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Abstract— We study the stabilizability of uncertain systems
in the presence of finite capacity feedback. Motivated by
the structure of communication networks, we consider a
stochastic digital link that sends words whose size is governed
by a random process. Such link is used to transmit state
measurements between the plant and the controller. We derive
necessary and sufficient conditions for the internal and the
external stabilizability of the feedback loop. In accordance
with previous publications, stabilizability of unstable plants is
possible if and only if the link’s average transmission rate is
above a positive critical value. In our formulation the plant and
the link can be stochastic. In addition, stability in the presence
of uncertainty in the plant is analyzed using a small-gain
argument. We show that the critical average transmission rate,
for stabilizability, depends on the description of uncertainty
and the statistical properties of the plant as well as the link.

I. INTRODUCTION

With a wide range of formulations, control in the pres-
ence of communication constraints has been the focus of
intense research. The need to remotely control one or more
systems from a central location, has stimulated the study of
stabilizability of unstable plants when the information flow
in the feedback loop is finite. Such limitation results from
the use of an analog communication channel or a digital
link as a way to transmit information about the state of
the plant. It can also be the abstraction of computational
constraints created by several systems sharing a common
decision center.

Various publications in this field have introduced nec-
essary and sufficient conditions for the stabilizability of
unstable plants in the presence of data-rate constraints.
The construction of a stabilizing controller requires that
the data-rate of the feedback loop is above a non-zero
critical value [17], [18], [14], [15], [8]. Different notions
of stability have been investigated, such as containability
[21], [22], moment stability [15] and stability in the almost
sure sense [17]. The last two are different when the state
is a random variable. That happens when disturbances are
random or if the communication link is stochastic. In [17]
it is shown that the necessary and sufficient condition for
almost sure stabilizability of finite dimensional linear and
time-invariant systems is given by an inequality of the type
C > R. The parameter C represents the average data-rate
of the feedback loop and R is a quantity that depends on
the eigenvalues of A, the dynamic matrix of the system.
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If a well defined channel is present in the feedback loop
then C may be taken as the Shannon Capacity. If it is a
digital link then C is the average transmission rate. Different
notions of stability may lead to distinct requirements for
stabilization. For tighter notions of stability, such as in the
m-th moment sense, the knowledge of C may not suffice.
More informative notions, such as higher moments or any-
time capacity [15], are necessary. In general, C > R is
not sufficient for stabilization in the m-th moment sense.
This conclusion was derived in [16], where sufficiency was
stated in terms of Anytime Capacity. Our work is largely
motivated by [16].

In this paper, we study the moment stabilizability of
uncertain systems in the presence of a stochastic digital
link. In contrast with [13], we consider systems whose time-
variation is governed by an identically and independently
distributed (i.i.d.) process which may be defined over a
continuous and unbounded alphabet. We also provide com-
plementary results to [13], [4], [5], [7] because we use a
different problem formulation where we consider external
disturbances and uncertainty on the plant and a stochastic
digital link. Our work provides a unified framework for ro-
bust stabilizability by determining the average transmission
rate C which is necessary to compensate for randomness
both in the plant and the digital link. It also shows that larger
uncertainty in the plant can be tolerated at the expense of
higher C. All of our conditions for stability are expressed
as simple inequalities where the terms depend on the
description of uncertainty in the plant as well as the statistics
of the system and the digital link. A different approach to
deal with robustness, with respect to transmission rates, can
be found in [9].

In order to focus on the fundamental issues and keep
clarity, we derive sufficient conditions only for first order
linear systems. According to [11], the extension to a class of
finite-dimensional linear systems can be achieved by means
of real Jordan forms. The first use of real Jordan forms in
this framework was suggested by [18]. It is important to
emphasize that our results cannot be extended to arbitrary
multi-state linear stochastic systems. As pointed out in
[13], non-commutativity creates difficulties in the study of
arbitrary time-varying stochastic systems. Results for the
fully-observed Markovian case over finite alphabets, in the
presence of a deterministic link, can be found in [13].

Besides the introduction, the paper has 3 sections: sec-
tion II comprises the problem formulation and preliminary
definitions; in section III we prove sufficiency conditions
by constructing a stabilizing feedback scheme and section



IV contains the proof of the necessary condition.
The following notation is adopted:
Whenever that is clear from the context we refer to a

sequence of real numbers x(k) simply as x. In such cases,
we may add that x ∈ R

∞. Random variables are represented
using boldface letters, such as w. If w(k) is a stochastic
process, then we use w(k) to indicate a specific realization.
According to the convention used for sequences, we may
denote w(k) just as w and w(k) as w. The expectation
operator over w is written as E [w]. If E is a probabilistic
event, then its probability is indicated as P(E). We write
log2(.) simply as log(.). If x ∈ R

∞, then

‖x‖1 =
∞∑

i=0

|x(i)|

‖x‖∞ = sup
i∈N

|x(i)|

Definition 1.1: Let 	 ∈ N+

⋃{∞} be an upper-bound
for the memory horizon of an operator. If G f : R

∞ → R
∞

is a causal operator then we define ‖Gf‖∞(�) as:

‖Gf‖∞(�) = sup
k≥0,x �=0

|Gf (x)(k)|
maxj≤k{|x(j − 	+ 1)|, . . . , |x(j)|}

(1)
Note that ‖Gf‖∞(∞) is just the infinity induced norm of
Gf :

‖Gf‖∞(∞) = ‖Gf‖∞ = supx �=0
‖Gf(x)‖∞

‖x‖∞
II. PROBLEM FORMULATION

We study the stabilizability of uncertain stochastic sys-
tems under communication constraints. We consider the
following class of stochastic links:

Definition 2.1: (Stochastic Link) Consider a link that,
at every instant k, transmits r(k) bits. We define it to be
a stochastic link, provided that r(k) ∈ {rmin, . . . , r̄} is a
random process satisfying:

r(k) = C − rδ(k) (2)

where rδ(k) is an i.i.d. zero-mean process. More specif-
ically, the link is a stochastic truncation operator F l

k :
{0, 1}r̄ → ⋃r̄

i=0{0, 1}i defined as:

F l
k (b1, . . . , br̄) = (b1, . . . , br(k)) (3)

where bi ∈ {0, 1}.
Our definition of stochastic link is a generalization of the
classical erasure channel. It allows for the study of the
more realistic case where communication is performed at
a nominal rate and is affected by an uncertain fluctuation.
In [11], this definition is motivated as the model of the
utilization of a wireless link between two nodes, which may
correspond to the plant and a central station.

Given x(0) ∈ [− 1
2 ,

1
2 ] and d̄ ≥ 0, we consider nominal

systems of the form:

x(k + 1) = a(k)x(k) + u(k) + d(k) (4)

with |d(k)| ≤ d̄ and x(i) = 0 for i < 0.

A. Description of Uncertainty in the Plant

Let 	 ∈ N+

⋃{∞}, z̄f ∈ [0, 1) and z̄a ∈ [0, 1) be
given constants, along with the stochastic process za and
the operator Gf : R

∞ → R
∞ satisfying:

|za(k)| ≤ z̄a (5)

Gf causal and ‖Gf‖∞(�) ≤ z̄f (6)

Given x(0) ∈ [− 1
2 ,

1
2 ] and d̄ ≥ 0, we study the existence

of stabilizing feedback schemes for the following perturbed
plant:

x(k + 1) = a(k) (1 + za(k))x(k) + u(k) + zf (k) + d(k)
(7)

where the perturbation processes za and zf = Gf (x)
satisfy (5)-(6). Notice that za(k) may represent uncertainty
in the knowledge of a(k), while zf (k) is the output of
the feedback uncertainty block Gf . We chose this structure
because it allows the representation of a wide class of model
uncertainty. It is also allows the construction of a suitable
stabilizing scheme.

Example 2.1: If zf (k) = µ0x(k)+. . .+µn−1x(k−n+1)
then ‖Gf‖∞(�) =

∑ |µi| for 	 ≥ n.
In general, the operator Gf may be nonlinear and time-
varying.

B. Statistical Description of a(k)

The process a(k) is i.i.d. and independent of r(k) and
x(0), meaning that it carries no information about the link
nor the initial state. In addition, it satisfies:

log(|a(k)|) = R + lδ(k) (8)

where lδ(k) is a zero mean and i.i.d. sequence. Since
a(k) is ergodic, we also assume that P (a(k) = 0) = 0,
otherwise the system is trivially stable. Such assumption
is also realistic if we assume that (7) comes from the
discretization of a continuous-time system.

C. Functional Structure of the Feedback Interconnection

In the subsequent text we describe the feedback loop
structure, which might also be designated as information
pattern [20]. Besides the plant, there are two blocks denoted
as encoder and controller which are stochastic operators. At
any given time k, we assume that both the encoder and the
controller have access to a(0), . . . , a(k) and r(k − 1) as
well as the constants 	, z̄f , z̄a and d̄. The encoder and the
controller are described as:

• The encoder is a function F e
k : R

k+1 → {0, 1}r̄ that
has the following dependence on observations:

Fe
k(x(0), . . . ,x(k)) = (b1, . . . ,br̄) (9)

• The control action results from a map, not necessarily
memoryless, F c

k :
⋃r̄

i=0{0, 1}i → R exhibiting the
following functional dependence:

u(k) = Fc
k(�b(k)) (10)



where �b(k) are the bits successfully transmitted though
the link, i.e.:

�b(k) = F l
k (b1, . . . ,br̄) =

(
b1, . . . ,br(k)

)
(11)

As such, u(k) can be equivalently expressed as

u(k) = (Fc
k ◦ F l

k ◦ Fe
k)(x(0), . . . ,x(k))

Definition 2.2: ( Feedback Scheme) We define a feed-
back scheme as the collection of a controller F c

k and an
encoder F e

k .

D. Further remarks on our assumptions

We would like to emphasize that our sufficiency condi-
tions hold under the assumptions of section II-C. In real
applications, the knowledge of r(k − 1) by the decoder
and the encoder requires a synchronization scheme [11],
which relies on the use of an acknowledge signal as
suggested by [18], [16]. Another aspect is the fact that
erasure occurs on the least important bits, i.e., it performs
a truncation. This assumption makes sense in the wireless
communication between two nodes [11], where packets
are sent sequentially. The wireless communication works
asynchronously with the plant and the controller, so that the
number of packets successfully sent is a random variable
which depends on collisions and fading. Erasure of packets
in random positions is characteristic of large networks
where the packets travel through different routers. The
necessary condition is general and does not depend on the
knowledge of r(k − 1) as well as the position of erasure.

E. Problem Statement and M-th Moment Stability

Definition 2.3: (Worst Case Envelope) Let x(k) be the
solution to (7) under a given feedback scheme. Given any
realization of the random variables r(k), a(k), zf (k), za(k)
and d(k), the worst case envelope x̄(k) is the random
variable whose realization is defined by:

x̄(k) = sup
x(0)∈[− 1

2 , 1
2 ]

|x(k)| (12)

Consequently, x̄(k) is the smallest envelope that contains
every trajectory generated by an initial condition in the
interval x(0) ∈ [− 1

2 ,
1
2 ]. We adopted the interval [− 1

2 ,
1
2 ]

to make the paper more readable. All results are valid if it
is replaced by any other symmetric bounded interval.

Our problem consists in determining necessary and suffi-
cient conditions that guarantee the existence of a stabilizing
feedback scheme. The results must be derived for the
following notion of stability.

Definition 2.4: (m-th Moment Robust Stability) Let
m > 0, 	 ∈ N+

⋃{∞}, z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0
be given. The system (7), under a given feedback scheme, is
m-th moment (robustly) stable provided that the following
holds:{

limk→∞ E [x̄(k)m] = 0 if z̄f = d̄ = 0
∃b ∈ R+ s.t. lim supk→∞ E [x̄(k)m] < b otherwise

(13)

The first limit in (13) is an internal stability condition while
the second establishes external stability. The constant b
must be such that lim supk→∞ E [x̄(k)m] < b holds for
all allowable perturbations za and zf = Gf (x) satisfying
(5)-(6).

F. Overview of the Main Results and Conclusions

The main results of this paper are the sufficiency the-
orems 3.2 and 3.4 proven in section III as well as the
necessary condition of theorem 4.1 in section IV. The
sufficiency conditions are proven constructively by means
of the stabilizing feedback scheme of definition 3.2.

Such results lead to the conclusion that the limitations
created by randomness in the plant and the link are mathe-
matically equivalent. In addition, we find that the higher C
the larger the tolerance to uncertainty in the plant.

III. SUFFICIENCY CONDITIONS FOR THE
EXISTENCE OF STABILIZING FEEDBACK

SCHEMES

In this section we derive constructive sufficient conditions
for the existence of a stabilizing feedback scheme. We start
with the deterministic case in subsection III-A, while III-B
deals with random r and a.

The following definition introduces the main idea behind
the construction of a stabilizing feedback scheme.

Definition 3.1: (Upper-bound Sequence) Let z̄f ∈
[0, 1), z̄a ∈ [0, 1), d̄ ≥ 0 and 	 ∈ N+

⋃{∞} be given.
Define the upper-bound sequence as:

v(k + 1) = |a(k)|2−re(k)v(k)+
z̄f max{v(k − 	+ 1), . . . ,v(k)} + d̄, (14)

where v(i) = 0 for i < 0, v(0) = 1
2 and re(k) is an effective

rate given by:

re(k) = − log(2−r(k) + z̄a) (15)
We adopt v(0) = 1

2 to guarantee that |x(0)| ≤ v(0). If
x(0) = 0 then we can select v(0) = 0. Notice that the
multiplicative uncertainty z̄a acts by reducing the effective
rate re(k). After inspecting (15), we find that re(k) ≤
min{r(k),− log(z̄a)}.

Definition 3.2: (Stabilizing feedback scheme) We make
use of the sequence specified in definition 3.1. Notice that
v(k) can be constructed at the controller and the encoder
because both have access to 	, z̄f , z̄a, d̄, r(k − 1) and
a(k − 1).

The feedback scheme is defined as:

• Encoder: Measures x(k) and computes bi ∈ {0, 1}
such that:

(b1, . . . , br̄) = arg max
P

r̄
i=1 bi

1
2i ≤( x(k)

2v(k) + 1
2 )

r̄∑
i=1

bi
1
2i

(16)



Place (b1, . . . , br̄) for transmission. For any r(k) ∈
{rmin, . . . , r̄}, the above construction provides a cen-
troid approximation for x(k) ∈ [−v(k), v(k)], satisfy-
ing

|x(k)− 2v(k)(
r(k)∑
i=1

bi
1
2i

+
1

2r(k)+1
− 1

2
)| ≤ 2−r(k)v(k)

• Controller: From the r̄ bits placed for transmission in
the stochastic link, only r(k) bits go through. Compute
u(k) as:

u(k) = −a(k)2v(k)(
r(k)∑
i=1

bi
1
2i

+
1

2r(k)+1
− 1

2
) (17)

As expected, the transmission of state information through a
finite capacity medium requires quantization. The encoding
scheme of definition 3.2 is not an exception and is struc-
turally identical to the ones used in [1], [18].

The following lemma suggests that, in the construction
of stabilizing controllers, we may choose to focus on the
dynamics of the sequence v(k). That simplifies the analysis
in the presence of uncertainty because the dynamics of v(k)
is described by a first-order difference equation.

Lemma 3.1: Let z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be
given. If x(k) is the solution of (7) under the feedback
scheme of definition 3.2, then the following holds:

x̄(k) ≤ v(k)

for all 	 ∈ N+

⋃{∞}, every choice Gf ∈ ∆f,� and
|za(k)| ≤ z̄a, where

∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f} (18)
Proof: We proceed by induction, assuming that x̄(i) ≤ v(i)
for i ∈ {0, . . . , k} and proving that x̄(k + 1) ≤ v(k + 1).
From (7), we get:

|x(k + 1)| ≤ |a(k)||x(k) +
u(k)
a(k)

|+
|za(k)||a(k)||x(k)| + |zf (k)| + |d(k)| (19)

The way the encoder constructs the binary expansion of the
state, as well as (17), allow us to conclude that

|x(k) +
u(k)
a(k)

| ≤ 2−r(k)v(k)

Now we recall that |za(k)| ≤ z̄a, |zf (k)| ≤ z̄f max{v(k −
	+ 1), . . . , v(k)} and that |d(k)| ≤ d̄, so that (19) implies:

|x(k + 1)| ≤ |a(k)|(2−r(k) + z̄a)v(k)+
z̄f max{v(k − 	+ 1), . . . ,v(k)} + d̄ (20)

The proof is concluded once we realize that |x(0)| ≤ v(0).

�

A. The Deterministic Case

We start by deriving a sufficient condition for the exis-
tence of a stabilizing feedback scheme in the deterministic
case, i.e., r(k) = C and log(|a(k)|) = R. Subsequently, we
move for the stochastic case where we derive a sufficient
condition for stabilizability.

Theorem 3.2: (Sufficiency conditions for Robust Sta-
bility ) Let 	 ∈ N+

⋃{∞}, z̄f ∈ [0, 1), z̄a ∈ [0, 1) and
d̄ ≥ 0 be given and h(k) be defined as

h(k) = 2k(R−Ce), k ≥ 0

where Ce = re = − log(2−C + z̄a).
Consider that x(k) is the solution of (7) under the

feedback scheme of definition 3.2 as well as the following
conditions:

• (C 1) Ce > R
• (C 2) z̄f‖h‖1 < 1
If conditions (C 1) and (C 2) are satisfied then the

following holds for all |d(t)| ≤ d̄,Gf ∈ ∆f,� and |za(k)| ≤
z̄a:

x̄(k) ≤ ‖h‖1

(
z̄f

‖h‖1d̄+ 1
2

1 − ‖h‖1z̄f
+ d̄
)

+ h(k)
1
2

(21)

where ∆f,� is given by:

∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f} (22)
Proof: From definition 3.1, we know that, for arbitrary 	 ∈
N+

⋃{∞}, the following is true:

v(k+1) = 2R−Cev(k)+z̄f max{v(k−	+1), . . . ,v(k)}+d̄
(23)

Solving the difference equation gives:

v(k) = 2k(R−Ce)v(0) +
k−1∑
i=0

2(k−i−1)(R−Ce)
(
z̄f max{v(i− 	+ 1), . . . ,v(i)} + d̄

)
(24)

which, using ‖Πkv‖∞ = max{v(0), . . . ,v(k)}, leads to:

v(k) ≤ ‖h‖1(z̄f‖Πkv‖∞ + d̄) + 2k(R−Ce)v(0) (25)

But we also know that 2k(R−Ce) is a decreasing function
of k, so that:

‖Πkv‖∞ ≤ ‖h‖1(z̄f‖Πkv‖∞ + d̄) + v(0) (26)

which implies:

‖Πkv‖∞ ≤ ‖h‖1d̄+ v(0)
1 − ‖h‖1z̄f

(27)

Direct substitution of (27) in (25) leads to:

v(k) ≤ ‖h‖1

(
z̄f

‖h‖1d̄+ v(0)
1 − ‖h‖1z̄f

+ d̄
)

+ 2k(R−Ce)v(0)

(28)
The proof is complete once we make v(0) = 1

2 and use
lemma 3.1 to conclude that x̄(k) ≤ v(k).

�



B. Sufficient Condition for the Stochastic Case

The following lemma provides a sequence, denoted by
vm(k), which is an upper-bound for the m-th moment of
x̄(k). We show that vm is propagated according to a first-
order difference equation that is suitable for the analysis in
the presence of uncertainty.

Lemma 3.3: (M-th moment boundedness) Let 	 ∈ N+,
z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be given along with the
following set:

∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f} (29)
Given m, consider the following sequence:

vm(k) = hm(k)vm(0) +
k−1∑
i=0

hm(k − i− 1)

(
	

1
m z̄f max{vm(i− 	+ 1), . . . , vm(i)} + d̄

)
(30)

where vm(i) = 0 for i < 0, vm(0) = 1
2 , hm(k) is the

impulse response given by:

hm(k) =
(
E [2m(log(|a(k)|)−re(k))]

) k
m

, k ≥ 0 (31)

and re(k) = − log
(
2−r(k) + z̄a

)
. If x(k) is the solution of

(7) under the feedback scheme of definition 3.2, then the
following holds

E [x̄(k)m] ≤ vm(k)m

for all |d(t)| ≤ d̄, Gf ∈ ∆f,� and |za(k)| ≤ z̄a.
Proof: Since lemma 3.1 guarantees that x̄(k+1) ≤ v(k+

1), we only need to show that E [v(k+1)m]
1
m ≤ vm(k+1).

Again, we proceed by induction by noticing that v(0) =
vm(0) and by assuming that E [v(i)m]

1
m ≤ vm(i) for i ∈

{1, . . . , k}. From definition 3.1, we know that:

E [v(k + 1)m]
1
m = E

[(
2log(|a(k)|)−re(k)v(k)+

z̄f max{v(j − 	+ 1), . . . ,v(j)} + d̄
)m] 1

m (32)

Using Minkowsky’s inequality [6] as well as the fact that
v(i) is independent of a(j) and re(j) for j ≥ i, we get:

E [v(k+1)m]
1
m ≤ E [2m(log(|a(k)|)−re(k))]

1
m E [v(k)m]

1
m +

z̄fE [max{v(k − 	+ 1), . . . ,v(k)}m]
1
m + d̄ (33)

which, using the inductive assumption, implies the follow-
ing inequality:

E [v(k + 1)m]
1
m ≤ E [2m(log(|a(k)|)−re(k))]

1
m vm(k)+

	
1
m z̄f max{vm(k − 	+ 1), . . . , vm(k)} + d̄ (34)

where we used the fact that, for arbitrary random variables
s1, . . . , sn, the following holds:

E [max{|s1|, . . . , |sn|}m] ≤ E [
n∑

i=1

|si|m] ≤

nmax{E [|s1|m], . . . , E [|sn|m]} (35)

The proof follows once we notice that the right hand side
of (34) is just vm(k + 1).

�
Theorem 3.4: (Sufficient Condition) Let m , 	 ∈ N+,

z̄f ∈ [0, 1), z̄a ∈ [0, 1) and d̄ ≥ 0 be given along with the
quantities bellow:

β(m) =
1
m

log E
[
2mlδ(k)

]
hm(k) = 2k(R+β(m)+αe(m)−Ce), k ≥ 0

where

re(k) = − log
(
2−r(k) + z̄a

)
= Ce − rδ

e(k)

αe(m) =
1
m

log(E [2mrδ
e(k)])

and1 rδ
e(k) is a zero-mean i.i.d. process. Consider that

x(k) is the solution of (7) under the feedback scheme of
definition 3.2 as well as the following conditions:

• (C 3) Ce > R + β(m) + αe(m)
• (C 4) 	

1
m z̄f‖hm‖1 < 1

If conditions (C 3) and (C 4) are satisfied, then the
following holds for all |d(t)| ≤ d̄,Gf ∈ ∆f,� and |za(k)| ≤
z̄a:

E [x̄(k)m]
1
m ≤ ‖hm‖1

(
	

1
m z̄f

‖hm‖1d̄+ 1
2

1 − 	 1
m z̄f‖hm‖1

+ d̄

)
+

hm(k)
1
2

(36)

where ∆f,� is given by:

∆f,� = {Gf : R
∞ → R

∞ : ‖Gf‖∞(�) ≤ z̄f} (37)
Proof: Using vm from lemma 3.3, we arrive at:

vm(k) ≤ hm(k)vm(0) + ‖hm‖1

(
	

1
m z̄f‖Πkvm‖∞ + d̄

)
(38)

where we use ‖Πkvm‖∞ = max{vm(0), . . . , vm(k)}. But
from (38), we conclude that:

‖Πkvm‖∞ ≤ vm(0) + ‖hm‖1

(
	

1
m z̄f‖Πkvm‖∞ + d̄

)
(39)

or equivalently:

‖Πkvm‖∞ ≤ vm(0) + ‖hm‖1d̄

1 − ‖hm‖1	
1
m z̄f

(40)

Substituting (40) in (38), gives:

vm(k) ≤ hm(k)vm(0)+

‖hm‖1

(
	

1
m z̄f

vm(0) + ‖hm‖1d̄

1 − ‖hm‖1	
1
m z̄f

+ d̄

)
(41)

1Notice that if z̄a = 0 then Ce = C and αe(m) = α(m).



The proof follows from lemma 3.3 and by noticing that
hm(k) can be rewritten as:

hm(k) =(
E [2m(log(|a(k)|)−re(k))

) k
m

= 2k(R+β(m)+αe(m)−Ce)

(42)

�

IV. NECESSARY CONDITION FOR THE
EXISTENCE OF STABILIZING FEEDBACK

SCHEMES

Consider that z̄a = z̄f = d̄ = 0. We derive necessary
conditions for the existence of an internally stabilizing
feedback scheme. We emphasize that the proofs in this
section use the m-th moment stability as a stability criteria
and that they are valid regardless of the encoding/decoding
scheme. They follow from a counting argument 2 which is
identical to the one used by [18]. Necessary conditions
for stability were also studied for the Gaussian channel
in [19] and for other stochastic channels in [15], [16].
A necessary condition for the almost sure stability for
general stochastic channels is given by [17]. We include our
treatment, because it provides necessary conditions for m-th
moment stability, which are inequalities involving directly
the defined quantities α(m) and β(m). In section III-B, we
show, for first order systems, that the necessary condition
of Theorem 4.1 is not conservative. In [11], we prove that
Theorem 4.1 is not conservative if B = I .

We derive the necessary condition for the following class
of state-space representations:

x(k) = U(k)x(k) + Bu(k) (43)

where x(k) ∈ R
n, u(k) ∈ R

nb , B ∈ R
n×nb and U(k) is a

block upper-triangular matrix of the form:

U(k) =



a(k)Rot(k) · · · · · ·

0 a(k)Rot(k)
. . .

...
. . .

...
0 · · · 0 a(k)Rot(k)




(44)
and Rot is a sequence of random rotation matrices sat-
isfying det(Rot(k)) = 1. We also assume that Rot is
independent of r.

Theorem 4.1: Let x(k) be the solution of the state-space
equation (43) along with α(m) and β(m) given by:

α(m) =
1
m

log(E[2mrδ(k)]) (45)

β(m) =
1
m

log(E[2mlδ(k)]) (46)

2We also emphasize that this proof is different from what we had
originally. The present argument was suggested by a reviewer of one of
our publications

and the norm on the vector x(k) be represented as:

‖x(k)‖∞ = max
i

|[x(k)]i|, (47)

where [x(k)]i are components of the vector x(k).
If the state satisfies the following:

sup
k
E[ sup

x(0)∈[−1/2,1/2]n
‖x(k)‖m

∞] <∞ (48)

then the following must hold:

C − α(
m

n
) ≥ nβ(m) + nR (49)

Proof: Consider a specific realization of Rot, r and a
along with the following sets:

Ω̄k = {Πk−1
i=0 U(i)x(0) : x(0) ∈ [−1/2, 1/2]n} (50)

Ωk({u(i)}k−1
i=0 ) = {x(k) : x(0) ∈ [−1/2, 1/2]n,

{u(i)}k−1
i=0 = F(x(0), k)} (51)

where u(k) is obtained through a fixed feedback law
F(x(0), k). Since x(k) is given by (43) and {u(i)}k−1

i=0 can
take, at most, 2

Pk−1
i=0 r(i) values, we find that:

V ol(Ω̄k)
max{u(i)}k−1

i=0
V ol(Ωk({u(i)}k−1

i=0 ))
≤ 2

Pk−1
i=0 r(i) (52)

Computing bounds for the volumes, we get:

V ol(Ω̄k) = 2
Pk−1

i=0 log |det(U(i))| (53)

V ol(Ωk({u(i)}k−1
i=0 )) ≤ vn(k) (54)

where v(k) = 2 supx(0)∈[−1/2,1/2]n ‖x(k)‖∞. Conse-
quently, using (52) we infer that:

2
Pk−1

i=0 log |det(U(i))|2−
Pk−1

i=0 r(i) ≤ 2nvn(k) (55)

By taking expectations, the m-th moment stability assump-
tion leads to:

lim sup
k→∞

(E [2
m
n log |det(U(k))|]E [2−

m
n r(k)])k ≤

2m lim sup
k→∞

E [vm(k)] <∞ (56)

which implies that:

C > α(
m

n
) + nβ(m) + nR (57)

where we used the fact that
E [2

m
n log |det(U(k))|]E [2−

m
n r(k)] < 1 must hold and

that log |det(U(k))| = n log |a(k)|. �
Corollary 4.2: Let x(k) be the solution of the following

linear and time-invariant system:

x(k + 1) = Ax(k) +Bu(k) (58)

If the state satisfies the following:

sup
k
E[ sup

x(0)∈[−1/2,1/2]n
‖x(k)‖m

∞] <∞ (59)



then the following must hold:

C − α(
m

nunstable
) ≥

n∑
i=1

max{log |λi(A)|, 0} (60)

where nunstable is the number of unstable eigenvalues.
Proof: The proof is a direct adaptation of the proof of
Theorem 4.1. �

V. PROPERTIES OF α(m) AND β(m)

The following are properties of α(m) and β(m):
• Note that Jensen’s inequality implies that α(m) ≥ 0

and β(m) ≥ 0, where equality is achieved only if the
corresponding random variable is deterministic.

• by means of a Taylor expansion and taking limits, we
get

lim
m↘0

α(m) = lim
m↘0

β(m) = 0 (61)

• the opposite limiting case, gives

lim
m→∞α(m) = C − rmin (62)

lim
m→∞β(m) = log(asup) −R (63)

where

rmin = min{r ∈ {0, . . . , r̄} : P(r(k) = r) �= 0}
asup = sup{ã : P(|a(k)| ≥ ã) �= 0}

• α(m) and β(m) are non-decreasing functions of m

Further properties of α(m) and β(m) as well as more
conclusions can be found in [11]. With a specific importance
in the stabilization of time-invariant linearizable systems,
we may conclude that the following is a necessary condition
for stability in the sense of Lyapunov (i.s.L.):

rmin ≥
∑

i

max{0, log |λi(A)|} (64)

where A is the dynamic matrix of the linearized system.
Notice that (64) follows from (62) by noticing that stability
i.s.L. implies m-th moment stability for all m. This is impor-
tant because it suggests that a deterministic link must always
be present. In addition rmin >

∑
i max{0, log |λi(A)|}

is also sufficient [18]. Consequently, we conclude that
studying the stabilizability i.s.L. for deterministic links is
sufficiently general.
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