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Abstract

We consider a continuous-time version of fictitious play, in which interacting players evolve their
strategies in reaction to their opponents’ actions without knowledge of their opponents’ utilities. It
is known that fictitious play need not converge, but that convergence is possible in certain special
cases including zero-sum games, identical interest games, and two-player/two-move games. We provide
a unified proof of convergence in all of these cases by showing that a Lyapunov function previously
introduced for zero-sum games also can establish stability in the other special cases. We go on to consider
a two-player game in which only one player has two-moves and use properties of planar dynamical systems
to establish convergence.

1 Overview

The procedure of fictitious play was introduced in 1951 [5, 18] as a mechanism to compute Nash equilibria

in matrix games. In fictitious play, game players repeatedly use strategies that are best responses to the

historical averages, or empirical frequencies, of opponents. These empirical frequencies, and hence player

strategies may or may not converge. The important implication of convergence of empirical frequencies is

that it implies a convergence to a Nash equilibrium.

There is a substantial body of literature on fictitious play [9]. A selected timeline of results that

establish convergence for special cases of games is as follows: 1951, two player zero-sum games [18]; 1961,

two player two move games [16]; 1993, noisy two player two move games with a unique Nash equilibrium

[8]; 1996, multiplayer games with identical player utilities [17]; 1999, noisy two-player/two-move games

with countable Nash equilibria [2]; and two player games in which one player has only two moves [3]. A

convergence counterexample due to Shapley in 1964 has two players with three moves each [20]. A 1993

counterexample due to Jordan has three players with two moves each [12]. Nonconvergence issues are also

discussed in [6, 7, 10, 13, 21].
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In this paper, we consider a continuous-time form of fictitious play and provide a unified proof of

convergence of empirical frequencies for the special cases of zero-sum games, identical interest games, and

two-player/two-move games. The proofs are unified in the sense that they all employ an energy function

that has the natural interpretation as an “opportunity for improvement”. This energy function was used

as a Lyapunov function in [11] for zero-sum games. We show that the same energy function can establish

convergence for all of the above cases, in some cases by a Lyapunov argument and in other cases by an

integrability argument.

We go on to consider games in which one of two players has only two moves. We provide an alternative

proof that exploits some simple properties of planar dynamical systems.

The remainder of this paper is organized as follows. Section 2 sets up the problem of continuous time

fictitious play. Section 3 contains convergence proofs for zero-sum, identical interest, and two-player/two-

move games. Section 4 discusses games in which one of two players has only two moves. Finally, Section 5

has some concluding remarks.

Notation

— For i ∈ {1, 2, . . . , n}, −i denotes the complementary set {1, . . . , i− 1, i + 1, . . . , n}.

— Boldface 1 denotes the vector
( 1

...
1

)
of appropriate dimension.

— ∆(n) denotes the simplex in Rn, i.e.,{
s ∈ Rn|s ≥ 0 componentwise, and 1T s = 1

}
— Int(∆(n)) denotes the set of interior points of a simplex, i.e., s > 0 componentwise.

— vi ∈ ∆(n) denotes the ith vertex of the simplex ∆(n), i.e., the vector whose ith term equals 1 and

remaining terms equal 0.

— H : Int(∆(n)) → R denotes the entropy function

H(s) = −sT log(s)

— σ : Rn → Int(∆(n)) denotes the “logit” or “soft-max” function

(σ(x))i =
exi

ex1 + · · ·+ exn

This function is continuously differentiable. The Jacobian matrix of partial derivatives, denoted

∇σ(·), is

∇σ(x) = diag(σ(x))− σ(x)σT (x),

where diag(σ(x)) denotes the diagonal square matrix with elements taken from σ(x).
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2 Fictitious Play Setup

2.1 Static Game

We consider a two player game with players P1 and P2, each with positive integer dimensions m1 and m2,

respectively. Each player, Pi, selects a strategy, pi ∈ ∆(mi), and receives a real-valued reward according

to the utility function Ui(pi, p−i). These utility functions take the form

U1(p1, p2) = pT
1 M1p2 + τH(p1)

U2(p2, p1) = pT
2 M2p1 + τH(p2),

characterized by matrices Mi of appropriate dimension and τ > 0.

The standard interpretation is that pi represent probabilistic strategies. Each player selects an integer

action ai ∈ {1, . . . ,mi} according to the probability distribution pi. The reward to player Pi is

vT
ai

Miva−i + τH(pi),

i.e., the reward to player Pi is the element of Mi in the ath
i row and ath

−i column, plus the weighted entropy

of its strategy. For a given strategy pair, (p1, p2), the utilities represent the expected rewards

Ui(pi, p−i) = E
[
vT

ai
Miva−i

]
+ τH(pi).

Define the best response mappings,

βi : ∆(m−i) → ∆(mi),

by

βi(p−i) = arg max
pi∈∆(mi)

Ui(pi, p−i).

The best response turns out to be the logit or soft-max function (see Notation section)

βi(p−i) = σ(Mip−i/τ).

A Nash equilibrium is a pair (p∗1, p
∗
2) ∈ ∆(m1)×∆(m2) such that for all pi ∈ ∆(mi),

Ui(pi, p
∗
−i) ≤ Ui(p∗i , p

∗
−i), i ∈ {1, 2} (1)

i.e., each player has no incentive to deviate from an equilibrium strategy provided that the other player

maintains an equilibrium strategy. In terms of the best response mappings, a Nash equilibrium is pair

(p∗1, p
∗
2) such that

p∗i = βi(p∗−i), i ∈ {1, 2} .
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2.2 Discrete-time Fictitious Play

Now suppose that the game is repeated at every time k ∈ {0, 1, 2, . . . }. In particular, we are interested in

an “evolutionary” version of the game in which the strategies at time k, denoted by pi(k), are selected in

response to the entire prior history of an opponent’s actions.

Towards this end, let ai(k) denote the action of player Pi at time k, chosen according to the proba-

bility distribution pi(k), and let vai(k) ∈ ∆(mi) denote the corresponding simplex vertex. The empirical

frequency, qi(k), of player Pi is defined as the running average of the actions of player Pi, which can be

computed by the recursion

qi(k + 1) = qi(k) +
1

k + 1
(vai(k) − qi(k)).

In discrete-time fictitious play (FP), the strategy of player Pi at time k is the optimal response to the

running average of the opponent’s actions, i.e.,

pi(k) = βi(q−i(k)).

The case where τ = 0 corresponds to classical fictitious play. Setting τ positive rewards randomization,

thereby imposing in so-called mixed strategies. As τ approaches zero, the best response mappings approx-

imate selecting the maximal element since the probability of selecting a maximal element approaches one

when the maximal element is unique. The game with τ positive then can be viewed as a smoothed version

of the matrix game [8] in which rewards are subject to random perturbations.

2.3 Continuous-time Fictitous Play

Now consider the continuous-time dynamics,

q̇1(t) = β1(q2(t))− q1(t)

q̇2(t) = β2(q1(t))− q2(t). (2)

We will call these equations continuous-time FP. These are the dynamics obtained by viewing discrete-time

FP as stochastic approximation iterations and applying associated ordinary differential equation (ODE)

analysis methods [1, 14].

3 Convergence Proofs for zero-sum, Identical Interest, and Two-Move
Games

We will derive a unified framework which establishes convergence of (2) to a Nash equilibrium of the static

game (1) in the aforementioned special cases of zero-sum, identical interest, and two-move games.

Zero-sum and identical interest here refer to the portion of the utility other than the weighted entropy.

In other words, zero-sum means that for all p1 and p2,

pT
1 M1p2 = −pT

2 M2p1,
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and identical interest means that

pT
1 M1p2 = pT

2 M2p1.

Strictly speaking, the inclusion of the entropy term does not result in a zero-sum or identical interest game,

but we will use these terms nonetheless.

Define the function V1 : ∆(m1)×∆(m2) → [0,∞) as

V1(q1, q2) = max
s∈∆(m1)

U1(s, q2)− U1(q1, q2)

= (β1(q2)− q1)T M1q2 + τ(H(β1(q2))−H(q1)).

Similarly define

V2(q2, q1) = max
s∈∆(m2)

U2(s, q1)− U2(q2, q1).

Each Vi has the natural interpretation as the maximum possible reward improvement to player Pi by using

the best response to q−i rather than the specified qi. Note that by definition,

Vi(qi, q−i) ≥ 0,

with equality if and only if

qi = βi(q−i).

The above functions were used in [11] for zero-sum games, i.e., M1 = −MT
2 , through a Lyapunov argu-

ment using V1 +V2 to show that the continuous-time empirical frequencies converge to a Nash equilibrium.

We will show that the same functions can be used to establish convergence to a Nash equilibrium in

the case of identical interest games and in the case of two-move games. The identical interest case will not

be a Lyapunov argument. Rather, we will show that the sum, V1 + V2, is integrable. For two-move games,

we will show that an appropriately scaled sum, α1V1 +α2V2, is either a Lyapunov function or is integrable.

The following lemma reveals a special structure for the derivatives of the Vi along trajectories of

continuous-time FP (2).

Lemma 3.1 Define

Ṽi(t) = Vi(qi(t), q−i(t))

along solutions of continuous-time FP (2). Then

˙̃V1 ≤ −Ṽ1 + q̇T
1 M1q̇2,

˙̃V2 ≤ −Ṽ2 + q̇T
2 M2q̇1.

The proof uses the following lemma.
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Lemma 3.2 ([4], Lemma 3.3.1) Let F (x, u) be a continuously differentiable function of x ∈ Rn and

u ∈ Rm. Let U be a convex subset of Rm. Assume that µ∗(x) is a continuously differentiable function such

that for all x,

µ∗(x) = arg max
u∈U

F (x, u).

Then

∇x

(
maxu∈U F (x, u)

)
= ∇xF (x, µ∗(x)).

Proof (Lemma 3.1) By definition

˙̃V1 = −(M1q2)T (β1(q2)− q1)− τ
d

dt
H(q1(t)) + (β1(q2)− q1)T M1q̇2

= −Ṽ1 + τ(H(β1(q2))−H(q1))−
d

dt
H(q1(t)) + q̇T

1 M1q̇2,

where we used Lemma 3.2 to show that

∇q2 max
s∈∆(m2)

(
sT M1q2 + τH(s)

)
= βT

1 (q2)M1.

The lemma follows by noting that concavity of H(·) implies that [19, Theorem 25.1]

H(β1(q2))−H(q1) ≤ ∇H(q1)(β1(q2)− q1) =
d

dt
H(q1(t)).

Similar statements apply for V2.

3.1 Zero-sum and Identical Interest Games

Theorem 3.1 Assume that either

M1 = −MT
2

or

M1 = MT
2

Then solutions of continuous-time FP (2) satisfy

lim
t→∞

(
q1(t)− β1(q2(t))

)
= 0

lim
t→∞

(
q2(t)− β2(q1(t))

)
= 0.

Proof Define

V12(t) = Ṽ1(t) + Ṽ2(t).

Zero-sum (see also [11]): M1 = −MT
2

In case M1 = −MT
2 , summing the expressions for ˙̃Vi in Lemma 3.1 results in a cancellation of terms,

thereby producing

V̇12 + V12 ≤ 0.
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Since,

V12 ≥ 0

with equality only at an equilibrium point of (2), the theorem follows from standard Lyapunov arguments.

Identical interest: M1 = MT
2

By definition,

Ṽ1 − τ(H(β1(q2))−H(q1)) = q̇T
1 M1q2

Ṽ2 − τ(H(β2(q1))−H(q2)) = q̇T
2 M2q1.

Therefore

V12 − τ(H(β1(q2))−H(q1))− τ(H(β2(q1))−H(q2)) = q̇T
1 M1q2 + q̇T

2 M2q1.

Under the assumption M1 = MT
2 = M ,

d

dt

(
qT
1 (t)Mq2(t)

)
= q̇T

1 M1q2 + q̇T
2 M2q1.

Therefore

V12 = τ(H(β1(q2))−H(q1)) + τ(H(β2(q1))−H(q2)) +
d

dt

(
q1(t)T Mq2(t)

)
.

By concavity of H(·) and [19, Theorem 25.1],

τ(H(β1(q2))−H(q1)) ≤ τ
d

dt
H(q1(t))

τ(H(β2(q1))−H(q2)) ≤ τ
d

dt
H(q2(t)),

which implies that for any T > 0∫ T

0
V12 ≤

(
qT
1 (t)Mq2(t) + τH(q1(t)) + τH(q2(t))

) ∣∣∣T
t=0

.

The integrand is positive, and T > 0 is arbitrary. Furthermore, one can show that V̇12 is bounded. There-

fore V12(t) asymptotically approaches zero as desired.

We comment that the integrability argument above can be viewed a version of the discrete-time argu-

ment in [17], but applied to a smoothed game (i.e., τ > 0) in continuous-time.

3.2 Two-Move Games

We now consider the case in which each player in the original static game has two moves, i.e., m1 = m2 = 2.

Continuous-time FP dynamics (2) involve differences of probability distributions. Since these distribu-

tions live on the simplex, their elements sum to one. Therefore, the sum of the elements of the difference
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of two distributions must equal zero, i.e., differences of distributions must lie in the subspace spanned by

the vector

N =
(

1
−1

)
.

Using this fact, we see that necessarily

q̇1(t) = β1(q2(t))− q1(t) = Nw1(t)

for an appropriately defined scalar variable w1(t). Similarly

q̇2(t) = Nw2(t).

This observation will be the key to proving the desired results in the two-move game. Two separate cases

will emerge,

(NT M1N)(NT M2N) < 0

or

(NT M1N)(NT M2N) > 0.

In the first case, the proof will follow the same Lyapunov argument of the zero-sum proof. In the second

case, the proof will follow the integrability argument of the identical interest proof. Reference [17] suggests

a link between the proofs for zero-sum, identical interest, and two-player two-move games. Namely, it

states that non-degenerate two-player two-move games are best-response equivalent in mixed-strategies

to an appropriate zero-sum or identical interest game, and since fictitious play relies on best responses,

this equivalence establishes convergence. The present approach does not utilize this equivalence, but does

exploit the present zero-sum and identical interest proofs by establishing a direct link in terms of the

constructed storage functions, Vi.

Theorem 3.2 Assume that m1 = m2 = 2 and

(NT M1N)(NT M2N) 6= 0.

Then solutions of continuous-time FP (2) satisfy

lim
t→∞

(
q1(t)− β1(q2(t))

)
= 0

lim
t→∞

(
q2(t)− β2(q1(t))

)
= 0.

Proof First suppose that NT M1N and NT M2N have opposite signs. Then there exist positive scalars,

α1 and α2, such that

(NT M1N)α1 + (NT M2N)α2 = 0. (3)
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From Lemma 3.1,

˙̃V1 + Ṽ1 ≤ q̇T
1 M1q̇2

˙̃V2 + Ṽ2 ≤ q̇T
2 M2q̇1.

Since m1 = m2 = 2,

˙̃V1 + Ṽ1 ≤ NT M1Nw1w2

˙̃V2 + Ṽ2 ≤ NT M2Nw1w2.

Scaling the above equations by α1 and α2, respectively, and summing them results in a cancellation of the

NT MiN terms and leads to

V̇12 + V12 ≤ 0,

where V12 is now defined as

V12 = α1Ṽ1 + α2Ṽ2,

with αi calculated in (3). As in the zero-sum case,

V12 ≥ 0,

with equality only at an equilibrium point of continuous-time FP (2). Standard Lyapunov arguments imply

the desired result.

Now suppose that NT M1N and NT M2N have the same sign. Then there exist positive scalars, α1 and

α2, such that

(NT M1N)α1 = (NT M2N)α2. (4)

By definition,

Ṽ1 − τ(H(β1(q2))−H(q1)) = q̇T
1 M1q2

Ṽ2 − τ(H(β2(q1))−H(q2)) = q̇T
2 M2q1.

Since 1
2NNT is a projection matrix and q̇i = Nwi,

q̇T
1 M1q2 = (q̇T

1 NNT M1q2)/2

q̇T
2 M2q1 = (q̇T

2 NNT M2q1)/2.

Define

f(t) = (qT
1 (t)NNT M1q2(t)α1 + qT

2 (t)NNT M2q1(t)α2)/2.
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Then

2ḟ = q̇T
1 NNT M1q2α1 + q̇T

2 NNT M2q1α2

+ qT
1 NNT M1q̇2α1 + qT

2 NNT M2q̇1α2

= (Ṽ1 − τ(H(β1(q2))−H(q1)))α1 + (Ṽ2 − τ(H(β2(q1))−H(q2)))α2

+ qT
1 NNT M1Nw2α1 + qT

2 NNT M2Nw1α2.

Define κ as

κ = (NT M1N)α1 = (NT M2N)α2.

Then

qT
1 NNT M1Nw2α1 + qT

2 NNT M2Nw1α2 = (qT
1 Nw2 + qT

2 Nw1)κ

= (qT
1 q̇2 + qT

2 q̇1)κ

= κ
d

dt

(
qT
1 q2

)
.

Finally, define

V12 = α1Ṽ1 + α2Ṽ2,

with αi calculated in (4). Then similarly to the identical interest case

V12 − α1τ(H(β1(q2))−H(q1))− α2τ(H(β2(q1))−H(q2)) = 2ḟ − κ
d

dt

(
qT
1 q2

)
,

which, using concavity of H(·) and [19, Theorem 25.1], implies that

V12 ≤ 2ḟ − κ
d

dt

(
qT
1 q2

)
+ α1τ

d

dt
H(q1(t)) + α2τ

d

dt
H(q2(t)).

Therefore ∫ ∞

0
V12(t) < ∞,

which again leads to the desired result.

4 Two Player Games with One Player Restricted to Two Moves

The previous sections used energy arguments, either Lyapunov or integrability, with the same energy func-

tions that represent the “opportunity for improvement”. Reference [2] uses properties of planar dynamical

systems to establish convergence for two-player/two-move games. Reference [3] considers games in which

only one of the players has two moves, and uses a relatively extended argument to establish convergence

by eliminating the possibility of so-called Shapley polygons. In this section, we also consider games in

which only one player has two moves, but we will apply properties of planar dynamical systems to provide

an alternative proof.
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Suppose that player P1 has only two moves, i.e., m1 = 2. Following [3], we will introduce a change of

variables that will lead to planar dynamics that describe the evolution of the player P1’s strategy.

Define

φ : R→ Int(∆(2))

as

φ(δ) =

(
eδ

eδ+1
1

eδ+1

)
.

Then it is straightforward to show that the two-dimensional softmax function, σ : R2 → Int∆(2) can be

written as

σ(
(

v1

v2

)
) = φ(v1 − v2),

i.e., σ(·) only depends on the difference of v1 and v2.

We will exploit this equivalence as follows. Define

N =
(

1
−1

)
,

and define the scalar

w2 =
1
τ
NT M1q2.

Then a subset of the continuous fictitious play dynamics can be written as

q̇1 = β1(q2)− q1 = φ(w2)− q1

ẇ2 =
1
τ
NT M1

(
β2(q1)− q2

)
=

1
τ
NT M1β2(q1)− w2.

Since q1 evolves in the simplex interior, the scalar w1(t) is uniquely defined by

q1(t) =
(

1/2
1/2

)
+ Nw1(t).

Furthermore, ẇ1 satisfies

ẇ1(t) =
1
2
NT q̇1(t).

The result of introducing w1 and w2 is that a subset of the continuous fictitious play dynamics can be

expressed completely in terms of w1 and w2, namely,

ẇ1(t) =
1
2
NT φ(w2(t))− w1(t)

ẇ2(t) =
1
τ
NT M1β2

((
1/2
1/2

)
+ Nw1(t)

)
− w2(t). (5)

Theorem 4.1 Assume a finite number of Nash equilbria satisfying (1). Assume further that m1 = 2.

Then solutions of continuous-time FP (2) satisfy

lim
t→∞

(
q1(t)− β1(q2(t))

)
= 0

lim
t→∞

(
q2(t)− β2(q1(t))

)
= 0.
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Proof Equations (5)a–b are planar dynamics that describe the evolution of q1(t). These dynamics form

area contracting flow, due to the negative divergence of the right-hand-side. Furthermore, solutions evolve

over a bounded rectangular set. A suitable modification of Bendixson’s criterion [15] leads to the conclusion

that the only ω-limit points are equilibria. In the original coordinates, this implies that q1(t) converges,

and hence so does q2(t).

5 Concluding Remarks

This paper has provided unified energy based convergence proofs for several special cases of games un-

der fictitious play. These proofs of convergence of continuous-time fictitious play, in themselves, do not

immediately guarantee the almost sure convergence of discrete-time fictitious play. Additional arguments

are needed to establish that the deterministic continuous-time limits completely capture the stochastic

discrete-time limits. Such issues are discussed in general in [1] and specifically for fictitious play in [2].
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