigroupT (t) on a Hilbert spaceZ is exponentially
stable if and only if there exists aγz < ∞ such that

∫ ∞

−∞
‖T (t)z‖2dt ≤ γz

for everyz ∈ Z. ¤
Lemma 2: [Theorem 5.1.3, [3]]

Suppose thatA is the infinitesimal generator of theC0-
semigroupT (t) on the Hilbert spaceZ. Then,T (t) is expo-
nentially stable if and only if there exists a positive operator
P ∈ L(Z) such that

〈Az, Pz〉+ 〈Pz, Az〉 < 0

for all z ∈ D(A). ¤
We next note down a well known result, viz. [7], on the
stability analysis of hybrid systems using multiple Lyapunov
functions. ConsiderSH . Denote

Āi =
[

Ai ai

0 0

]
.

ConstructĒi = [Ei ei], F̄i = [Fi fi] where(ei, fi) = (0, 0)
for all i ∈ I0 and

Ēi

[
x
1

]
≥ 0 ∀ x ∈ Xi, i ∈ I;

F̄i

[
x
1

]
= F̄j

[
x
1

]
∀ x ∈ Xi ∩Xj , i, j ∈ I.

Lemma 3: [Theorem 1, [7]]
Consider symmetric matricesT, Ui, andWi such thatUi and
Wi have non negative entries while

Pi
.= FT

i TFi ∀i ∈ I0, P̄j
.= F̄T

j T F̄j ∀j ∈ I1

satisfy

AT
i Pi + PiAi + ET

i UiEi < 0 (7)

Pi − ET
i WiEi > 0 (8)

ĀT
j P̄j + P̄jĀj + ĒT

j UjĒj < 0 (9)

P̄j − ĒT
j WjĒj > 0 (10)

for all i ∈ I0 and for all j ∈ I1. Then, every piecewise
continuous trajectory ofSH tends to zero exponentially. ¤

V. M AIN RESULTS

Theorem 1:[Solution to Problem 1]
Consider symmetric matricesT, Ui, andWi such thatUi and
Wi have non negative entries. SupposePi = FT

i TFi satisfy

AT
i Pi + PiAi + ET

i UiEi < 0
Pi − ET

i WiEi > 0

for all Ai that are vertices ofAΘ for all i ∈ I. Then,
every piecewise continuous trajectory ofSH tends to zero
exponentially. ¤

Proof: The proof follows on the lines of the proof of
Lemma 3. The conditions (7) and (8) need be checked over
uncountably infinitely manyθ ∈ [−π/K, π/K]. However,
as θ ranges over[−π/K, π/K] the matrix Ai takes on
values inside the polytopeAΘ so that, due to convexity,
the conditions need only be checked on the vertices of the
polytopeAΘ. QED.

VI. D ISCUSSION

Time delays constitute a critical factor in the highway acci-
dents. In this paper, it is assumed that their effect can be well
approximated by finite order rational transfer functions, such
as the Pad́e approximations. A more sophisticated approach
to mitigate this pain begins with replacing (1) and (3) by,
respectively, the following retarded differential equations:

ẋk(t) =
1∑

i=−1

Ai,0xk(t− i ∗ h)

ẋk(t) =
K∑

i=−K

A−i,0xk−i(t− i ∗ h)

where h denotes the combined reaction time delay of the
driver and the vehicle; the value ofh can be a function of
the operating mode.

Remark 1:The characterization given by Theorem 1 relies
on the one given in Lemma 3 which requires that the system
be known perfectly. A more comprehensive and computation
friendly characterization can be obtained by casting the above
algebraic conditions asintegral quadratic constraints(IQC’s)
[12]. An IQC based characterization the effect of a localized
control on the global stability of a spatially invariant system
has been recently derived, see [4, Theorem 1], by [4].¤

Remark 2:Per se, the results established by [1] and [4]
address the case of uniformly distributed spatially invariant
systems operating in single mode although the bare bone as-
sumptions of [1] can address a much broader class of systems.
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[4] methodically builds on the classic framework developed
in [1] to characterize the effect of a localized control on the
global stability of such systems. A similar characterization for
the case of systems operating in multiple modes is crucial for
the development of the false alarm mitigation logic referred
to in Remark 4. ¤

Remark 3:String stability of vehicle platoons has been
extensively studied as a part of the highway safety initiative
in the state of California’s PATH program over the last
two decades (see, e.g., [9], [14], and [15]). However, the
established string stability results concern only continuous
time systems sans time delays. The analysis framework used
in this paper addresses the realistic case of multiple operating
modes which results due to the presence of a human operator
in the control loop. In principle, the framework can be used to
give less conservative stability conditions than the ones derived
for second order macroscopic models by [19]. ¤

Remark 4:The cautious mode of operation has a higher
stability margin than the normal mode of operation. However,
since a human driver is assumed to be present in the control
loop, it also carries a higher operating cost because cautious
behavior incurs fatigue. In order to reduce the number of
false alarms, the warning device should have the intelligence
embedded in it as to what an optimal control law is when
the objective is to minimize a performance function which
is expressed in terms of the mode stability margins and
operating costs. We have not addressed the synthesis of such
a controller. However, a solution would be to assign a high
control bandwidth to the system in cautious mode and a
low control bandwidth to the system in normal mode. The
controller synthesis problem then reduces to synthesizing an
LQG/LQR controller on the lines of [6]. ¤

Remark 5: It is natural to investigate whether the extensive
literature on aircraft collision (see, e.g. [16], [17], [18], and
references therein) can be used in designing decentralized
controllers for vehicle platoon safety. It turns out that the
prevalent game theoretic approaches, e.g. [16], are not directly
applicable to the problem on hand and the reason is as follows.
The hybrid automaton representing a platoon ofN vehicles
can be described as follows (see [10], [11], and [16] for hybrid
automata definitions). The set of discrete states comprises
the operating mode of platoon: for example, one particular
operating mode corresponds to all vehicles being in cautious
mode; this set has2N−1 elements. The set of states that
are continuous in time comprises the inter-vehicle separations
xi. The set of discrete inputs and disturbances comprises the
hazard signals. The set of continuous in time control inputs
comprises accelerations of the platoon vehicles. The reset
function sets a vehicle operating mode to cautious if it has
received a hazard signal and resets it to normal when it is
appropriate. This automata is said to be safe if the inter-
vehicle separations are positive at any given time. The optimal
controller to guarantee safety can be computed as the solution
to a dynamic game between the control and disturbance [16];
the value function of the game over the horizon[0, T ] is
J(x, σ, u, 0) .= mini{xi(T )} where i ∈ {1, 2, . . . , N − 1}.
Solution to this problem is obtained by solving an optimal
control problem to generate the switching signalsσ and the

control inputsu, and by obtaining the corresponding worst
case disturbance. In our highway safety problem, the worst
disturbance corresponds to the case in which none of the
vehicles are equipped and the first car slows down to a
standstill as fast as it can. A decentralized controller must
consider switching patterns of all vehicles and the front car
velocity profiles as the disturbance. An implementation of
this methodology to compute safe sets for more than two
vehicles is not described in [16] and suffers from the curse
of dimensionality. Unsafe sets can in fact be defined only
for each independently maneuvered vehicle separately in the
formulation of [16]. This difficulty can be resolved by taking
a union of unsafe sets of each vehicle in order to generate a
working unsafe set. However, this solution is liable to be very
conservative and will not be internally consistent because each
vehicle must assume the worst behavior of every other.¤

VII. C ONCLUSION

The problem of designing a decentralized advance hazard
warning system for highway transportation systems entails the
development of efficient switching controllers. In this paper,
we have represented the highway dynamics by a finite number
of modes, each of which is represented by a low order transfer
function and a constant time delay. The problem of highway
safety analysis then gets translated into that of the stability
analysis of a parameterized hybrid system. We have presented
a preliminary stability analysis result based on the well known
techniques of [1], [4], and [7]. Connections with the existing
literature and ongoing research activities are noted down.
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