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Abstract— This paper addresses a fundamental limitation

of performance for feedback systems, in the presence of
a communication channel. The feedback loop comprises a

discrete-time, linear and time-invariant plant, a channel, an

encoder and a decoder which may also embody a controller.
Measurements of the plant’s output must be encoded for
transmission over the channel. Information, at the other end of

the channel, is decoded and used to generate a control signal,

which is additively disturbed by a Gaussian and stationary
stochastic process. We derive an inequality of the forn._ >
> max{0, log(|Ai(A)])} — Cchanner, Where L_ is a measure of
disturbance rejection, A is the open loop dynamic matrix and
Cehannel IS the Shannon capacity of the channel. Our measure
L_ is non-negative and smallerL_ indicates better rejection
(attenuation), while L_ = 0 signifies no rejection. Previous
results show that Ceranner > > max{0,log(|A:(A)])} is a
necessary condition for stability and now we show that the
extra rate Ceranner — »_ max{0,log(|A:(A)|)} determines a
fundamental limitation for disturbance rejection. Additionally,
we prove that, under a stationarity assumption, L_ admits a
log-sensitivity integral representation. We contrast our condi-
tion with Bode’s integral formula and the water-bed effect.
The new inequality shows explicitly how the capacity of the
channel limits closed loop performance.

. INTRODUCTION

Motivated by applications, such as remote feedback, con-
trol in the presence of information constraints has received
considerable attention. Certainly, the exploration of such
problems is exciting as they foster the interaction between
the disciplines of Information Theory and Control.

So far, research in this field has, primarily, directed
its attention to stabilization [18]. The basic framework is
depicted in Fig 1 and comprises a plant, a channel, an en-
coder and a decoder, which implicitly embeds a controller.
Measurements of the plant’s output must be encoded and
sent through the channel. The information, received at the
other end of the channel, is decoded and used to generate
a control signal. It has been shown that stabilization, of
a linear and time-invariant plant, requires [15], [16], [11]
that Cepanner, the channel’s Shannon capacity, is larger than
> max{0,log(|]\;(A4)])}, where A is the dynamic matrix of
the state-space representation of the plant. For certain chan-
nels, the condition Cpanner > > max{0,log(|X;(A4)|)} is
sufficient for stabilization in the amost sure sense [16],
but it may not suffice for moment stability[14]. In general,
moment stability necessitates a more informative notion of
capacity, designated as Anytime Capacity [14]. Stabilization
of nonlinear systems has also been studied by [12] and [7].
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Fig. 1. Structure of the Feedback Interconnection

The work by [4] has used the integral of the log-sensitivity,
as seen by the noise in an additive Gaussian channel, to
establish that the optimal encoding/decoding scheme can be
constructed using standard optimal control theory. Another
recent area of investigation is the analysis in the presence
of disturbances and uncertainty. In [9], stability in the
presence of disturbances and operator theoretic uncertainty
is investigated, for a particular class of channels.

Understanding the fundamental limitations of perfor-
mance in a feedback system is critical for effective control
design. One of the most well known trade-offs is the water-
bet effect for linear feedback systems, which results from
Bode's integral formula[l]. In such classical theory, the
transfer function, between the disturbanced and € = a+d
(see Fig 1), is denoted as sensitivity and is represented
by S(z). Bode's result, for a strictly proper loop gain, is
expressed as:

us us

. 1
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[log|S(e )|],dw+27r

o log |7} deo =

—T —T

> max{0,log(|\:(4))} ()

where [log|S(e’?)|]l- = min{0,log|S(e’*)|} and
[log |S(e7)|]+ max{0, log|S(e’*)[}. It implies that
sensitivity can't be small at all frequencies,i.e., reduction of
J7 Nog |S(e?)[]—dw is achieved at the expense of increase
in |7 llog|S(e’))dw.

Recent publications [5], [21] have provided new versions
of (1). Thework by [21] has introduced a Bode-like integral
inequality for non-linear systems, which is derived based on
information theoretic principles.

In this paper, we derive a fundamental limitation that
arises when the directed information rate! [10], [16], de-
noted by I, (v — z), a the channel, is upper-bounded by
a constant, i.e., Ino (v — 2) < Cenanner- OUr results show
that the following must hold:

%L_ +Lo(v—2) > 3 max{0, log(IX: (4))}

1This quantity is represented as Ioo(v — z) and will be precisely
defined in section 1.



where L_ is a measure of disturbance rejection. Such
measure satisfies L < 0, where L_ = 0 means no-
rejection and small L _ attests disturbance attenuation. We
show that, under stationarity assumptions, L _ becomes an
integral and our condition can be expressed as:

% /,ﬂ[log |S(e)|—dw + Ino (v — ) >

> max{0,log(|Xi(4))} (@

By means of an argument similar to the water-bed effect,
the inequality (2) asserts that attenuation, when measured by
J7_og|S(e?)[]—dw, hasto be repaid by ahigher informa-
tion rate in the channel. Since I, (v — 2) < Cehannel, We
infer that the trade-off (2) creates a fundamental limitation.
Using information theoretic arguments and assuming
stationarity, we aso derive the Bode integral formula. Our
derivations require a linear and time-invariant plant, but
the encoder, the channel and the decoder/controller can
be any causal operators. The paper is organized in 4
sections. Besides the introduction, section Il lays down the
problem formulation as well as a preview and a discussion
of the results; the limitations resulting from causality are
derived in section |11 and section 1V devel ops a fundamental
limitation that results from finite capacity feedback.

A. The following notation is adopted:

« Whenever it is clear from the context, we refer to a
sequence {a(k)}>,, of elementsin R™ as a. A finite
segment of a sequence a is |nd|cated as a ::j: =
{a(k) Yo Nf ke < Emin then ajme = 0.

o If M is amatrix then the element in the| -th row and
j-th column isindicated as [M]; ;. Similarly, if a € R™
then [a]; denotes the i-th component of the vector.

« Random variables are represented using boldface let-
ters, such as a.

« If a(k) is a stochastic process, then we use a(k) to
indicate a specific realization. Similar to the convention
used for sequences, we may denote a(k) just as a and

a(k) asa. A fi nite segment of a stochastic process is
indicated as a Rimax

o The probablllty densty of a random variable a, if it
exists, is denoted as p,. The conditiona probability,
given b, is indicated as p,|;-

» The expectation operator over a is written as £|a]

o We write log,(.) simply as log(.)

« We adopt the convention 0log0 = 0

o The auto-covariance function of a given stochastic
process a is given by:

Ra(k,1) = € [(a(k) = Eak)))(a(l) — E[a@)])"]

If a is stationary then it's power spectral density is
written as

i Ro(k,0)e~ "

k=—o00

« If aisastochastic process taking valuesin R then we
use the following covariance matrix:

Emaz _
[E (a’“)} (i=kmint1),G—Fmin+1)
€ (a() — E[a(@))(alj) — ElaG)])] Q)
where i, j € {kmin, - - -, kmaz }-

o The Singular Value Decomposition of a matrix M =
MH" > 0 is indicated as M = VAV, where
the usual ordering of singular values is assumed
[Arr)i+1,i41 < [Anr)ii- The singular values of M are
represented in a more streamlined form as A;(M) =
[Aa]ii- If A is asquare matrix, we also represent its
eigenvalues as \;(A).

« If a € R then we define the negative and positive parts
of a as [a]- = min{a,0} and [a]y = max{a,0},
respectively.

« The following is a shorthand notation for the log-
density of the eigenvalues with magnitude smaller than
1, of a covariance matrix:

Sk og (A(S(afen) ) 1-

min

kmin + 1

L_(ajme) =

min kmax -

4
Similarly, we also define L, the positive counterpart
of L_, mutatismutandis by replacing — by + in (4).

B. Basic Facts and Definitions of Information Theory

In this section, we summarize the main definitions and
facts about Information Theory which are used throughout
the paper. We adopt [13], as a primary reference, because
it contemplates general probabilistic spaces in a unified
framework. Let (22,S,,P,,) be a probability space along
with the random variables a, b and c, taking values in the
measurable spaces (A, S,), (B,Sy) and (C, S.). We define
mutual information and conditiona mutua information,
between any two random variables, as:

Definition 1.1: (from[13] pp. 9) The mutua information
I : (a;b) — Ry |J{oo}, between a and b, is given by

I(a;b) = supZ” Pab(E; x Fj)log %, where
the supremum is taken over al partitions {E;} of A and
{F;} of B.

The definition of conditional mutual information can be
found in [13] (pp. 37).

Notice that, in definition 1.1, A and 5 may be different.
Without loss of generality, we follow [16] as we consider
probability spaces which are countable or R4, for some gq.
We aso define the following quantities, denoted as differen-
tial entropy and conditional differential entropy, which are
useful in the computation of (-, -) for certain cases relevant
in this paper.

Definition 1.2: If a is a random variable with A = R,
finite covariance matrix X, and a bounded? and measurable

2Since p, is bounded with a finite covariance matrix %, it follows that
h(a) < oo. The fact that h(a) < oo further implies that p, log pe is
integrable. Proofs of these facts use standard analysis arguments and can
be found in [8]



probability density function pa(+) then we define the differ-
ential entropy of a as h(a qu Pa(7)log pa(y)dy. If b
is a random variable W|th B RY and such that Dab(, ")
is a bounded measurable probability density function with
finite covariance then we define the conditional differential
entropy of a given b as®:

h(alb) = h(a,b) —
/R/R Pab(Yas 1) 108 Pajp (Yas 1) dYadvs  (5)

If B is countable and pgs(va, b) is bounded and log p,p
is measurable in the measure induced in A x B then h(a|b)
is defined as:

h(alb) = Z/Rpab YVas 1) 108 Pajp(Ya, V) dva  (6)

Y ESp

h(b) =

Likewise, the quantity h(a|b, c) is defined by incorporating
another sum over S, if C is discrete, or an integra if
C = R?’. Notice that the quantity defined in (6) may not
be bounded (it can be —oo) because the integrand is not
necessarily integrable/summable. In the more general case,
if we write h(alb) then we assume that p,;, is bounded
and that log p,; is integrable with respect to the probability
measure induced in A x 5. A more rigorous treatment of
this technicality can be found in Chapter 3 of [8].

Using Theorem 2.1.2 of [13], we know that if logp,
and logp,;, are integrable with respect to the probability
measure induced in A x BB then we can compute I(a; b) as:

I(a;b) = h(a) — h(a|b) ()

In this paper, if we use (7) then, implicitly, we assume
that log p, and logp,, are integrable with respect to the
probability measure induced in A x B.

The following is a list of properties used in the sections
[l and IV. The proof of such properties may be found in
[13] and, in some cases, in [2]: (P1): I(a;b) = I(b;a) >
0 and I(a;blc) > 0; (P2) Kolmogorov's formula *
(equation 3.6.6 in [13]):

I((a,b); c|ld) = I(b;c|d) + I(a; c[(b,d))

(P3): Theorem 3.7.1 in [13] If f and g are measur-
able functions in the appropriate probability spaces then
I(f(a);g(b)|c) < I(a;blc) and equality holds if f and
g are invertible®; (P4): From property (P3), we conclude
that I(a; (b,c)|d) = I(a; (b — c,c)|d). Using (P2), such
equality aso leads to I(a;b|(c,d)) = I(a;b — c|(c,d));
(P5): By means of (Pl) and (7), we infer that h(a) >
h(a|b), where equality holds if and only if a and b are
independent. Likewise, we can use properties (P1)-(P2) to

SNatice that the equalities bellow hold because all the integrands are
integrable

“Notice that equation 3.6.3 in [13] has a typographic mistake. On the
left hand side of the equality, the correct is I(¢, ()

5In [13] equality is guaranteed for everywhere dense f and g. Everytime
we say that a function is invertible in this context we are implicitly
assuming that it is everywhere dense.
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Fig. 2. Simplified Structure of the Feedback Interconnection using e =
G leand u = G 1a.

state that I(a; (b,c)) > I(a;b), which can be used with
(7) to derive h(alb) > h(a|(b,c)); (P6): Using a change
of variables in the integrals of definition 1.2, we reckon
that if f : B — A is any given function then h(alb) =
h(a— f(b)|b); (P7) [2]: If a has afinite covariance matrix
Yo then h(a) < 1log((2me)™ det(%,)).

In order to simplify our notation, we also define the
following quantities:

Definition 1.3: Let a and b be stochastic processes. The
following are useful limit information rates:

I (a;b) = limsup %
k—o0

_ I(aF k
I(a — b) = limsup w
k—o0

where directed mutual information is defined as [10], [16]:
k

I(a} —by) = I(ai;b(i)|bi )
=1
Il. PROBLEM FORMULATION AND DISCUSSION OF
RESULTS

Consider the feedback interconnection depicted in Figure
1. In such information pattern [17], measurements of the
state of the plant have to be encoded and sent over a
communication channel. The transmitted information is
used, at the decoder/controller, to generate the control signal
u. In order to make the paper more comprehendible, we
proceed with the equivalent block diagram of Fig 2.

A. General Assumptions

In the present formulation, the following assumptions
are made: the process w, with w(k) € R, is an i.i.d,
zero mean, unit variance, white and Gaussian process;
e is a scalar (e(k) € R) stochastic process for which

k:j: has a probability density function, for every finite
kmin, kmaz; G(2) is an al-pole stable filter of the form
G(z) = W for some integer p > 1 and
constants a; and o > 0. Given n, P is a single input plant
with state z(k) € R", which satisfies the following state-

space equation:

zu(k+1)|  [A, O by,

za(k+ 1)] = [o AS] x(k) + [b} e(’z))
8

s)]<landk >0

x(k+1)—[

y(k) = Ox(k), [Ai(Au)] = 1, [Ai(A



The state partitions x,, and x, represent the unstable and
stable open-loop dynamics, respectively. In addition, if A #
As then x,(1) is a random variable with a probability
density function and |h(x,(1))| < co.

In this paper, we will aso refer to Channels which are
stochastic operators conforming to the following definition:

Definition 2.1: (Memory-less Channe) Let V and Z
be given input and output aphabets, along with a white
stochastic process, denoted as ¢, with aphabet C. Consider
f:VxC — Z such that the following maps are invertible:

g1(v(k), e(k)) = (v(k), f(v(k), c(F)))
g2(v(k), c(k)) = (f (v(k), c(k)), c(k))

The pair (f, ¢) defines a memory-less channel. The follow-
ing are examples of memory-less channels:

« Additive white Gaussian channel:V = Z = C =
R, c is an i.i.d. white Gaussian sequence with unit
variance and f(c,v) = ¢+ v.

o Binary symmetric channel, with error probability
pe: V=2=C=17Zy=A{0,1}, cisani.i.d sequence
satisfying P(c(k) = 1) = pe and f(c,v) = ¢ +mod2 v

B. Assumptions about the Encoder and the Decoder

We also assume the following about the encoder and the
decoder:

e (A1) the encoder and the decoder are causal operators
defined in the appropriate spaces, i.e., £ : Y — V>,
D: 2> — U™ where v(k) = f£(y" ) and u(k) =
f(z* ) for some functions f¢ and f{.

o (A2) additionally, the decoder satisfies the following
finite memory condition:

Vk > a,ul,, = fl(uf,z}) 9)

for some o« € N and a sequence of functions f,‘j :
U x zk - yk-a-t,

« (A3) (Fading memory condition) For technical reasons,
we assume that the following condition holds:

lilzris;}p %I(ui’;x(l),wlﬂzlf) =0
where « is the smallest constant for which (A2) holds.
If « = 0 then we adopt the convention that (A3)
is satisfied. A particular instance of @ = 0 is if the
decoder is a dynamical system with zero initial condi-
tions. Several aspects of this assumption are clarified
below. More details can be found in [8].

C. Further Remarks about (A2)

Notice that a synchronous block decoder, with delay «,
fals into this category. In addition, any dynamic system,
of the form u(k) = f(uf~! 2z ), will satisfy (9). We
emphasize that this representation does not pressupose a
full-information system. For example, if y (k) is the output
of an observable n-th order linear and time-invariant system,
with input z(k), then it is possible to represent its input-

output behavior in the form y (k) = f(yer L, 2k ).

1) Assumption (A3) when U/ is countable: If I/ is count-
able then we can use (P1)-(P2) to conclude that:

I(uf; wi|zy) < H(uf)

As such, if H(u) < oo holds then I(u$;wk|zk) < o
is satisfied. If ¢/ has Ny elements, such quantity is upper-
bounded [2] as H(u{) < alog(Ry). The confinement to
finite control alphabets is expected if the channel, itsdlf, is
discrete or in the presence of quantizers. Finite ¢/ further
encompasses digital controllers, as they constitute dynamic
systems evolving on a finite precision algebra.

(10)

D. Problem Satement and Discussion of Results

We investigate the fundamental limitations of the eigen-
value distribution of (e ’”“) In order to simplify the
expose we state our results in terms of L_(e ’:j:) and
Ly (efres).

In section 111 we reach a fundamental limitation which
is a consequence of causality alone. The result is presented
in theorem3.3, which states that if the feedback system in
Fig 2 is stable then the following must hold:

Zmax{o log(|Ai(A)])}

(11)
The inequality in (11) demonstrates that not al of the
eigenvalues, of X(e%), can be made smal and that the
reduction of some necessarily imply the increase of others.
That is comparable to the water-bed effect, associated to
the classic Bode integral limitation. Such comparison is not
coincidental and is explored in section I11-A.

In the fundamental limitation expressed in (11), the
characteristics of the channel do not play arole. It remains
the question of whether the “shaping” of the eigenvalues
of ¥(e¥) depends on the information flow in the feedback
loop. The answer is given in theorem 4.3 which states that:

1
5 lim inf (L (e + L ( el

k—oo

1. -
5 lim g;fL,(e’f)Hoo(v —z) > Zmax{(),log(Mi(A)D}

(12)
As a consequence of (12), we find that reduction of the
eigenvalues of (e?), for values bellow unity, must come at
the expense of information flow in the channel, as quantified
by Io(v — 2).
Under stationary assumptions, corollaries 3.4 and 4.4
show that the inequalities (11) and (12) can be expressed
as.

™ T

— [ Tog(S()]do+ o= [ llog(S()]sdo 2

> max{0,log(|A:(4))}  (13)

—T

=/ " og(S(W))]—dw + (v — 2)

2 J_,
Zmax{o,log(lAi(Am} (14)



where S(w) = y/ Fu(w) = %

The inequalities (13) and (14) must be satisfied by any
stable and causal loop of the form depicted in Fig 1 or Fig
2.

I1l. FUNDAMENTAL LIMITATIONS CREATED BY
CAUSALITY

In this section, we derive a fundamental limitation that
results from causality. Such digression is aso used to
present some of the preliminary results, which will be used
in section V. Our technique follows the one by [21], with
the exception of the way we tackle initial conditions and
unstable modes of the plant. More specifically, theorem 3.3
states a fundamental limitation that explicitly incorporates
the eigenvalues of A. At the end of the section, we special-
ize the result, under stationarity assumptions, and derive the
Bode-Integra formulain Corollary 3.4.

The following lemma shows that the difference, between
the entropy rate of e and the entropy rate of w, is lower-
bounded by the mutual information between the initia state
and e.

Lemma 3.1: If x(k) is the solution of the state-space
equation (8) then the following holds:

M) e LX) )y

Proof We start by noticing that since the plant is strictly
causal and x(1) is independent of w, we get that:

hm 1nf

h(w(k)) = h(w(k)[x(1),uf, wi™") =

h(e(k)[x(1),uf,ef™") < h(e(k)|x(1),e;™") (16)

where we used properties (P5) and (P6). Since h(w(k))
does not depend on &, we use (16) and the law of iterated
differential entropy © to derive:

k

> hle(i)x(1),eit) =

i=1

h(ef|x(1)) > h(w(1))
The proof is concluded once we notice, from (7), that
h(ef[x(1)) = h(e}) — I(ef;x(1)). O

The following lemma, corroborates the results by [15],
[16], [14], [20], [11], and unveils that stability implies that
e must carry abit-rate, of information about the initial state,
of at least D, max{0,log(|]\;(A)|)}.

Lemma 3.2: Let x(k) be the solution of the state-
space equation (8). If the system is stable, i.e,
supy, E[xT (k)x(k)] < oo holds then the following is sat-
isfied:

k.
lim inf 7I(e1,x(1))

k—oo k (17)

> Z max{0, log(|\;(A)])}

SNotice that the law of iterated differential entropy, equation (9.33) in
[2], holds here because we assume that e and x (1) have ajoint probability
density function.

Proof: If A = A, thenwejust use I(e¥;x(1)) > 0.If A #
A, then we consider the following homogeneous system:

Xe(k+1) = Auxe(k) + bye(k), z.(1) =0 (18)

and define the estimate % (k) = A, *x. (k). Since x, (k) =
x.(k) + Akx, (1) = AF(%(k) — x,(1)), we know that:

klog(| det(AuA,)]) + log(det(Rx,..., (k) =
log(det(Rx, (k,k))) < B < oo (19)

where xc,ror (k) = X(k) — x,,(1). Since &(k) is a function
of ¥, we have that:

I(x(1);e1) > I(xu(1);€) = h(xu(1)) — h(x(k) —Xu(l());

2
But, from (P7) we know that lim sup, . M;x“(l)g <
log(det(Peerror ) As @ consequence, we
limsup,,_, M <
«)|). The proof follows by direct substltutlon

lim supy,_, o,
can use (19) to get

—log(] det(A
.

Using the results in the previous lemmas, we derive
theorem 3.3. It states that causality and stability imply that
the log-sum of the eigenvalues of (e¥) are, in the limit,
lower bounded by the unstable eigenvalues of the plant.

Theorem 3.3: (Causality fundamental limitation) Let
x(k) be the solution of the state-space equation (8). If the
system is stable, i.e., sup, £[xT (k)x(k)] < oo holds then
the following is satisfied:

(ef) + L (e}) 2237 max{0, log(|\:(4))
' (21)

lim inf (L_
k—oo

Proof: From lemmas 3.1 and 3.2 we know that:

h(ef) (e x(1))
k;l — h(w(1)) > liminf — %

k—oo

Zmax{o,logUAi(A)l)} (22)

lim inf >

k—o0

Using the fact (P7), we conclude that h(e¥) —
1 log(det(X(e
final result O

h(w(1)) <
%))) which, together with (22), leads to the

A. Deriving Bode's Integral Formula

Under stationarity assumptions, theorem 3.3 is at the base
of Bode-integral formula. A precise description of such
property is in the subsequent Corollary.

Corollary 3.4: Let x(k) be the solution of the state-
space equation (8). If the system is stable, i.e,
supy, E[xT (k)x(k)] < oo holds and e is a stationary
process, where 0 < m < F.(w) < M < o is Lebesgue
integrable, then the following is satisfied:

T

or | oB(S@))dw 2 > max{0,log(A(A))} (23)
where S(w) = y/F.(w) = §j§i§ = Ve The

processes € and d are the ones depicted in Fig 1.



Proof: The proof follows from Theorems 3.3 and 5.2,

which implies that if e is stationary, then limj, ... L(e}) =

= | log(Fe(w))dw. O

IV. FUNDAMENTAL LIMITATIONS CREATED BY FINITE
CAPACITY FEEDBACK

In this section, we examine the fundamental limitations,
in the eigenvalues of X(e%), that originate from the con-
gtraint Io(v — z) < Cihanne- The main inequality,
involving the channel directed information rate and the
eigenvalues of A, is given in theorem 4.3.

Subsequentially, we provide a lemma which unveils
how the information, traveling in the feedback loop, is
alocated. By inspecting the proof of such lemma, we
identify that the feedback mutual information, dictated by
I((x(1),wh); u¥), must account for two terms. The first is
due to stabilization information 7(x(1);e%) and the second
quantifies the interaction between the control signal and the
disturbance I(u¥;w¥). In addition, the case study in [8]
shows that the inequality, presented in the lemma below, is
not conservative.

Lemma 4.1: (Fundamental Lemma of the Information
Flux) Let x(k) be the solution of the state-space equation
(8). If the system is stable, i.e., sup, E[xT (k)x(k)] < oo
holds then the following is satisfied:

.ok
Io(v—12)> hkrgg;f % + Io(u;w)  (24)
Proof: We start by using (P2) to write I((x(1), w); u¥) =
I(x(1);u¥|wk) + I(uf;w¥) which can be rewritten, by
means of (P3), as.

I((x(1), wh);uf) = I(x(1); ef|wr) + I(uf; wr)  (25)
On the other hand, using (P2) we get
I(x(1); efwT) =
I(x(1);ef) — I(x(1); wy) + I(x(1); wilef) (26)

Since w is independent from x(1), the second term, on
the right-hand side of (26), vanishes and we resort to (P1)
to get I(x(1);e¥|wh) > I(x(1);e¥). Consequently, we
substitute the aforementioned inequality in (25) and obtain
the following:

I((x(1), wi);ug) > I(x(1);ef) + I(uf;w))  (27)

The present lemma is proven once we resort to theorem 5.1
O

The following lemma suggests that attenuation can hap-
pen only if the channel sends information about the distur-
bance.

Lemma 4.2: If g(k) is a sequence such that @ - 0

k—oo
then the following holds:

1 1
STy wy) > =L (eg) (28)

k

Proof: Let the following be the singular value decomposi-
tion of (el ,):

T
Elegw) = [V_ 0 A ||V
We establish the following relation’:

(29)

I(wisug) > I(Wigos ugpy) > T(Vowg; Vougy) =
h(V_wg)) = h(V_eg))  (30)

where we have used (7), (P6) and (P5). More-
over, since w is Gaussian with unit variance then
(P7) guarantees that h(V_wl, ) — h(V_ej;)) >
—3 log(det(V_X(ek )W) = =5 L_(ely,). O

Subseguently, we provide the theorem which states the
main inequality in the paper. It reflects a trade-off between
disturbance attenuation, as measured by L _(e}), and the
directed information rate through the channel, expressed by
Io(v — z).

Theorem 4.3: (Main theorem) Let x(k) be the solution
of the state-space equation (8) and g(k) be an arbitrary

sequence satisfying £) 0. If the system is stable,
i.e., sup, E[xT (k)x(k)] < oo holds then the following is
satisfied:

1. .

> max{0,log(|\:(4)))}  (31)

Proof: The result follows bymdirect substitution of Lemmas
3.2and 4.2 into Lemma 4.1. OJ

The corollary bellow is an immediate consequence of the-
orem 4.3 and shows that if C.;qnne 1S t00 close to the crit-
ical stabilization rate, given by Y. max{0,log(|]A\;(4)])},
then disturbance rejection is not possible.

Corollary 4.4: Let x(k) be the solution of the state-
space equation (8) and ¢(k) be an arbitrary sequence
satisfying 2 0. If the system is stable, i.e,
supy, E[xT (k)x(k)] < oo holds then the following is sat-
isfied:

1. . ,
5 hkn_l»g.}f L_ (eg(k))‘f'cchannel > Z maX{Oa 10g(|)‘7 (A) |)}

(32)
Proof: Follows from theorem 4.3 and the fact that I (v} —
ZI{) S kcchannel- O

“Notice that we have used an abuse of notation in equation (30). We
write V,ek(k) to indicate the random variable whose realizations are

e(k)
computed as V_ :

e(g(k))
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Fig. 3. Casting the feedback loop as a channel in feedback.

A. An Integral Formula

Under stationarity assumptions, the condition in theorem
4.3 can be expressed by means of an integral form.

Corollary 4.5: Let x(k) be the solution of the state-
space equation (8). If the system is stable, i.e,
sup;, E[xT (k)x(k)] < oo holds and e is stationary, where
0 <m < F.(w) < M < oo is Lebesgue integrable, then
the following is satisfied:

™

[ og S@)]_dw + Lu(v — 2) >

2
> max{0, log(|A:(4))}  (33)

—T

; Fy Py
oo s = 70 = |55 = |

processes € and d are the ones depicted in Fig 1.

Proof: By means of adirect application of the Theorem 5.2
we find that:

1 (™ -
. By &
Jm L(eh) = 5- [ Dox(F@)l-dv (34
The result follows by direct substitution of (34) in (31). O

The integra formula holds under certain asymptotic
stationarity conditions. More specificaly, it holds if there
exists g(k) such that E(eg(k)) converges, “sufficiently fast”,
to a stationary Z(é’f’g(k)). This extension is studied by [8]
in a case study.

The

V. AUXILIARY RESULTS

The following theorem provides an extension of the
directed data processing inequality, originally derived in
[16]. Compared to the version in [16], the result presented
bellow alows encoders and decoders that depend on past
inputs indexed by £ < 1. The quantities in the statement of
the theorem refer to the scheme depicted in Fig 3.

Theorem 5.1: (Directed Data Processing Inequality) Let
the following assumptions hold:

e The plant is LTI with a state-space representation
where D = 0 (strictly proper)

o (A1) The encoder and decoder are causa operators

e (A2) The decoder satisfies:

vk > o ug = fl(uf,2)) (35)
for some o € N, and a sequence of functions f,‘j
« (A3) The fading memory condition

limsupy,_,o £1(ug; (x(1), w})|zf) = 0 holds.

Under the above conditions, the following is true:

timsup 1 7(x(1), wh)suf) < Ty — 2)

Proof: W]é_)sgbarate the proof in two parts.

As a first step we show that I(z%;(x(1),w})) <
I(vh — z¥).

Using (P2) we can write the following equality, for any
giveni e {1,...,k}:

(36)

1(a(0); (x(1), wi g ) = H(a(i)s vil2i )+
1(a(0)s (x(1), wi )24 )~

I(z(i); vilzy ', x(1), wi™t)

(37)
Now notice that (P2) alows us to rewrite:

I(z(i); (x(1), Wy~ )lzi~", vi)

i) =
I((zi, vi); (x(1), wih)) = I((z1 ", vi)i (x(1), wi™h))

(38)
But, from (P3), we know that
I((=h,vi); (x(1), wi™h)) = |
I((e(i), 27", vi)s (x(1), wi™h)  (39)

where we used the fact that, from the definition 2.1 (chan-
nel), the following map is invertible:

(2(i), v(i)) — (c(2), v(i))
Causdlity

A makes c() independent of
(207, vi,x(1),wi™ 1), so that (39) implies the following:

(23, v1); (x(1), wi™h)) = I((z1 ", v); (X(l),Wi’l(Qo)
By making use of (40) and (38) we infer that
I(z(i); (x(1), w'™ )|zt ™!, vi) = 0. Such fact, together with
(P1) and (37), leads to:

I(z(i); (x(1), wi )|z 1) < I(z(i);vilzi ') (4D)

The first part of the proof is concluded once we notice
that, from causality, w¥ is independent of (x(1), wi™!,z?),
which implies:

I(z(i); (x(1), wi)lzi ") = I(z(i); (x(1), wi™")|z3 ")

(42)
so that (41) implies:
k
I(zys (x(1),wy)) = Y 1(a(i); (x(1), wi )|z ) <
i=1
k
> L(z(i);vilzi ) = I(vi —zi) (43)
=1

In the second stepwe prove that:

1 , 1
limsup —1(u?; (x(1),w?)) < limsup —1(z¥; (x(1), w}))

k—oo k—o0



Once again, we use (P2) to write:
I(uf; (x(1), wr)) = I(2f; (x(1), wt))+
I(uf; (x(1), wi)|zy) — I(2; (x(1), wi) uf)

It follows from (P2), (P4) and assumption (A7) that:

(44)

I(uf; (x(1), wi)|zt) = I(ug yy; (x(1), wi)lz], uf)+

I(uf; (x(1), w1)lzy) = I(uf; (x(1), w})|z})  (45)

Substitution of (45) in (44), together with property (P1),
leads to:

I(uf; (x(1), wh)) < I(z; (x(1), w}))+

I(uf; (x(1), w1)lz1) (46)

Accordingly, (46) and the assumption (A8), which re-
quires lim supy,_, %I(uj’; (x(1), wk)|z¥) = 0, imply that:

1 , 1
limsup — I (u¥; (x(1), w¥)) < lim sup %I(Z]f; (x(1), wh))

which, together with (43), concludes the proof. [

The following is the statement of the main theorem of
Chapter 5 of [6], repeated here for convenience:

Theorem 5.2: (Reproduced from [6], pp.64-65) Let
F,(w) be areal-valued function of the class £, ( |F,(w)| is
integrable in the sense of Lebesgue). We denote by m and
M the essential lower bound and upper bound of F,(w),
respectively, and assume that m and M are finite. If G()\)
is any continuous function defined in the finite interval
m < X< M, we have:

n . k I
T GuEEh) 1
k+1 2 J_ .
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k—oo

REFERENCES

[1] Bode, H. W., “ Network Analysis and Feedback Amplifier Design”,
D. Van Nostrand, Princeton, 1945

[2] Cover, T.M; Thomas, J. A.; “Elements of Information Theory”,
Wiley-Iterscience Publication, 1991

[3] Doyle, J.C.Francis, B.A.; Tannenbaum, A.R.; “ Feedback Control
Theory”, Macmillan, New York, 1992

[4] Elia, N., “Control-Oriented feedback communication schemes’,
Allerton Conference in Communication and Control, 2003

[5] Freudenberg, J.S.; Looze, D.P. “ Frequency Domain Properties of
Scalar and Multivariable Systems’, Springer-Berlin, 1988

6]

(8l

(9

(1]

(11

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

Grenander, U.; Szego, G.; “ Toeplitz Forms and Their Applications”,
University of California Press, 1958

Liberzon, D. “ On Stabilization of Non-Linear Systems Wth Limited
Information Feedback” , Proc. of the |EEE Conf. on Dec. and Control
, pp. 182-6, 2003

Martins, N. C. “Information Theoretic Aspects of the Control
and Mode Estimation of Sochastic Systems’, Ph.D. Thesis, MIT,
2004 (The work pertaining to this paper corresponds to Chap-
ter 3 of the aforementioned Thesis. It can be downloaded from
web.mit.edu/~ nmartins/www/thesi schap3.pdf )

Martins, N.C.; Dahleh, M. A. and Elia, N.; “ Feedback Stabilization
of Uncertain Stochastic Systems Using a Sochastic Digital Link”,
to appear in the IEEE Conf.on Decision and Control, 2004

Massey, J. “ Causality, Feedback and Directed Information”, Proc.
of the 1990 Int. Symp. on Information Theory and its Applications
(ISITA-90), pp. 303-305

Nair, G. N. and Evans, R. J,, “ Sabilization with Data-Rate-Limited
Feedback: Tightest Attainable Bounds!” Systems and Control Letters,
Vol 41, pp. 49-76, 2000

Nair, G. N. and Evans, R. J., Mareels, I. M. Y. and Moran W. “

Topological Entropy and Nonlinear Sabilization” to appear in the
Specia Issue on Networked Control Systems, |EEE Transactions on
Automatic Control, 2004

Pinsker, M. S.; “Information and Information Stability of Random
Variables and Processes’, Holden Day, 1964

Sahai, A.; “Evaluating Channels for Control: Capacity Reconsid-
ered”, Proc. ACC., pp. 2358 - 2362, 2000

Tatikonda, S.; “Control under Communication Constraints: Part |
and 11", submitted to the |EEE Transactions on Automatic Control

Tatikonda, S.; “ Control under Communication Constraints’, Ph.D.
Thesis, M.1.T. 2000

Witsenhausen, H., “Separation of Estimation and Control for
Discrete-Time Systems’, Proceeding of the IEEE, Volume 59, No
11, November 1971

Wong, W.S.; Brockett, R.W.; “ Systems with finite communication
bandwidth constraints -11: Stabilization with Limited Information
Feedback” |EEE Trans. Automat. Control, Vol 44, No. 5 pp. 1049-
1053, 1999

Wong, W.S,; Brockett, R.W.; “ Systems with finite communication
bandwidth constraints -I: Sate estimation problems’ |IEEE Trans.
Automat. Control, Vol 42, pp. 1294-1298, Sept 1997

Yuksel, S,; Basar, T. “ Quantization and Coding for Decentralized
LTI Systems”, Proc. IEEE CDC, Hawai, December 2003

Zang, G.lglesias, P. A.“Nonlinear extension of Bode's integral
based on an information theoretic interpretation”, Systems and
Control Letters, 50 (2003) pp. 11-19



