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Feedback Control in the Presence of Noisy

Channels: “Bode-Like” Fundamental

Limitations of Performance

Nuno C Martins and Munther A Dahleh

Abstract

This paper addresses a fundamental limitation of performance for feedback systems, in the presence

of a communication channel. The feedback loop comprises a discrete-time, linear and time-invariant

plant, a channel, an encoder and a decoder which may also embody a controller. Measurements of the

plant’s output must be encoded for transmission over the channel. Information, at the other end of the

channel, is decoded and used to generate a control signal, which is additively disturbed by a Gaussian

and stationary stochastic process. We derive an inequality of the form L
−
≥

∑
max{0, log(|λi(A)|)}−

Cchannel, where L
−

is a measure of disturbance rejection, A is the open loop dynamic matrix and

Cchannel is the Shannon capacity of the channel. Our measure L
−

is non-negative and smaller L
−

indicates better rejection (attenuation), while L
−

= 0 signifies no rejection. Previous results show

that Cchannel >
∑

max{0, log(|λi(A)|)} is a necessary condition for stability and now we show that

the extra rate Cchannel −
∑

max{0, log(|λi(A)|)} determines a fundamental limitation for disturbance

rejection. Additionally, we prove that, under a stationarity assumption, L
−

admits a log-sensitivity

integral representation. We contrast our condition with Bode’s integral formula and the water-bed effect.

The new inequality shows explicitly how the capacity of the channel limits closed loop performance.

I. INTRODUCTION

Motivated by applications, such as remote feedback, control in the presence of information

constraints has received considerable attention. Certainly, the exploration of such problems is
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Fig. 1. Structure of the Feedback Interconnection

exciting as they foster the interaction between the disciplines of Information Theory and Control.

So far, research in this field has, primarily, directed its attention to stabilization [23]. The basic

framework is depicted in Fig 1 and comprises a plant, a channel, an encoder and a decoder,

which implicitly embeds a controller. Measurements of the plant’s output must be encoded

and sent through the channel. The information, received at the other end of the channel, is

decoded and used to generate a control signal. It has been shown that stabilization, of a linear

and time-invariant plant, requires that the channel’s Shannon capacity Cchannel is larger than
∑

max{0, log(|λi(A)|)}, where A is the dynamic matrix of the state-space representation of

the plant [19], [20]. For certain channels, the condition Cchannel >
∑

max{0, log(|λi(A)|)} is

sufficient for stabilization in the almost sure sense [20], but it may not suffice for moment

stability[18]. In general, moment stability necessitates a more informative notion of capacity,

designated as Anytime Capacity [18]. Stabilization of nonlinear systems has also been studied

by [16] and [11]. The work by [6] has used the integral of the log-sensitivity, as seen by the

noise in an additive channel, to establish that encoding/decoding schemes can be constructed

using standard optimal control theory. Another recent area of investigation is the analysis in

the presence of disturbances and uncertainty. In [13], stability in the presence of disturbances

and operator theoretic uncertainty is investigated, for a particular class of channels. The work by

[15], has shown that the extra rate Cchannel−
∑

max{0, log(|λi(A)|)} is critical for performance,

as measured by the expected power of the state of the plant. There, it is proven that the expected

power of the state of the plant gets arbitrarily large as Cchannel decreases towards the critical

value for stabilizability, i.e.,
∑

max{0, log(|λi(A)|)}.

Understanding the fundamental limitations of performance in a feedback system is critical for

effective control design. One of the most well known trade-offs is the water-bet effect for linear

feedback systems, which results from Bode’s integral formula[3]. In such classical theory, the
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transfer function, between the disturbance d and ẽ = ũ+d (see Fig 1), is denoted as sensitivity

and is represented by S(z). Bode’s result, for a strictly proper loop gain, is expressed as:

1

2π

∫ π

−π

[log |S(ejω)|]−dω +
1

2π

∫ π

−π

[log |S(ejω)|]+dω =
∑

max{0, log(|λi(A)|)} (1)

where [log |S(ejω)|]− = min{0, log |S(ejω)|} and [log |S(ejω)|]+ = max{0, log |S(ejω)|}. It

implies that sensitivity can’t be small at all frequencies, i.e., reduction of
∫ π

−π
[log |S(ejω)|]−dω

is achieved at the expense of increase in
∫ π

−π
[log |S(ejω)|]+dω.

Recent publications [8], [25] have provided new versions of (1). The work by [25] has

introduced a Bode-like integral inequality for non-linear systems, which is derived based on

information theoretic principles.

In this paper1 , we derive a fundamental limitation that arises when the directed information

rate2 [14], [20], denoted by Ī∞(v → z), at the channel, is upper-bounded by a constant, i.e.,

Ī∞(v → z) ≤ Cchannel. Our results show that the following must hold:

1

2
L− + Ī∞(v → z) ≥

∑

max{0, log(|λi(A)|)}

where L− is a measure of disturbance rejection. Such measure satisfies L− ≤ 0, where L− = 0

means no-rejection and small L− attests disturbance attenuation. We show that, under stationarity

assumptions, L−becomes an integral and our condition can be expressed as:

1

2π

∫ π

−π

[log |S(ejω)|]−dω + Ī∞(v → z) ≥
∑

max{0, log(|λi(A)|)} (2)

By means of an argument similar to the water-bed effect, the inequality (2) asserts that attenu-

ation, when measured by
∫ π

−π
[log |S(ejω)|]−dω, has to be repaid by a higher information rate in

the channel. Since Ī∞(v → z) ≤ Cchannel, we infer that the trade-off (2) creates a fundamental

limitation.

Using information theoretic arguments and assuming stationarity, we also derive the Bode

integral formula. Our derivations require a linear and time-invariant plant, but the encoder, the

channel and the decoder/controller can be any causal operators. The paper is organized in 4

sections. Besides the introduction, section II lays down the problem formulation as well as a

preview and a discussion of the results; the limitations resulting from causality are derived in

1This paper is identical to Chapter 3 of the Ph.D. Thesis [12]. The results date back to the defense date: May 2004.

2This quantity is represented as Ī∞(v → z) and will be precisely defined in section II.
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section III and section IV develops a fundamental limitation that results from finite capacity

feedback.

A. The following notation is adopted:

• Whenever it is clear from the context, we refer to a sequence {a(k)}∞−∞ of elements in Rn

as a. A finite segment of a sequence a is indicated as akmax

kmin
= {a(k)}kmax

kmin
. If kmax < kmin

then akmax
kmin

= ∅.

• If O ⊂ Rq is a Borel set then we denote its volume by V ol(O)

• If M is a matrix then the element in the i-th row and j-th column is indicated as [M ]i,j .

Similarly, if a ∈ Rn then [a]i denotes the i-th component of the vector.

• Random variables are represented using boldface letters, such as a.

• If a(k) is a stochastic process, then we use a(k) to indicate a specific realization. Similar

to the convention used for sequences, we may denote a(k) just as a and a(k) as a. A finite

segment of a stochastic process is indicated as akmax

kmin
.

• The probability density of a random variable a, if it exists, is denoted as pa. The conditional

probability, given b, is indicated as pa|b.

• The expectation operator over a is written as E [a]

• We write log2(.) simply as log(.)

• We adopt the convention 0 log 0 = 0

• The auto-covariance function of a given stochastic process a is given by:

Ra(k, l) = E
[
(a(k) − E [a(k)])(a(l) − E [a(l)])T

]

If a is stationary then it’s power spectral density is written as

F̂a(ω) =
∞∑

k=−∞

Ra(k, 0)e−iωk

• If a is a stochastic process taking values in R then we use the following covariance matrix:

[
Σ

(
akmax

kmin

)]

(i−kmin+1),(j−kmin+1)
= E [(a(i) − E [a(i)])(a(j) − E [a(j)])]

where i, j ∈ {kmin, . . . , kmax}.

• The Singular Value Decomposition of a matrix M = MH ≥ 0 is indicated as M =

V T
MΛMVM , where the usual ordering of singular values is assumed [ΛM ]i+1,i+1 ≤ [ΛM ]i,i.
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The singular values of M are represented in a more streamlined form as λi(M) = [ΛM ]i,i.

If A is a square matrix, we also represent its eigenvalues as λi(A).

• If a ∈ R then we define the negative and positive parts of a as [a]− = min{a, 0} and

[a]+ = max{a, 0}, respectively.

• The following is a shorthand notation for the log-density of the eigenvalues with magnitude

smaller than 1, of a covariance matrix:

L−(akmax
kmin

) =
1

kmax − kmin + 1

kmax−kmin+1∑

i=1

[log
(
λi(Σ(akmax

kmin
)
)
]−

Similarly, we also define the positive counterpart of L− as:

L+(akmax
kmin

) =
1

kmax − kmin + 1

kmax−kmin+1∑

i=1

[log
(
λi(Σ(akmax

kmin
)
)
]+

B. Basic Facts and Definitions of Information Theory

In this section, we summarize the main definitions and facts from Information Theory which

are used throughout the paper. We adopt [17], as a primary reference, because it addresses

general probabilistic spaces in a unified framework. Let (Ω,Sω,Pω) be a probability space along

with random variables a, b and c, taking values in the measurable spaces (A,Sa), (B,Sb) and

(C,Sc). We define mutual information and conditional mutual information, between any two

random variables, as:

Definition 1.1: (from [17] pp. 9 ) The mutual information, between a and b, I : (a;b) →

R+

⋃
{∞} is given by:

I(a;b) = sup
∑

ij

Pa,b(Ei × Fj) log
Pa,b(Ei × Fj)

Pa(Ei)Pb(Fj)

where the supremum is taken over all partitions {Ei} of A and {Fj} of B.

Definition 1.2: (from [17] pp. 37 ) The conditional mutual information between a and b given

c, is defined as:

I(a;b|c) = sup
∑

ijk

Pa,b,c(Ei × Fj × Nk) log
Pa,b,c(Ei × Fj × Nk)

P̄a,b|c(Ei × Fj × Nk)

where the supremum is taken over all partitions Ei ∈ A , Fj ∈ B and Nk ∈ C and P̄a,b|c is

given by:

P̄a,b|c(E × F × N) =

∫

N

Pa|c(E|γ)Pb|c(F |γ)Pc(dγ)
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Notice that, in definition 1.1, A and B may be different.

Consistent with the usual notation [17], [4], we define entropy as:

Definition 1.3: (Entropy) Let a and b be random variables. The entropy of a given b is

defined as:

H(a|b) = I(a; a|b)

Since entropy may be infinite for random variables defined in continuous probability spaces, we

also define the following quantities, denoted as differential entropy and conditional differential

entropy.

Definition 1.4: If a is a random variable, where A = Rq, along with a Lebesgue measurable

and bounded probability density function pa(·) then we define the differential entropy of a as:

h(a) =

∫

pa(γ)≤1

−pa(γ) log pa(γ)dγ −

∫

pa(γ)>1

pa(γ) log pa(γ)dγ

Notice that if pa is Lebesgue measurable and bounded then we use
∫

pa(γ)>1
pa(γ) ≤ 1 to assert

that
∫

pa(γ)>1
pa(γ) log pa(γ)dγ < ∞. This implies that h(a) is always well defined, although

not necessarily bounded. Consequently, a bounded Lebesgue measurable pa leads to an almost-

integrable3 pa(γ) log(pa(γ)).

If b is another random variable and I(a,b) < ∞ then the conditional differential entropy of

a given b is defined by:

h(a|b) = h(a) − I(a;b) (3)

For technical reasons, we also define the following class of random variables:

Definition 1.5: (Dither Class denoted as D) Let b be a random variable with alphabet B ⊂ Rq,

for some q ∈ N. We denote b as type 1 if it has a countable alphabet with inf{maxi |bi − b̃i| :

b, b̃ ∈ B, b 6= b̃} > 0 and type 2 if it has a probability density pb which is Lebesgue measurable.

The random variable b is of the class Dither, denoted as D, if it is type 1 or type 2. If b ∈ D

then we also define its dithered version b̆ as:

b̆ =







b + s∆ if b is type 1

b if b is type 2
(4)

3According to [7], all the properties of Lebesgue integrable functions hold for almost-integrable functions. A Lebesgue

measurable function f on (µ, X) is almost integrable [7] if at least one of the following holds:
R

X
[f ]+µ(dx) < ∞ or

R

X
[−f ]+µ(dx) < ∞. The integral of an almost integrable f is defined as

R

X
fµ(dx) =

R

X
[f ]+µ(dx)−

R

X
[−f ]+µ(dx). This

issue is also briefly discussed in pp. 200 of [2].
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where s is a random variable, which is independent of b and uniformly distributed in (−1/2, 1/2)q.

The constant ∆ is given by:

∆ = inf{max
i

|bi − b̃i| : b, b̃ ∈ B, b 6= b̃} (5)

Notice that ∆ is such that the following projections always exist:

b = πB(b̆)

πS(b̆) =







s if b is type 1

0 if b is type 2
The following is a list of properties used in the sections III and IV. The proof of such properties

may be found in [17] and, in some cases, in [4]. We emphasize that, in this paper, we write

h(a|·) only if the assumptions stated in definition 1.4 are satisfied.

• (P1): I(a;b) = I(b; a) ≥ 0 and I(a;b|c) = I(b; a|c) ≥ 0

• (P2) Kolmogorov’s formula 4 (equation 3.6.6 in [17]):

I((a,b); c|d) = I(b; c|d) + I(a; c|(b,d))

• (P3) Theorem 3.7.1 in [17]: If f and g are measurable functions then I(f(a); g(b)|c) ≤

I(a;b|c) and equality holds5 if f and g are invertible.

• (P3’) It follows from (P3) that if b ∈ D then I(a; b̆|c) = I(a; (b, s)|c) which, since s

is independent from the rest, also implies that I(a; b̆|c) = I(a;b|c). A similar argument,

using (P2), also leads to I(a;b|c) = I(a;b|c̆), provided that c ∈ D.

• (P4) Corollary 2., pp. 43 in [17]: Given a function f : C → C ′ it follows that I(a; f(c)|c) =

0.

• (P5): From property (P3), we conclude that I(a; (b, c)|d) = I(a; (b− c, c)|d). Using (P2),

such equality also leads to:

I(a;b|(c,d)) = I(a;b − c|(c,d))

4Notice that equation 3.6.3 in [17] has a typographic mistake. On the left hand side of the equality, the correct is I(ξ, ζ)

5The general version of this property states that equality holds if f and g are everywhere dense [17]. Every-time we use an

invertible function to claim equality in (P3) the function is everywhere dense.
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• (P6): By means of (P1) and (3), we infer that h(a) ≥ h(a|b), where equality holds if and

only if a and b are independent. Likewise, we can use properties (P1)-(P2) to state that

I(a; (b, c)) ≥ I(a;b), which can be used with (3) to derive h(a|b) ≥ h(a|(b, c)).

• (P7) [4]: Let a, with A = Rq, be a random variable with pa bounded and Lebesgue

measurable and a covariance matrix denoted as Σa. In Proposition 3.1, of appendix III, we

show that finite Σa implies finite h(a). Under such hypothesis, pa(γ) log(pa(γ)) is Lebesgue

integrable and the following holds[4]:

h(a) ≤
1

2
log((2πe)n det(Σa))

where equality holds if a is Gaussian.

In order to simplify our notation, we also define the following quantities:

Definition 1.6: Let a and b be stochastic processes. The following are useful limit information

rates:

Ī∞(a;b) = lim sup
k→∞

I(ak
1;b

k
1)

k
, Ī∞(a → b) = lim sup

k→∞

I(ak
1 → bk

1)

k

where I(ak
1 → bk

1) is denoted as directed mutual information [14], [20] and is defined as:

I(ak
1 → bk

1) =
k∑

i=1

I(ai
1;b(i)|bi−1

1 )

In this paper, we will also refer to Channels which are stochastic operators conforming to the

following definition:

Definition 1.7: (Memory-less Channel) Let V and Z be given input and output alphabets,

along with a white stochastic process, denoted as c, with alphabet C. Consider f : V × C → Z

such that the following maps are invertible:

g1(v(k), c(k)) = (v(k), f(v(k), c(k)))

g2(v(k), c(k)) = (f(v(k), c(k)), c(k))

The pair (f, c) defines a memory-less channel.

The previous definition is sufficiently general to encompass the following examples:

• Additive white Gaussian channel: V = Z = C = R, c is an i.i.d. white Gaussian sequence

with unit variance and f(c, v) = c + v.

• Binary symmetric channel, with error probability pe: V = Z = C = Z2 = {0, 1}, c is

an i.i.d sequence satisfying P(c(k) = 1) = pe and f(c, v) = c +mod2 v

October 6, 2004 DRAFT
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Fig. 2. Simplified Structure of the Feedback Interconnection using e = G−1ẽ and u = G−1ũ, with the correspondence, relative

to the blocks of Fig 1.

II. PROBLEM FORMULATION AND DISCUSSION OF RESULTS

Consider the feedback interconnection depicted in Figure 1. In such information pattern [21],

measurements of the state of the plant have to be encoded and sent over a communication

channel. The transmitted information is used, at the decoder/controller, to generate the control

signal u. In order to simplify the presentation, we proceed with the equivalent block diagram of

Fig 2.

A. Assumptions

Before stating our assumptions, we need the following definitions:

Definition 2.1: We define the following set of probability densities:

L̄q = {f : Rq → R≥0|f is Leb. meas.,
∫

f(γ)dγ = 1,

∫

f(γ)γT γdγ < ∞, sup
γ

f(γ) < ∞}

(6)

In addition, we also define:

Lq = {f ∈ L̄q|∃ε > 0, such that Γε
f has limited interior} (7)

where

Γε
f =

{

γ ∈ Rq : f(γ) >
1

((1 + |γ1|) · · · (1 + |γq|))
1+ε

}

An important property of Lq is that if pa,b ∈ Lqa+qb then pa ∈ L̄qa and pb ∈ L̄qb .

In the present formulation, which is schematically depicted in Fig 2, the following assumptions

are made. Notice that the diagram in Fig 2 is derived from Fig 1, by means of incorporating G

in the plant and G−1 in the decoder. The Appendix I comprises a discussion of several important

aspects related to the assumptions made.

We adopt the following assumptions:

October 6, 2004 DRAFT



10

• (A1): w, with w(k) ∈ R, is an i.i.d., zero mean, unit variance and white Gaussian process.

• (A2): the control signal satisfies uk
1 ∈ D for every k. We denote the alphabet of u as U ⊂ R,

so that uk
1 ∈ Uk. According to definition 1.5, we indicate the dithered version of u(k) as

ŭ(k).

• (A3): G(z) is an all-pole stable filter of the form:

G(z) =
α

1 −
∑p

m=1 amz−m

for some integer p ≥ 1 and constants ai and α > 0.

• (A4): given n, P is a single input plant with state x(k) ∈ Rn, which satisfies the following

state-space equation:

x(k + 1) =




xu(k + 1)

xs(k + 1)



 =




Au 0

0 As



x(k) +




bu

bs



 e(k) (8)

y(k) = Cx(k), |λi(Au)| ≥ 1, |λi(As)| < 1

The state partitions xu and xs represent the unstable and stable open-loop dynamics,

respectively. In addition, if A 6= As then xu(k) is a random variable, with a given probability

density pxu(k)(·).

• (A5): the capacity of a channel [4], specified by (f, c), is denoted as Cchannel and is defined

as:

Cchannel = sup
Pv

I(f(v(k), c);v(k)) < ∞

where the supremum is taken over all probability measures Pv, defined in (V,Sv).

• (A6): the encoder and the decoder are causal operators defined in the appropriate spaces,

i.e., E : Y∞ → V∞, D : Z∞ → U∞ where v(k) = f e
k(yk

−∞) and u(k) = f d
k (zk

−∞) for

some functions f e
k and f d

k .

• (A7): additionally, the decoder satisfies the following finite memory condition:

∀k > α,uk
1+α = f̃ d

k (uα
1 , zk

1) (9)

for some α ∈ N+ and a sequence of functions f̃ d
k : Uα × Zk → Uk−α−1.

• (A8):(Fading memory condition) For technical reasons, we assume that the following con-

dition holds:

lim sup
k→∞

1

k
I(uα

1 ;x(1),wk
1 |z

k
1) = 0

October 6, 2004 DRAFT
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where α is the smallest constant for which (A7) holds. If α = 0 then we adopt the convention

that (A8) is satisfied. Several aspects of this assumption are clarified in appendix I. In

particular, this condition is automatically satisfied if U is countable and H(uα
1 ) < ∞ holds.

• (A9): We assume that, for each k, (wk
1 , ŭ

k
1,x(1)) admits a probability distribution satisfying

pwk
1 ,ŭk

1 ,x(1) ∈ L2k+1. In appendix I, we explore a few special cases related to this assumption.

B. Problem Statement and Summary of Results

We investigate the fundamental limitations of the asymptotic eigenvalue distribution of Σ(ek
g(k)),

where g : N+ → N+ is any arbitrary function satisfying:

lim
k→∞

g(k)

k
= 0 (10)

Under the assumption of asymptotic stationarity, the use of an increasing g(k), instead of

g(k) = 1, will enable the derivation of integral formulae. Under stationarity assumptions, integral

formulae can be derived for g(k) = 1. In order to simplify the exposé, we state our results in

terms of L−(ek
g(k)) and L+(ek

g(k)).

In section III, we reach a fundamental limitation which is a consequence of causality alone.

The result is presented in theorem 3.3, which states that if the feedback system in Fig 2 is stable

then the following must hold6:

1

2
lim inf

k→∞

(
L−(ek

1) + L+(ek
1)

)
≥

∑

i

max{0, log(|λi(A)|)} (11)

The inequality in (11) demonstrates that, in the limit, not all of the eigenvalues, of Σ(ek
1), can

be made small and that the reduction of some necessarily imply the increase of others. That

is comparable to the water-bed effect, associated to the classic Bode integral limitation. Such

comparison is not coincidental and is explored in section III-A.

In the fundamental limitation expressed in (11), the characteristics of the channel do not play

a role. It remains the question of whether the “shaping” of the eigenvalues of Σ(ek
g(k)) depends

on the information flow in the feedback loop. The answer is given in theorem 4.3, which states

that:
1

2
lim inf

k→∞
L−(ek

g(k)) + Ī∞(v → z) ≥
∑

i

max{0, log(|λi(A)|)} (12)

6Since this limitation is not the main objective of this paper, we restrict the result for g(k) = 1. The extension of this

inequality, to arbitrary g(k), requires extra assumptions.
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where g : N+ → N+ is any arbitrary function satisfying:

lim
k→∞

g(k)

k
= 0 (13)

As a consequence of (12), we find that reduction of the eigenvalues of Σ(ek
g(k)), for values bellow

unity, must come at the expense of information flow in the channel, as quantified by Ī∞(v → z).

Under stationary assumptions, corollaries 3.4 and 4.4 show that the inequalities (11) and (12)

can be expressed as:

1

2π

∫ π

−π

[log(S(ω))]−dω +
1

2π

∫ π

−π

[log(S(ω))]+dω ≥
∑

i

max{0, log(|λi(A)|)} (14)

1

2π

∫ π

−π

[log(S(ω))]−dω + Ī∞(v → z) ≥
∑

i

max{0, log(|λi(A)|)} (15)

where S(ω) =

√

F̂e(ω) =
√

F̂ẽ(ω)
|G(ejω)|2

.

The inequalities (14) and (15) must be satisfied by any stable and causal loop of the form

depicted in Fig 1 or Fig 2. The first inequality is the Bode integral formula7, which is the basis

of the disturbance attenuation/amplification water-bed effect, while the second entails a new

attenuation/capacity trade-off.

III. FUNDAMENTAL LIMITATIONS CREATED BY CAUSALITY

In this section, we derive a fundamental limitation that arises from causality. The results are

valid under the assumptions listed in section II-A, with the exception of (A7)-(A8) which are not

needed. We also introduce some of the preliminary results which will be used in section IV. Our

technique follows the one by [25], with the exception of the way we tackle initial conditions

and unstable modes of the plant. More specifically, theorem 3.3 states a fundamental limitation

that explicitly incorporates the eigenvalues of A. At the end of the section, we specialize the

result, under stationarity assumptions, and derive the Bode-Integral formula in Corollary 3.4.

The following lemma shows that the difference, between the entropy rate of e and the entropy

rate of w, is lower-bounded by the mutual information between the plant’s state and e.

7Bode’s integral inequality was extended by Prof. John Doyle (CALTECH), in an yet unpublished work, for general feedback

interconnections in a deterministic setting.
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Lemma 3.1: (Entropy-rate amplification) If x(k) is the solution of the state-space equation

(8) then the following holds:

lim inf
k→∞

h(ek
1)

k
≥ lim inf

k→∞

I(ek
1;x(1))

k
+ h(w(1)) (16)

Proof: We start by noticing that, since the plant is strictly proper and causal, w(k), with k ≥ 1,

is independent of (x(1),uk
1,w

k−1
1 ), which implies:

h(w(k)) = h(w(k)|x(1),uk
1,w

k−1
1 ) = h(e(k)|x(1),uk

1, e
k−1
1 ) ≤ h(e(k)|x(1), ek−1

1 ), k ≥ 1

(17)

where we used properties (P6) and lemma 3.3 of appendix III. Since h(w(k)) does not depend

on k, we use (17) and the chain rule of differential entropy to derive:

k∑

i=1

h(e(i)|x(1), ei−1
1 ) = h(ek

1|x(1)) ≥ h(w(1)) (18)

Notice that the chain rule of differential entropy in (18) is valid because pwk
1 ,uk

1 ,x(1) ∈ L2k+1

implies, using a change of variables and an integration argument, that the marginal densities8

pei
1,x(1) ∈ L̄i+1. Consequently, the proposition 3.1 and the lemma 3.2, of appendix III, guarantee

that all the quantities in (18) are well defined. The proof is concluded once we notice, from (3),

that h(ek
1|x(1)) = h(ek

1) − I(ek
1;x(1)). �

The following lemma, corroborates the results by [19], [20], [18], [24], [15], and unveils that

stability implies that e must carry a bit-rate of information about the state of the plant, of at

least
∑

i max{0, log(|λi(A)|)}.

Lemma 3.2: Let x(k) be the solution of the state-space equation (8). If the plant is stabilized,

i.e., supk E [xT (k)x(k)] < ∞ holds then the following is satisfied:

lim inf
k→∞

I(ek
1;x(1))

k
≥

∑

i

max{0, log(|λi(A)|)} (19)

Proof: If A = As then we just use I(ek
1;x(1)) ≥ 0. If A 6= As then we consider the following

homogeneous system:

xe(k + 1) = Auxe(k) + bue(k), xe(1) = 0 (20)

8Notice that Fubinni’s Theorem [1] guarantees that the marginal densities are Lebesgue measurable. The co-variance matrix

of (ei
1, x(1)) is bounded since the covariance matrix of (wk

1 , uk
1 , x(1)) is bounded. The integration and change of variables are

need just to show that pei

1
,x(1) is bounded.
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and define the estimate x̂(k) = A−k
u xe(k). Since xu(k) = xe(k)+Ak

uxu(1) = Ak
u(x̂(k)−xu(1)),

we know that:

k log(| det(AuA
T
u )|) + log(det(Rxerror(k))) = log(det(Rxu(k, k))) < β < ∞ (21)

where xerror(k) = x̂(k) − xu(1). Since x̂(k) is a function of ek
1 , we have that:

I(x(1); ek
1) ≥ I(xu(1); ek

1) ≥ h(xu(1)) − h(xu(1)|ek
1) = h(xu(1)) − h(xu(1) − x̂(k)|ek

1) ≥

h(xu(1)) − h(x̂(k) − xu(1)) (22)

where we have used (P3), (3), lemma 3.5 of appendix III and (P6).

But, from (P7) we know that lim supk→∞
h(x̂(k)−xu(1))

k
≤ lim supk→∞

log(det(Rxerror (k)))
2k

. As a

consequence, we can use (21) to get:

lim sup
k→∞

h(x̂(k) − xu(1))

k
≤ − log(| det(Au)|) (23)

The proof follows by direct substitution �.

Using the results in the previous lemmas, we derive theorem 3.3. It states that causality and

stability imply that the log-sum of the eigenvalues of Σ(ek
1) are, in the limit, lower bounded by

the unstable eigenvalues of the plant.

Theorem 3.3: (Causality fundamental limitation) Let x(k) be the solution of the state-space

equation (8). If the plant is stabilized, i.e., supk E [xT (k)x(k)] < ∞ holds then the following is

satisfied:

lim inf
k→∞

(
L−(ek

1) + L+(ek
1)

)
≥ 2

∑

i

max{0, log(|λi(A)|)} (24)

Proof: From lemmas 3.1 and 3.2 we know that:

lim inf
k→∞

h(ek
1)

k
− h(w(1)) ≥ lim inf

k→∞

I(ek
1;x(1))

k
≥

∑

i

max{0, log(|λi(A)|)} (25)

Using the fact (P7), we conclude that h(ek
1) − kh(w(1)) ≤ 1

2
log(det(Σ(ek

1))) which, together

with (25), leads to the final result �

A. Deriving Bode’s Integral Formula

Under stationarity assumptions, theorem 3.3 is at the base of the Bode-integral formula. A

precise description of such property is in the subsequent Corollary.
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Corollary 3.4: Let x(k) be the solution of the state-space equation (8). If the plant is stabilized,

i.e., supk E [xT (k)x(k)] < ∞ holds and e is a stationary process, where 0 < m < F̂e(ω) < M <

∞ is Lebesgue integrable, then the following is satisfied:

1

2π

∫ π

−π

log(S(ω))dω ≥
∑

i

max{0, log(|λi(A)|)} (26)

where S(ω) =

√

F̂e(ω) =
√

F̂ẽ(ω)
|G(ejω)|2

. The processes ẽ and d are the ones depicted in Fig 1.

Proof: From theorem 2.2, of appendix II, we have that:

lim
k→∞

L−(ek
1) + L+(ek

1) =
1

2π

∫ π

−π

log(F̂e(ω))dω (27)

The proof follows by means of (27) and Theorem 3.3�

IV. FUNDAMENTAL LIMITATIONS CREATED BY FINITE CAPACITY FEEDBACK

In this section, we examine the fundamental limitations, in the eigenvalues of9 Σ(ek
g(k)), that

originate from the constraint Ī∞(v → z) ≤ Cchannel. The main inequality, involving the channel

directed information rate and the eigenvalues of A, is given in theorem 4.3.

Sub-sequentially, we provide a lemma which unveils how the information flux is allocated in

the feedback loop. We identify that the directed information rate in the channel must account for

two terms. The first is due to the stabilization information and is given by I(x(1); ek
1); while the

second represents the interaction between the control signal and the disturbance and is quantified

by I(uk
1;w

k
1). The lemma holds if w is i.i.d. but not necessarily Gaussian 10.

Lemma 4.1: (Fundamental Lemma of the Information Flux) If x(k) is the solution of the

state-space equation (8) then the following holds:

Ī∞(v → z) ≥ lim inf
k→∞

1

k
I(x(1); ek

1) + Ī∞(u;w) (28)

Proof: We start by using (P2) to write I((x(1),wk
1);u

k
1) = I(x(1);uk

1|w
k
1)+ I(uk

1;w
k
1) which

can be rewritten as:

I((x(1),wk
1);u

k
1) = I(x(1); ek

1|w
k
1) + I(uk

1;w
k
1) (29)

9We investigate the eigenvalues of Σ(ek
g(k)), for arbitrary g satisfying limk→∞

g(k)
k

= 0. Such generalization allows the

derivation of an integral formula for exponentially asymptotic stationary processes. More details are provided in section V-A

10Assumption (A1) further requires Gaussianity. Such requisite leads to a lower-bound for I(uk
1 ; w

k
1 ), which depends explicitly

on the covariance structure of e (see Lemma 4.2).
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where we used (P5) to establish that I(x(1);uk
1|w

k
1) = I(x(1); ek

1|w
k
1). On the other hand, using

(P2) we get

I(x(1); ek
1|w

k
1) = I(x(1); ek

1) − I(x(1);wk
1) + I(x(1);wk

1 |e
k
1) (30)

Since w is independent from x(1), the second term, on the right-hand side of (30), vanishes

and we resort to (P1) to get I(x(1); ek
1|w

k
1) ≥ I(x(1); ek

1). Consequently, we substitute the

aforementioned inequality in (29) and obtain the following:

I((x(1),wk
1);u

k
1) ≥ I(x(1); ek

1) + I(uk
1;w

k
1) (31)

The final inequality follows from (31) and the Theorem 2.1 of appendix II. �

The following lemma suggests that attenuation can happen only if the channel conveys

information about the disturbance.

Lemma 4.2: The following holds:

1

k − k0 + 1
I(uk

k0
;wk

k0
) ≥ −

1

2
L−(ek

k0
) (32)

Proof: Let the following be the singular value decomposition of Σ(ek
k0

):

Σ(ek
k0

) =




V+

V−





T 


Λ+ 0

0 Λ−








V+

V−



 (33)

where [Λ−]ii < 1 and [Λ+]ii ≥ 1.

Consequently, we establish the following relation11:

I(wk
k0

;uk
k0

) ≥ I(V−wk
k0

; V−uk
k0

) = h(V−wk
k0

)−h(V−wk
k0
|V−uk

k0
) ≥ h(V−wk

k0
)−h(V−ek

k0
) (34)

where we have used (P3), (3), lemma 3.4 of appendix III and (P6). Moreover, since w is i.i.d,

h(w(k)) = log(2πe) and V is unitary, we use (P7) to derive:

h(V−wk
k0

) − h(V−ek
k0

) ≥ −
1

2
log(det(V−Σ(ek

k0
)V T

− )) = −
k − k0 + 1

2
L−(ek

k0
) (35)

�

11Notice that we have used an abuse of notation in equation (34). We write V−e
k
k0

to indicate the random variable whose

realizations are computed as V−

2

6

6

6

4

e(k)

...

e(k0)

3

7

7

7

5
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Subsequently, we provide the theorem which states the main inequality in the paper. It reflects a

trade-off between disturbance attenuation, as measured by L−(ek
g(k)), and the directed information

rate through the channel, expressed by Ī∞(v → z).

Theorem 4.3: (Main theorem) Let x(k) be the solution of the state-space equation (8) and

g : N+ → N+ be an arbitrary function satisfying

lim
k→∞

g(k)

k
= 0

If the plant is stabilized, i.e., supk E [xT (k)x(k)] < ∞ then the following is satisfied:

Ī∞(v → z) −
∑

i

max{0, log(|λi(A)|)} ≥ −
1

2
lim inf

k→∞
L−(ek

g(k)) (36)

Proof: We begin by using (P3) to arrive at the following fact:

Ī∞(u;w) ≥ lim sup
k→∞

1

k − g(k) + 1
I(uk

g(k);w
k
g(k)) (37)

The proof follows by substituting the results of lemmas 3.2 and 4.2 into lemma 4.1. �

The corollary bellow is an immediate consequence of theorem 4.3 and shows that if Cchannel

is too close to the critical stabilization rate, given by
∑

i max{0, log(|λi(A)|)}, then disturbance

rejection is not possible.

Corollary 4.4: Let x(k) be the solution of the state-space equation (8) and g(k) be a function

satisfying

lim
k→∞

g(k)

k
= 0

If the plant is stabilized, i.e., supk E [xT (k)x(k)] < ∞ then the following is satisfied:

1

2
lim inf

k→∞
L−(ek

g(k)) + Cchannel ≥
∑

i

max{0, log(|λi(A)|)} (38)

Proof: Follows from theorem 4.3 and the fact that I(vk
1 → zk

1) ≤ Cchannel. �

A. An Integral Formula under Stationarity Assumptions

Under stationarity assumptions, the condition in theorem 4.3 can be expressed by means of

an integral formula.

Corollary 4.5: Let x(k) be the solution of the state-space equation (8). If the plant is stabilized,

i.e., supk E [xT (k)x(k)] < ∞ and e is stationary, where 0 < m < F̂e(ω) < M < ∞ is Lebesgue

integrable, then the following is satisfied:

1

2π

∫ π

−π

[log S(ω)]−dω + Ī∞(v → z) ≥
∑

i

max{0, log(|λi(A)|)} (39)
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P(z)

g+

g+

K(z)

-

�

-

� ?
6

w
Disturbance

Channel

u z

e

c

v=y

Fig. 3. General structure for a linear feedback loop with disturbances and noisy measurements.

where S(ω) =
√

F̂e(ω) =

√

F̂ẽ(ω)

F̂d(ω)
=

√
F̂ẽ(ω)

|G(ejω)|2
. The processes ẽ and d are the ones depicted

in Fig 1.

Proof: By means of a direct application of the theorem 2.2 of appendix II, we find that:

lim
k→∞

L−(ek
1) =

1

2π

∫ π

−π

[log(F̂e(ω))]−dω (40)

The result follows by direct substitution of (40) in (36). � From Lemma 5.1, we conclude that

Corollary 4.5 remains valid if, instead of stationarity, we only require exponential asymptotic

stationarity.

V. CASE STUDY: THE LINEAR GAUSSIAN CASE

Consider the linear feedback loop of Fig 3 and that the blocks and signals represented satisfy:

• (E1) P (z) is a strictly proper linear and time-invariant plant of order np.

• (E2) K(z) is a proper linear and time invariant system of order nK

• (E3) w is a zero mean Gaussian i.i.d. and unit variance random process. The process c is

i.i.d. and Gaussian, with variance σ2
c .

• (E4) x(1) is also zero mean Gaussian.

• (E5) the initial state of K is taken as xK(1) = 0

• (E6) the feedback loop is stable.

The example of Fig 3 is a particular instance of the scheme of Fig 2. All assumptions stated

in section II-A are satisfied, in particular (A7) and (A8). Since we assume that K(z) has zero

initial state then (A7) is satisfied with α = 0 and (A8) is also immediately true.

In the following sub-sections, we discuss a numerical computation which suggests that the

following inequality (from the main Theorem 4.3) is not conservative:

Ī∞(v → z) −
∑

i

max{0, log(|λi(A)|)} ≥ −
1

2
lim inf

k→∞
L−(ek

g(k)) (41)
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A. Preliminary Results: Extension to the Non-Stationary Case

The aim of this subsection is to derive computable upper and lower bounds for the inequality

(41). The subsequent Lemmas comprise integral formulas for the Gaussian asymptotic stationary

case. The final inequality is presented in Corollary 5.4, where the upper and lower bounds are

easily computable through integrals. Consequently, we can obtain the numerical results of section

V-B and test for the tightness of the inequality (41).

We emphasize that, all the quantities in the statements and in the proofs of this subsection,

refer to the example of Fig 3. As such, we assume that they comply with (E1)-(E6).

Lemma 5.1: Let ~e be a stationary stochastic process with auto-covariance R~e(τ) and a power

spectral density F̂~e(ω) which is a Lebesgue integrable function satisfying 0 < m < F̂~e(ω) <

M < ∞. Consider also a, not necessarily stationary, stochastic process e with auto-covariance

Re(k0, k1). If the condition below holds:

∃β > 0, ∃γ ∈ (0, 1) such that ∀k0, ∀τ > 0, |Re(k0, k0 + τ) − R~e(τ)| < βγk0 (42)

then the following integral equation is satisfied:

lim inf
k→∞

L−(ek2

k ) =
1

2π

∫ π

−π

[log(F̂~e(ω))]−dω (43)

Proof: We follow the same steps of the proof of lemma 4.2 and get the following diagonalization

of Σ(~ek2

k ):

Σ(~ek2

k ) =




Vk,+

Vk,−





T 


Λk,+ 0

0 Λk,−








Vk,+

Vk,−



 (44)

where [Λk,−]ii < 1 and [Λk,+]ii ≥ 1. Now, assumption (42) and Theorem 2.2 of Appendix II,

guarantee that:

lim inf
k→∞

L−(ek2

k ) = lim inf
k→∞

1

k2 − k + 1
log(det(Vk,−Σ(ek2

k )V T
k,−)) =

(∗)

lim inf
k→∞

1

k2 − k + 1
log(det(Vk,−Σ(~ek2

k )V T
k,−)) = lim

k→∞
L−(~ek2

k ) =
1

2π

∫ π

−π

[log(F̂~e(ω))]−dω (45)

The proof is complete, once we provide more detail on the validity of the equality marked with

(*) in (45). From (42) and the fact that [Λk,−]ii ≥ m, we know that:

lim
k→∞

%(∆k,e) = 0 (46)
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where %(∆k,e) = maxi

∑

j |[∆k,e]i,j| and ∆k,e is a matrix satisfying:

Vk,−Σ(ek2

k )V T
k,− = Vk,−Σ(~ek2

k )V T
k,−

︸ ︷︷ ︸

Λk,−

+ Vk,−

(

Σ(ek2

k ) − Σ(~ek2

k )
)

V T
k,− = Λk,−(I + ∆k,e) (47)

From Gershgorin’s circle Theorem we infer that λi(I +∆k,e) ∈ [1−%(∆k,e), 1+%(∆k,e)], which

concludes the proof. �

Lemma 5.2: Let v and z be the stochastic processes represented in Figure 3, i.e., z = v + c.

Consider also that ~z is a stationary stochastic process with auto-covariance R~z(τ) and a power

spectral density F̂~z(ω) which is a Lebesgue integrable function satisfying 0 < m < F̂~z(ω) <

M < ∞. If the condition below holds:

∃β > 0, γ ∈ (0, 1) such that ∀k0, τ > 0, |Rz(k0, k0 + τ) − R~z(τ)| < βγk0 (48)

then the following is satisfied:

1

4π

∫ π

−π

log(
F̂~z(ω)

σ2
c

)dω ≥ Ī∞(v → z) (49)

Proof: Choose arbitrary ν ∈ N+. We start by noticing that:

lim sup
k→∞

h(z(k)|zk−1
k−ν+1) − h(c(k)) ≥

lim sup
k→∞

h(z(k)|zk−1
1 ) − h(c(k)) = lim sup

k→∞
I(z(k);vk

1 |z
k−1
1 ) ≥ Ī∞(v → z) (50)

Now, notice that assumption (48), guarantees that:

lim
k→∞

h(z(k)|zk−1
k−ν+1) = lim

k→∞
h(~z(k)|~zk−1

k−ν+1) =
stationarity

h(~z(ν)|~zν−1
1 ) (51)

which, from (50), implies:

h(~z(ν)|~zν−1
1 ) − h(c(1)) ≥ Ī∞(v → z) (52)

Since ν was arbitrary, we can use (52) and Theorem 2.2, from Appendix II, to state that:

Ī∞(v → z) ≤ lim
ν→∞

h(~z(ν)|~zν−1
1 ) − h(c(1)) =

1

4π

∫ π

−π

log(
F̂~z(ω)

σ2
c

)dω (53)

Theorem 5.3: If the feedback system of Fig 3 is stable then the following holds:

1

4π

∫ π

−π

log(
F̂~z(ω)

σ2
c

)dω −
∑

i

max{0, log(|λi(A)|)} ≥

Ī∞(v → z) −
∑

i

max{0, log(|λi(A)|)} ≥ −
1

2
lim inf

k→∞
L−(ek

g(k)) =

−
1

4π

∫ π

−π

[log(F̂~e(ω))]−dω (54)
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Proof: Since the system is stable, the exponential asymptotic stationarity conditions of Lemmas

5.1 and 5.2 are satisfied. The result follows from these Lemmas and the main Theorem 4.3. �

The following Corollary, specializes Theorem 5.3 to the feed-back loop of Fig 3:

Corollary 5.4: If the feedback system of Fig 3 is stable then the following holds:

1

4π

∫ π

−π

log

(

1 +
|P (ejω)|2

σ2
c

)

dω ≥

Ī∞(v → z) −
∑

i

max{0, log(|λi(A)|)} ≥ −
1

2
lim inf

k→∞
L−(ek

g(k)) =

−
1

4π

∫ π

−π

[

log

(
1 + σ2

c |K(ejω)|2

|1 + P (ejω)K(ejω)|2

)]

−

dω (55)

Proof: We start by computing the power spectral density F̂~z(ω) to obtain:

F̂~z(ω)

σ2
c

=
1

|1 + P (ejω)K(ejω)|2

(

1 +
|P (ejω)|2

σ2
c

)

(56)

But, from the residue theorem, we use (56) to show that:

1

4π

∫ π

−π

log(
F̂~z(ω)

σ2
c

)dω =
1

4π

∫ π

−π

log

(

1 +
|P (ejω)|2

σ2
c

)

dω +
∑

i

max{0, log(|λi(A)|)} (57)

The power spectral density of F̂~e(ω) leads to:

F̂~e(ω)

σ2
c

=
1 + σ2

c |K(ejω)|2

|1 + P (ejω)K(ejω)|2
(58)

The proof is concluded by direct substitution of (57) and (58) in Theorem 5.3. �

B. Numerical results

From Corollary 5.4, we infer that an indication for the tightness of the inequality (41) is that

the following lower-bound and upper-bound are close:

ub(σ2
c ) =

1

4π

∫ π

−π

log

(

1 +
|P (ejω)|2

σ2
c

)

dω (59)

lb(σ2
c ) = −

1

4π

∫ π

−π

[

log

(
1 + σ2

c |K(ejω)|2

|1 + P (ejω)K(ejω)|2

)]

−

dω (60)

In Figure 4, we depict the numerical results for the following P and K:

P (z) =
z−1

(1 − 1.5z−1)10
(61)

K(z) = z −
1

P (z)
(62)
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Fig. 4. Plot of the upper-bound and lower-bound, computed as a function of σ2
c .
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Fig. 5. Plot of the relative difference between the upper-bound and lower-bound, computed as a function of σ2
c .

Notice that K is the dead-bit controller. We emphasize that the choice of the multiple pole of

P (z) was arbitrary. We have tried other values and the bounds behaved in a similar way.

By inspection, one can argue that the bounds get more accurate for increasing values of σ2
c (see

Fig 5). Moreover, we have verified empirically that such relative accuracy can be made arbitrarily

small by considering P (z) = z−1

(1−1.5z−1)n , with n arbitrarily large and K(z) = z − 1
P (z)

.

VI. CONCLUSIONS

Through an information theoretic viewpoint, this paper addresses two fundamental trade-offs

of performance for the feedback loop represented in Figure 1.
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As a first step, we show that causality leads to the extension of Bode’s Fundamental limita-

tion and the water-bed effect. Under stationarity assumptions, the aforementioned extension is

identical to the standard integral formula.

Secondly, we provide a trade-off between disturbance attenuation and the directed informa-

tion rate at the channel Ī∞(v → z). Previous results have established that Ī∞(v → z) ≥
∑

unstable log(λi(A)) is necessary for stability and our analysis shows that disturbance attenuation

is achieved at the expense of the extra rate given by Ī∞(v → z) −
∑

unstable log(λi(A)).

The inequalities presented in the paper unveil how information flows in the loop. We expect

that our results will motivate further work in the direction of designing encoders and decoders

that meet certain performance specifications.

APPENDIX I

ASPECTS RELATED TO ASSUMPTIONS (A5), (A7)-(A9)

A. Further comments on assumption (A5)

The following upper-bound holds:

Ī∞(v → z) ≤ Cchannel

By means of property (P3), we know that the following is satisfied:

∀k ≥ i, I(z(i);vi
1|z

i−1
1 ) ≤ I(z(i);vk

1 |z
i−1
1 ) =⇒ Ī∞(v → z) ≤ Ī∞(v; z) ≤ Cchannel (63)

where the last inequality is standard and can be found in [4].

B. About (A7)

Notice that a synchronous block decoder, with delay α, falls into this category. In addition,

any dynamic system, of the form u(k) = f(uk−1
k−α, zk

k−α), will satisfy (9). We emphasize that

this representation does not pressupose a full-information system. For example, if yc(k) is the

output of an observable n-th order linear and time-invariant system, with input z(k), then it is

possible to represent its input-output behavior in the form yc(k) = f(yc
k−1
k−n, z

k
k−n).

C. Further Remarks About Assumption (A8)

The following is the assumption (A8), repeated here for convenience:

lim
k→∞

1

k
I(uα

1 ; (x(1),wk
1)|z

k
1) = 0 (64)
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1) Assumption (A8) when U is countable: If U is countable then we can use (P1)-(P2) to

conclude that:

I(uα
1 ;wk

1 |z
k
1) ≤ H(uα

1 ) (65)

As such, if H(uα
1 ) < ∞ holds then (64) is satisfied. If U has ℵU elements, such quantity is upper-

bounded [4] as H(uα
1 ) ≤ α log(ℵU). The confinement to finite control alphabets is expected if

the channel, itself, is discrete or in the presence of quantizers. Finite U further encompasses

digital controllers, as they constitute dynamic systems evolving on a finite precision algebra.

The following proposition is also useful:

Proposition 1.1: Let U be countable, uα
1 ∈ D and pŭ(i) ∈ L̄1 for i ∈ {1, . . . , α}. If V ar(u(i)) <

∞ for i ∈ {1, . . . , α} then the following holds:

lim
k→∞

1

k
I(uα

1 ; (x(1),wk
1)|z

k
1) = 0 (66)

Proof: Since uα
1 ∈ D, we can compute ∆ > 0 as:

∆ = inf{|u − ũ| : u, ũ ∈ U , u 6= ũ} (67)

We start by means of proposition 3.1 of Appendix III, we can use V ar(ŭ(i)) = V ar(u(i))+∆2

4
<

∞ and pu(i) ∈ L̄1 to reach the following:

h(ŭ(i)) < ∞ (68)

On the other hand, such integral can be related to H(u(i)) as:

I(uα
1 ; (x(1),wk

1)|z
k
1) ≤ H(uα

1 ) ≤
α∑

i=1

H(u(i)) =

α∑

i=1

h(ŭ(i)) − log(∆) < ∞ (69)

where we use the fact that pŭ(i)(ŭ(i)) = P(u(i) = u(i)) 1
∆

ps(
ŭ(i)−u(i)

∆
) and ps(s) = 1 if s ∈

(−1/2, 1/2) and ps(s) = 0 otherwise. �

D. Further remarks about assumption (A9)

We start our comments, about (A9), by saying that we require that pwk
1 ,x(1),ŭk

1
∈ L2k+1, just

as a way to compactly guarantee that any q dimensional marginal distribution is in L̄q. This

condition is important to ensure that the differential entropy integrals are well defined.

If Uk
1 is not countable and pwk

1 ,x(1),ŭk
1

is Gaussian then pwk
1 ,x(1),ŭk

1
∈ L2k+1 holds if and only

if the covariance matrix of (wk
1 ,x(1), ŭk

1) is positive definite.
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Decoder
CausalChannel

Encoder
CausalPlantj+ -- ----

?

6

? uzvw

Macro Encoder c
x(1)

Fig. 6. Casting the feedback loop as a channel in feedback.

We list a few facts of relevance about assumption (A9), for the case where u(k) is on a

countable alphabet:

• Notice that if U is countable then V ar(ŭ(k)) = V ar(u(k)) + ∆2

4
.

• It remains to show that there are no measurability problems, provided that px(1) is measur-

able. Assume that x(1) has a bounded and Lebesgue measurable px(1). For every Borel set

O ∈ Rk+1, we have:

∃β > 0,P((wk
1 ,x(1)) ∈ O,uk

1 = uk
1) ≤

∫

O

pwk
1
(γwk

1
)px(1)(γx(1))µ(dγwk

1
×dγx(1)) ≤ βV ol(O)

(70)

where we used assumption (A1) to guarantee the existence of a bounded and Lebesgue

measurable pwk
1

and causality to split pwk
1 ,x(1) = pwk

1
px(1). As such, from (70) and the

Radon-Nikodym theorem (pp.422 [2]), we know that, for each uk
1 ∈ Uk, there exists a

measurable probability density function pwk
1 ,x(1)|uk

1
(·, ·, uk

1) : Rk+1 → R≥0. On the other

hand, pwk
1 ,x(1),ŭk

1
is given as:

pwk
1 ,x(1),ŭk

1
(γwk

1
, γx(1), γŭk

1
) =

∑

uk
1∈U

k

p
wk

1 ,x(1)|uk
1
(γwk

1
, γx(1), u

k
1)ps(γŭk

1
− uk

1)P(uk
1 = uk

1) (71)

s = ŭk
1 − uk

1 (72)

which allows us to infer that pwk
1 ,x(1),ŭk

1
is a countable linear combination of positive

Lebesgue measurable functions. Clearly, besides (A1), we only need to assume bounded and

Lebesgue measurable px(1) to guarantee that pwk
1 ,x(1),ŭk

1
is bounded and Lebesgue measurable.

APPENDIX II

AUXILIARY RESULTS

The following theorem provides an extension of the directed data processing inequality,

originally derived in [20]. Compared to the version in [20], the result presented bellow allows
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encoders and decoders that depend on past inputs indexed by k < 1. The quantities in the

statement of the theorem refer to the scheme depicted in Fig 6.

Theorem 2.1: (Directed Data Processing Inequality, Adaptation of Lemma 4.8.1 of [20]) Let

the following assumptions, stated in section II-A and summarized bellow for convenience, hold:

• (A4) The plant is LTI with a state-space representation where D = 0 (strictly proper)

• (A6) The encoder and decoder are causal operators

• (A7) The decoder satisfies:

∀k > α,uk
α+1 = f̃ d

k (uα
1 , zk

1) (73)

for some α ∈ N+ and a sequence of functions f̃ d
k .

• (A8) The fading memory condition lim supk→∞
1
k
I(uα

1 ; (x(1),wk
1)|z

k
1) = 0 holds.

Under the above conditions, the following is true:

lim sup
k→∞

1

k
I((x(1),wk

1);u
k
1) ≤ Ī∞(v → z) (74)

Proof: We separate the proof in two parts.

As a first step we show that I(zk
1; (x(1),wk

1)) ≤ I(vk
1 → zk

1).

Using (P2) we can write the following equality, for any given i ∈ {1, . . . , k}:

I(z(i); (x(1),wi−1
1 )|zi−1

1 ) = I(z(i);vi
1|z

i−1
1 ) + I(z(i); (x(1),wi−1

1 )|zi−1
1 ,vi

1)

− I(z(i);vi
1|z

i−1
1 ,x(1),wi−1

1 ) (75)

Now notice that (P2) allows us to rewrite:

I(z(i); (x(1),wi−1
1 )|zi−1

1 ,vi
1) = I((zi

1,v
i
1); (x(1),wi−1

1 )) − I((zi−1
1 ,vi

1); (x(1),wi−1
1 )) (76)

But, from (P3), we know that

I((zi
1,v

i
1); (x(1),wi−1

1 )) = I((c(i), zi−1
1 ,vi

1); (x(1),wi−1
1 )) (77)

where we used the fact that, from the definition 1.7 (channel), the following map is invertible:

(z(i), v(i)) 7−→ (c(i), v(i))

Causality makes c(i) independent of (zi−1
1 ,vi

1,x(1),wi−1
1 ), so that (77) implies the following:

I((zi
1,v

i
1); (x(1),wi−1

1 )) = I((zi−1
1 ,vi

1); (x(1),wi−1
1 )) (78)
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By making use of (78) and (76) we infer that I(z(i); (x(1),wi−1
1 )|zi−1

1 ,vi
1) = 0. Such fact,

together with (P1) and (75), leads to:

I(z(i); (x(1),wi−1
1 )|zi−1

1 ) ≤ I(z(i);vi
1|z

i−1
1 ) (79)

The first part of the proof is concluded once we notice that, from causality, wk
i is independent

of (x(1),wi−1
1 , zi

1), which implies:

I(z(i); (x(1),wk
1)|z

i−1
1 ) = I(z(i); (x(1),wi−1

1 )|zi−1
1 ) (80)

so that (79) implies:

I(zk
1; (x(1),wk

1)) =

k∑

i=1

I(z(i); (x(1),wi−1
1 )|zi−1

1 ) ≤
k∑

i=1

I(z(i);vi
1|z

i−1
1 ) = I(vk

1 → zk
1) (81)

In the second step we prove that lim supk→∞
1
k
I(uk

1; (x(1),wk
1)) ≤ lim supk→∞

1
k
I(zk

1; (x(1),wk
1)).

Once again, we use (P2) to write:

I(uk
1; (x(1),wk

1)) = I(zk
1; (x(1),wk

1)) + I(uk
1; (x(1),wk

1)|z
k
1) − I(zk

1; (x(1),wk
1)|u

k
1) (82)

It follows from (P2), (P4) and assumption (A7) that:

I(uk
1; (x(1),wk

1)|z
k
1) = I(uk

α+1; (x(1),wk
1)|z

k
1,u

α
1 )+I(uα

1 ; (x(1),wk
1)|z

k
1) = I(uα

1 ; (x(1),wk
1)|z

k
1)

(83)

Substitution of (83) in (82), together with property (P1), leads to:

I(uk
1; (x(1),wk

1)) ≤ I(zk
1; (x(1),wk

1)) + I(uα
1 ; (x(1),wk

1)|z
k
1) (84)

Accordingly, (84) and the assumption (A8), which requires lim supk→∞
1
k
I(uα

1 ; (x(1),wk
1)|z

k
1) =

0, imply that:

lim sup
k→∞

1

k
I(uk

1; (x(1),wk
1)) ≤ lim sup

k→∞

1

k
I(zk

1; (x(1),wk
1)) (85)

which, together with (81), concludes the proof. �

The following is the statement of the main theorem of Chapter 5 of [10], repeated here for

convenience:

Theorem 2.2: (Reproduced from [10], pp.64-65) Let F̂e(ω) be a real-valued function of the

class L1 ( |F̂e(ω)| is integrable in the sense of Lebesgue). We denote by m and M the essential

lower bound and upper bound of F̂e(ω), respectively, and assume that m and M are finite. If

G(λ) is any continuous function defined in the finite interval m ≤ λ ≤ M , we have:

lim
k→∞

∑n
i=1 G(λi(Σ(ek

1)))

k + 1
=

1

2π

∫ π

−π

G(F̂e(ω))dω (86)
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APPENDIX III

MEASURE THEORETIC ASPECTS OF DIFFERENTIAL ENTROPY

Proposition 3.1: If a is a random variable with a probability density pa ∈ L̄q then h(a) < ∞.

Proof:(By contradiction) We start by noticing that pa ∈ L̄q implies that:
∫

Rq

pa(γ)γT γdγ < ∞ (87)

If we assume that h(a) = ∞ then we should have:
∫

pa(γ)≤1

−pa(γ) log pa(γ)dγ = ∞ (88)

Since pa is bounded, (88) also implies that:
∫

Ξ

−pa(γ) log pa(γ)dγ = ∞, with Ξ = {γ : pa(γ) ≤ 1, pa(γ)γT γ < (γT γ)−q/2, (γT γ)1+q/2 > e}

(89)

where we used the fact that pa is bounded and Rq�Ξ has finite volume. On the other hand,

−p log p is an increasing function of p for p < 1/e and p(γ) < 1
(γT γ)1+q/2 < e for γ ∈ Ξ. These

facts imply that −pa(γ) log pa(γ) ≤ log((γT γ)1+q/2)

(γT γ)1+q/2 for γ ∈ Ξ, but
∫

Ξ
log((γT γ)1+q/2)

(γT γ)1+q/2 dγ < ∞ holds,

thus reaching a contradiction.�

Lemma 3.2: (Mutual information expressed by means of differential entropy) Let a and b be

random variables that admit pa ∈ L̄q, pb ∈ L̄q′ and pa,b ∈ L̄q+q′ , defined in A× B = Rq × Rq′ .

The following holds:

I(a;b) = h(a) + h(b) − h(a,b) (90)

Proof:

Fact1: We start by noticing the fact that if r is a random variable with pr bounded by psup
r

then the following holds:
∫

R

[pr(γr) log(pr(γr))]+dγr < log(psup
r ) (91)

which, together with h(r) < ∞, implies that pr(γr) log(pr(γr)) is Lebesgue integrable (see

lemma 5 of [1]).

From fact 1, we can use proposition 3.1, of this Appendix, to conclude that pa,b log pa,b,

pa log pa and pb log pb are Lebesgue integrable. As such, using Theorem 7 of [1], we can split

the integral of Theorem 2.1.2. of [17] into a sum of three terms as in (90). �

Lemma 3.3: Let the following assumptions hold:
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• u ∈ D

• pwk
1 ,ŭk

1 ,x(1) ∈ L2k+1

Under the above assumptions, the following holds:

h(w(k)|wk−1
1 ,uk

1,x(1)) = h(e(k)|ek−1
1 ,uk

1,x(1)) (92)

Proof: Since u ∈ D, we can use (P3’) to write:

h(w(k)|wk−1
1 ,uk

1,x(1)) = h(w(k)) − I(w(k); (wk−1
1 ,uk

1,x(1))) =

h(w(k)) − I(w(k); (wk−1
1 , ŭk

1,x(1))) (93)

Since pwk
1 ,ŭk

1 ,x(1) ∈ L2k+1, using the change of variables e(k) = w(k) + u(k) and integration,

we can show that pwk−1
1 ,ŭk

1 ,x(1) ∈ L̄2k, pek
1 ,ŭk

1 ,x(1) ∈ L̄2k+1, pek−1
1 ,ŭk

1 ,x(1) ∈ L̄2k and pe(k) ∈ L̄1.

Accordingly, we can use lemma 3.2, of this appendix, to express (93) as:

h(w(k)|wk−1
1 ,uk

1,x(1)) = h(wk
1 , ŭ

k
1,x(1)) − h(wk−1

1 , ŭk
1,x(1)) (94)

which, by means of the change of variables12 e(k) = w(k) + u(k), leads to:

h(w(k)|wk−1
1 ,uk

1,x(1)) = h(ek
1, ŭ

k
1,x(1)) − h(ek−1

1 , ŭk
1,x(1)) (95)

Similarly, we can use lemma 3.2, of this appendix, to re-express (95) as:

h(w(k)|wk−1
1 ,uk

1,x(1)) = h(e(k)) − I(e(k); (ek−1
1 , ŭk

1,x(1))) =
(P3′)

h(e(k)) − I(e(k); (ek−1
1 ,uk

1,x(1))) (96)

which, from the definition of conditional differential entropy, concludes the proof. �

Lemma 3.4: Let V ∈ Rm×k−k0+1 be a full row-rank matrix. Assume that the following

assumptions are satisfied:

• u ∈ D

• pwk
1 ,ŭk

1 ,x(1) ∈ L2k+1

Under the assumptions above, the following holds13:

h(V wk
k0
|V uk

k0
) = h(V ek

k0
|V uk

k0
) (97)

12Notice that this change of variables is legitimate because we can recover u(k) from ŭ(k). Such fact results from the existence

of the inverse projection u(k) = πU ŭ(k)

13Here we adopt an abuse of notation by using V ek
k0

, V uk
k0

and V wk
k0

to denote matrix multiplication. For instance, V ek
k0

=

V
h

e(k) · · · e(k0)
iT

.
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Proof: The proof of this lemma is concluded by following the same steps of lemma 3.3, mutatis-

mutandis by means of the transformation V ek
k0

= V uk
k0

+ V wk
k0

. �

Lemma 3.5: Let the following assumptions hold:

• u ∈ D

• pwk
1 ,ŭk

1 ,x(1) ∈ L2k+1

Given a Lipschitz function f : Rk → Rdim(xu(1)), under the assumptions above, the following

holds:

h(xu(1)|ek
1) = h(xu(1) − f(ek

1)|e
k
1) (98)

Proof: Since f is Lipschitz, we know that if (wk
1 ,u

k
1,x(1)) has a finite covariance matrix

then (wk
1 ,u

k
1,xu(1) − f(ek

1)) also has a finite covariance matrix. As such, we can use changes

of variables and integration to show that pwk
1 ,ŭk

1 ,x(1) ∈ L2k+1 implies pek
1 ,xu(1) ∈ L̄k+dim(xu(1)),

pek
1 ,xu(1)−f(ek

1 ) ∈ L̄k+dim(xu(1)), pxu(1) ∈ L̄k+dim(xu(1)), pek
1
∈ L̄k and pxu(1)−f(ek

1 ) ∈ L̄dim(xu(1)).

These facts allow us to use lemma 3.2 freely to write:

h(xu(1)|ek
1) = h(xu(1), ek

1) − h(ek
1) (99)

By applying a change of variables in (99), we get:

h(xu(1)|ek
1) = h(xu(1) − f(ek

1), e
k
1) − h(ek

1) (100)

We finish by recognizing that (100) is equal to h(xu(1) − f(ek
1)|e

k
1) �

ACKNOWLEDGMENT

The authors would like to thank Prof. Nicola Elia (Iowa State University) for interesting

suggestions. The first author is grateful to Prof. John Doyle (Caltech) for his enthusiastic support.

We also would like to thank Prof. Sanjoy Mitter for interesting discussions on related problems.

This work was sponsored by the University of California - Los Angeles, MURI project title:

“Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environments”, award:

0205-G-CB222. Nuno C. Martins was partially supported by the Portuguese Foundation for

Science and Technology and the European Social Fund, PRAXIS BD19630/99.

October 6, 2004 DRAFT



31

REFERENCES

[1] Adams, M.; Guillemin, V. Measure Theory and Probability”, Birkhauser, 1996

[2] Billingsley, P. “Probability and Measure”, Wiley Series in Probability and Mathematical Statistics, Third Edition, 1995

[3] Bode, H. W., “Network Analysis and Feedback Amplifier Design”, D. Van Nostrand, Princeton, 1945

[4] Cover, T.M; Thomas, J. A.; “Elements of Information Theory”, Wiley-Iterscience Publication, 1991

[5] Doyle, J.C.;Francis, B.A.; Tannenbaum, A.R.; “Feedback Control Theory”, Macmillan, New York, 1992

[6] Elia, N., “When Bode meets Shannon: Control-Oriented feedback communication schemes”, IEEE TAC Vol 49, No 9, pp.

1477, September 2004

[7] Fernandez, P. J. “Medida e Integração”, Instituto de Matemática Pura e Aplicada, Projeto Euclides, Segunda Edição, 1996
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