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Abstract—The problem of designing a decentralized advance
hazard warning system for highway transportation systems

. . . . . . fataliti
entails the development of efficient switching controllers. In this R [ vear 2009
paper, we represent the vehicle dynamics by a finite number of 312 e 2ov
modes, each of which is represented by a low order transfer NHTSA statistics

function and a constant time delay. The problem of highway

safety analysis then gets translated into that of the stability

analysis of a parameterized hybrid system. We present an analysis
framework and some preliminary original results.

Index Terms—highway safety, Lyapunov functions, hybrid b
systems, stability

I. INTRODUCTION

angle collisions rear-end collisions

A. Motivation

The prevalent brake-light dependent slowdown warning
system is not very effective in preventing multiple vehiclgig. 1. Fatalities involved in rear-end and angle collisions. Over 10 million
collisions. Indeed, rear-end and angle collisions annualych crashes occur every year in the US.
account for close to 10 million vehicle crashes in the US
[13]. A root cause is that, typically, a driver learns of the
hazard by observing brake-lights of only the front vehicl€duationgPDE’s) and use a spatial Fourier transform to recast
Severity of the collisions can be reduced if the vehicld§e family of PDE’s into a family ofordinary differential
have the ability to emit, and respond to, a warning signgAuationODE’s) parameterized by the frequency parameter.
over a zone whenever it faces or induces a hazard. The Uke notion of highway safety is equivalent to that of the
Department of Transportation has announced the intentionS#bility of this hybrid system.
equipping overl0% passenger vehicles ar3% trucks with The parameterized state space can be partitioned into cells
an advanced slowdown warning system by the year 2010. THigt share, at most, only each others boundaries, and the
paper is motivated by the design of a robust decentralizByPrid system has a piecewise affine form in each of the cells.
slowdown warning technology that will significantly improveThiS formulation facilitates the stability analysis using multiple

the highway safetand incur a low false alarm rate. Lyapunov functions, much on the lines of [7]. It turns out that
the piecewise quadratic Lyapunov function dependent stability

analysis techniques given in [2], [5], and [7] are conservative

B. Proposed Approach if applied directly; the reason being that a direct application

Our hypothesis is that the combined behavior of a vehictequires that the Lyapunov functions be independent of the
and a driver can be reliably represented by a finite numbieequency parameter and, consequently, the full benefit of
of operating modes, each of which can be well approximateding multiplelocal Lyapunov functions, as opposed to using
by a low order transfer function along with a constant tima singleglobal Lyapunov function, is not realized. Essentially,
delay. We consider an arbitrarily large section of a highwahis paper draws on the techniques developed in [1], [4], and
and represent the vehicle dynamics therein as an array sysféito help solve the transportation safety problem on hand.
indexed in space and time. We assume that the vehicle features
are comparable and the operating conditions are uniform. &s Organization of the Paper

a result, the hybrid system dynamics are spatially invariant. This paper is organized as follows. The notation is intro-
We represent the dynamics by a family mdrtial differential guced in Section II-A. The key relevant concepts are defined in
Section 1I-B. A model for highway safety analysis is described
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Il. PRELIMINARIES [1l. M ODEL DESCRIPTION ANDPROBLEM FORMULATION
A. Notation A. Model Description

The notation is introduced as and when necessary. Capitairhe state space description of our model is as follows. The
letter symbols, such a8’ and GG, denote operators whereasstate vectorz comprises the position, the velocity, and the
small letter symbols, such as and y, denote real signals acceleration of each vehicle. In thermal mode of operation,
which may possibly be vector valued or matrix valued. Thgvehicle adjusts its velocity and acceleration based on the state
set of all real (complex) numbers is denoted(C) and the variables of the vehicles within ak/;-neighborhood. We refer
set of all integers is denoted. The notation= stands for to this mode of operation as normal because in real life, as of
'defined as’. The inner produdtr,y) = / y(t)Tg;(t) dt. nhow, a vehicle driver gets only so much visual feedback —

assuming he is not driving an SUV, so to say. In this mode,

The norm||z|| = (z, z). The vector space of signals for whichye gynamical state space equations describing-#evehicle
the Euclidean norm exists is denotéd. The vector space g.q.

% is generally referred to ag.. Fourier transform ofc is
denotedz. Conjugate transpose of a vector or mattix is Ep(t) = Ao ok (t) + A1 0xk—1(t) + A1 0Tr41(t) (@)}
denoted(-)*; its transpose is denoted)”. The (i, j)-th entry
of a matrix (-) is denoted as eithefr); ; or (-);;, depending
on the ease of reading. Given a two dimensional afraythe
neighborhoodV, of the element-); ; denotes the set

where Ay o, A_1,0 and A; o are constant matrices of appro-
priate dimensions. When all of the vehicles are in the normal
mode, the state-space description is given by:

{(Jomn | [m —i| < k and|n — j| < k}. #(t) = Ava(t) @
A block diagonal matrixD € R™*™ having matricedD;; on its Where the associated real valued matdy of the operator
diagonal is denoted di&#1:, Dy, . . ., Dy,,,). Time derivative An : L2 — L is the band block diagonal matrix

of the signalx is denotedi. The class of bounded linear - 1
operators mapping the vector spakeinto the vector space - E - - - R
Y is denoted((X,Y); the class£(X, X) is referred to as
L(X). Domain of an operatod is denotedD(A). The group .
theoretic and system theoretic notions and concepts that ds = | - A_1o0 Aoo Ao
left undefined may be found in [3] and [8].

A—l,O Ao,o Al,o

A0 Aoo Ao

B. Definitions

Definition 1: A Co-semigroupl’(t) on a Hilbert space’ is  yijth the entries(-);; = 0 V¥j such that|j — i| > 6.
said to beexponentially stabléf there exist positive constants\yhen a particular vehicle enters thautiousmode, the width
M anda such that of this band increases for the corresponding entries in the
IT(t)]| < Me™® Wt > 0. system matrix. Specifically, the vehi.cle adjusts its ve.locity qnq
acceleration based on the state variables of the vehicles within
The supremum over all possible valuescofs said to be its an A/, -neighborhood. In this mode, the dynamical state space

stability margin U  equations describing theth vehicle are:
Definition 2: [Piecewise Affine Systems, [7]]

The classSy of hybrid systems is defined by family of B X K
ordinary differential equations as: @(t) = Aoozk(t) + Z} Aiozp-i(t) + Z} Aioziti(t) (3)
i(t) = Aiz(t) +a;i Va(t) € X, where Ao, A_;o and A, are constant matrices of ap-

where 4, € R"".q; € R", and {X;}ie; C R" is a propriate dimensions. In principle, every element of the set
partition of the parameterized state-space into a finite numbeto.0, A-1,0, 41,0} may be different in the normal mode from
of closed, and possibly unbounded, polyhedral cells wifff cautious mode value. However, we denote them just the
pairwise disjoint interior. The set of cells that include théame in order to keep the notation simple. When all of the
origin is denoted, and its compliment is denotef . ] Vvehicles are in the cautious mode, the state-space description
Definition 3: [Parameterized Hybrid Systems] has the form:
TheT cIas;SHg of hybrid 'systems is deflned by family of () = ch(t) @)
ordinary differential equations, parameterized by the frequency N
parametel € [—r, 7], as: where the associated real valued matdy of the operator
. o 4 4 Ac : Ly — Ly is band block diagonal with the entriég; ; =
To(t) = Aioa(t) +aio Vro(t) € Xig 0 V4 such that|j — i| > 6K. Stability margin of the system
where 4;9 € R"*" a;9p € R", and {X;9};er € R™ is a increases monotonically with the number of vehicles in the
partition of the parameterized state-space into a finite humlmautious mode and, in particular, stability margin of the system
of closed, and possibly unbounded, polyhedral cells wittescribed by (4) is higher than that of the system described
pairwise disjoint interior. O by (2). Taking a spatial Fourier transform with the vehicle
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positions as the frequency parameter, the parameterized hylsadisfy
system equations are given as:

AP, + PA; + ETU,E; < 0 @)
io(t) = Awag(t) YV o € Xig (5) P,—E'W,E; > 0 (8)
- ATPp. + P.A: + ETU.E.
where the associated diagonal matry has entries A; P+ Pfflj + ?ﬂ UJ?J < 0 ©)
P, —EIW,;E; > 0 (10)
K K
(Vmm = Aoo +ZA*’“0€_W + ZAk,oejk‘g (6) forall i € I, and for all j € I,. Then, every piecewise
k=1 k=1 continuous trajectory oy tends to zero exponentially. O

on its diagonal wherd € [—7/K,n /K] and the parameter-
ized state space has the partitib;y}. Note that the system )
given by (5) and (6) is an instance of the clag,. We denote _ 1 heorem 1:[Solution to Problem 1]

this system ass. As the vehicles change modes ahdanges COnsider symmetric matrices, U;, and W S”Sh that; and
over [ /K, n/K], the associated matrix of the system take¥ i Nave non negative entries. Suppdge= I T'F; satisfy

V. MAIN RESULTS

values inside a polytope. We denote this polytopedas ATP, + PA,+ETUE, < 0
P,—E/W,E; > 0
B. Problem Formulation for all A, that are vertices ofdg for all i € I. Then,
Problem 1: Determine the computationally tractable analytevery piecewise continuous trajectory 8f tends to zero
ical conditions under which the systefhis stable. O exponentially. U

Proof: The proof follows on the lines of the proof of
Lemma 3. The conditions (7) and (8) need be checked over

IV. PRIORART uncountably infinitely many € [—7/K,n/K]. However,

Lemma 1:[Lemma 5.1.2, [3]] as 6 ranges over[—7n/K,n/K] the matrix A; takes on
The C\-semigroupl(t) on a Hilbert space” is exponentially Vvalues inside the polytopele so that, due to convexity,
stable if and only if there exists & < oo such that the conditions need only be checked on the vertices of the

polytope Ae. QED.

/ IT(0)=Pde <

— 00

for everyz € Z 0 VI. DISCUSSION
Lemma 2:[Theorem 5.1.3, [3]] Time delays constitute a critical factor in the highway acci-
Suppose thatd is the infinitesimal generator of the,- dents. In this paper, it is assumed that their effect can be well
semigroupT’(¢) on the Hilbert spaceZ. Then, T (t) is expo- approximated by finite order rational transfer functions, such
nentially stable if and only if there exists a positive operat@S the Paél approximations. A more sophisticated approach
P € L(Z) such that to mitigate this pain begins with replacing (1) and (3) by,
respectively, the following retarded differential equations:
(Az, Pz) + (Pz,Az) <0

1
Z Ai70$k(t — 1% h)

for all z € D(A). O () = St
We next note down a well known result, viz. [7], on the _K
stabil_ity analysi§ of hybrid systems using multiple Lyapunov in(t) = Z A ozp_i(t —ixh)
functions. ConsideSy. Denote P
A - A a; where h denotes the combined reaction time delay of the
10 0 driver and the vehicle; the value @f can be a function of

_ _ the operating mode.
Constructt; = [E; ¢, F; = [F; fi] where(e;, fi) = (0,0) Remark 1: The characterization given by Theorem 1 relies

for all'i € I and on the one given in Lemma 3 which requires that the system
[ 2 be known perfectly. A more comprehensive and computation
E; { 1 } >0 V zeX; iel; friendly characterization can be obtained by casting the above
algebraic conditions aimtegral quadratic constraintglQC’s)
F; [ f ] =F; { 31: } V zeX;nXj;, i,jel [12]. An IQC based characterization the effect of a localized
control on the global stability of a spatially invariant system
Lemma 3:[Theorem 1, [7]] has been recently derived, see [4, Theorem 1], by [4].O
Consider symmetric matricég U;, andW; such that; and Remark 2:Per se, the results established by [1] and [4]
W; have non negative entries while address the case of uniformly distributed spatially invariant

B - systems operating in single mode although the bare bone as-
P, = FI'TF; Vi€ Iy, P, = FJ-TTFJ- Vjel sumptions of [1] can address a much broader class of systems.
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[4] methodically builds on the classic framework developecontrol inputsu, and by obtaining the corresponding worst
in [1] to characterize the effect of a localized control on thease disturbance. In our highway safety problem, the worst
global stability of such systems. A similar characterization fatisturbance corresponds to the case in which none of the
the case of systems operating in multiple modes is crucial feehicles are equipped and the first car slows down to a
the development of the false alarm mitigation logic referrestandstill as fast as it can. A decentralized controller must
to in Remark 4. 0 consider switching patterns of all vehicles and the front car

Remark 3:String stability of vehicle platoons has beervelocity profiles as the disturbance. An implementation of
extensively studied as a part of the highway safety initiatiihis methodology to compute safe sets for more than two
in the state of California’s PATH program over the lastehicles is not described in [16] and suffers from the curse
two decades (see, e.g., [9], [14], and [15]). However, th@ dimensionality. Unsafe sets can in fact be defined only
established string stability results concern only continuotier each independently maneuvered vehicle separately in the
time systems sans time delays. The analysis framework ugednulation of [16]. This difficulty can be resolved by taking
in this paper addresses the realistic case of multiple operatenginion of unsafe sets of each vehicle in order to generate a
modes which results due to the presence of a human operatorking unsafe set. However, this solution is liable to be very
in the control loop. In principle, the framework can be used twonservative and will not be internally consistent because each
give less conservative stability conditions than the ones deriveghicle must assume the worst behavior of every othef]
for second order macroscopic models by [19]. d

Remark 4:The cautious mode of operation has a higher VIl. CONCLUSION
zfsgg'tg hmuanrgz t(;]r?vr:e:hiz gggﬂergigebgf operat|o_n. However, 'Il'he problem of designing a decentralized advance hazard

present in the contrg

loop, it also carries a higher operating cost because cautiops N9 system for highway transportation systems entails the

C . ]evelopment of efficient switching controllers. In this paper,
behavior incurs fatigue. In order to reduce the number 0 . . -
we have represented the highway dynamics by a finite number

embedded in it as to what an optimal control law is WheoFmodes, each of which is represented by a low order transfer

the objective is to minimize a performance function whicﬁEmCtlon and a constant time delay. The problem of highway

. . " . safety analysis then gets translated into that of the stability
is expressed in terms of the mode stability margins an : . .

. . analysis of a parameterized hybrid system. We have presented
operating costs. We have not addressed the synthesis of such”’™ " . .
%prehmmary stability analysis result based on the well known

a controller. However, a solution would be to assign a h'%echniques of [1], [4], and [7]. Connections with the existing

control bandwidth to the system in cautious mode andIi%‘erature and ongoing research activities are noted dovin
low control bandwidth to the system in normal mode. The going '

controller synthesis problem then reduces to synthesizing an

LQG/LQR controller on the lines of [6] (I VIIl. A CKNOWLEDGMENT
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