
Toward Feedback Stabilization of Faulty Software Systems:
A Case Study1

Stephen Waydo William B. Dunbar Eric Klavins

Division of Engineering and Applied Science
California Institute of Technology

Pasadena, CA 91125
{waydo,dunbar,klavins}@caltech.edu

Abstract: Software systems generally suffer from a certain
fragility in the face of “disturbances” such as bugs, unfore-
seen user input, unmodeled interactions with other software
components, and so on. A single such disturbance can make
the machine on which the software is executing hang or crash.
We postulate that what is required to address this fragility is
a general means of using feedback to robustly stabilize these
systems. In this paper we develop a model of an iterative
software process, specifically a nondeterministic, faulty list
sorter. Feedback is introduced into the process to achieve
robust stability with respect to incorrect sorting operations.
To keep the computational requirements of the controllers
low, randomization and approximation are used. Methods by
which software robustness can be enhanced by distributing a
task between nodes, each of which are capable of selecting
the “best” input to process, are also explored. The particu-
lar case of a sorting system consisting of a network of partial
sorters, some of which may be buggy or even malicious, is
examined.

1 Introduction

Software systems are very often not robust to disturbances,
which may come in the form of bugs, unforeseen input, unex-
pected interactions with other system components (both hard-
and software), and so on. The language of dynamical systems
and control theory is a natural one in which to express the idea
of stability, and in this paper we explore how an iterative soft-
ware process could be modelled within this framework. In [6]
we explore a preliminary model of the time/space evolution of
a generic iterative software system and suggest analogs to the
traditional control-theoretical notions of estimators and con-
trollers that may be used to feedback-stabilize and thereby
improve the performance of the system. In the work here, we
explore the example of a faulty list sorter, where sort opera-
tions may or may not (nondeterministically) be correct. The
model is numerically validated and feedback is shown to im-
prove the faulty sorter’s performance. We then examine a
system wherein multiple sorters that use feedback to moni-

1Partial support for this work was provided by the DARPA SEC pro-
gram under grant number F33615-98-C-3613 and by AFOSR grant number
F49620-01-1-0361. The first author is supported in part by the Fannie and
John Hertz Foundation.

tor their progress are networked together. Overlap of partial
sort operations, although minimal in some cases, and the use
of feedback together result in the convergence of fault-free
sorters in the presence of a faulty sorter.

The research we report on in this paper is closely related to the
theory of self-checking programs as described in, for exam-
ple, [11, 13, 3] except that we are concerned with stability and
disturbance rejection rather than error correcting per se. The
networked sorters example in Section 4 resembles in some re-
spects N -Version Programming [2]. Also similar is the idea
of self-stabilizing protocols [5, 12] wherein a network of pro-
cessors executing a self-stabilizing protocol can be shown to
recover from disturbances and arbitrary initial conditions into
a set of legal states. In fact, the same analogy that we em-
ploy here of a pseudo-energy function, or Lyapunov function,
can be used to show the protocols are robust and stable [9].
We believe the idea of self-stabilization exactly corresponds
to robust control design and hope to make this and related no-
tions formal in future work. A more complete list of related
references is given in [6]. What has not been investigated, to
the best of our knowledge, is the use of feedback to control,
rather than merely terminate, a faulty process. The addition
of a control input to a program may in fact require fundamen-
tal reworking of the program/observer paradigm. We hope
that the present paper suggests a possible avenue for such an
effort.

Relevant definitions and discussion on the need for approx-
imation are first given in Section 2. In Section 3 we inves-
tigate a modeling and control approach for stabilization of
nondeterministic sorting algorithms. In Section 3.1 we define
an appropriate metric on the group of permutations of n ele-
ments and a pseudo-energy function measuring the sortedness
of a list for the purposes of control. Section 3.2 provides an
analysis of the open-loop dynamics of a faulty list sorter us-
ing a Markov chain model. In Section 3.3 we use a simple
feedback controller to stabilize the sorting system in Section
3.2. In Section 4 we describe a distributed array of nodes in
which each node consists of a partial sorter and a controller.
We investigate the behavior of the system through simulation.
Conclusions and future directions are given in Section 5.



2 Problem Description
A particularly interesting class of programs we investigate are
iterative processes that do not run to completion but instead
provide output after some number of steps and then use this
output as their input for the next set of iterations. As such
programs already incorporate feedback in this sense, applying
control via manipulation of the iterated information may be a
useful step toward correcting aberrant behaviors.

To develop a systems theory perspective of software systems,
we consider defining a state x ∈ X of the system and a met-
ric d on X , which quantifies the “closeness” of two system
states. For a software system, x may simply be a snapshot of
the memory used by the software. A metric d, describing the
“distance” between two states, is a means by which we may
determine how well the software system is performing its as-
signed task. In software systems X is rarely a metric space
(or even a reasonable topological space), and thus some we
may need to resort to a surrogate for d. In the context of sort-
ing, we explore the symmetric group X = Sn, the set of all
permutations of {1, ..., n}, for which we can a define a metric
(Section 3.1).

For analysis and feedback controller design, it is useful to de-
fine a Pseudo-Energy Function V : X → N of the system
state, with the set {x | V (x) = 0} defining the goal states.
For the pseudo-energies defined in this paper, V is an increas-
ing function of the distance of the current state to a unique
goal state (the sorted list) defined by V (x) = 0. The pseudo-
energy function can be thought of, roughly, as a Lyapunov
Function [8] for the system. Several pseudo-energy functions
are defined in Section 3.1.

The state x of a software process may be enormously com-
plicated. In fact, the computational cost of determining V (x)
may be equivalent to the cost of executing the software pro-
cess to completion. For this reason, approximations of the
pseudo-energy functions are required.

3 Sorting Lists
In this section we describe the set of lists and the metrics
and pseudo-energy functions that can be defined on them. A
model of the evolution of a pseudo-energy function is given
and numerically validated. To monitor a piece of software on-
line, it is critical that the control tools require minimal (rela-
tive to the software) time complexity. As such, we comment
on the complexity of the functions defined and use approx-
imations in computing the pseudo-energy function used for
stabilization of the model. The closed-loop behavior is nu-
merically observed to improve as more computations are al-
lotted to the controller.

3.1 Metrics and pseudo-energy functions for List
Sorting

We make the simplifying assumption that all lists generated
by partial sorting are equal when viewed as sets. A faulty
sorter or disturbance may unsort the list, but the assump-
tion requires that the list may not change as a set. A list

L = [L[1], ..., L[n]] drawn from the set {1, 2, ..., m} is a se-
quence of n ordered and distinct elements. We further assume
that m = n: the set of all lists of length n is then the sym-
metric group Sn of all permutations of {1, ..., n}. A list L is
sorted if L[i] < L[j], for all i < j, and we denote the sorted
list as L∗ = [1, 2, ..., n]. A metric for sortedness quantifies
the distance between any two lists in a given group. Pseudo-
energy functions, in the context of sorting, refer to functions
from Sn → N that rank lists by sortedness. For example,
a (trivial) pseudo-energy function might output 0 if the list
is sorted and 1 otherwise. Pseudo-energy functions can be
used to prove the correctness of a particular sorting algorithm,
e.g. Bubblesort [10]. From the control analysis perspective, a
metric is likely to prove useful in verifying properties of the
closed-loop behavior of a sorter/controller agent. The func-
tion of the controller as described above requires the pseudo-
energy for any given list. We now give an example pseudo-
energy function and metric for list sortedness.

Definition 3.1 (Total Inversion Function) The total inver-
sion function VTI of a list L is

VTI (L) ,

n
∑

i=1

n
∑

j=i

〈L[i] − L[j]〉

where

〈x〉 ,

{

1, x > 0
0, otherwise.

In words, VTI gives the total number of pairs that are out of
order, counting 1 for each pair out of order with a maximum
value of

(

n
2

)

. Determining VTI is O(n2) and VTI (L) = 0 iff
L = L∗. A computationally simpler pseudo-energy function
(O(n)) is an adjacent inversion function, defined in [6] and
also as a measure in [10]. Such a function gives a lower reso-
lution over Sn than VTI . We now define two vectors that will
be used in the metric we give below.

Definition 3.2 (Total Inversion Vectors) The total inversion
vector q : Sn → {0, ..., n − 1}n has n components
[q1(L), ..., qn(L)]T , where the kth component is defined by

qk(L) =
n

∑

j=k

〈L[k] − L[j]〉.

The ordered total inversion vector q
o : Sn → {0, ..., n −

1}n has n components [qo
1(L), ..., qo

n(L)]T , where the L[k]th

component is defined by

qo
L[k](L) =

n
∑

j=k

〈k − L[j]〉.

In words, qo
i is the number of elements less than i, located

in {L[1], ..., L[n]}, to the right of i. The definition for q
o is

based on [4] and references therein, which discuss the con-
struction of a (total) inversion list from a given permutation.



The reason for the use of the word “ordered” in defining q
o is

that its construction depends upon the location of each L[k]
relative to its value; consequently, the definition does not gen-
eralize to operating on lists. On the other hand, component k
in the q vector corresponds to the i = k summation term in
the expression for VTI . As such, q is already well-defined
for operating on lists, rather than being restricted to permuta-
tions. Note that the nth component in q and the 1st compo-
nent in q

o are always zero. We now define a metric based on
the ordered total inversion vector.

Lemma 3.1 Given the function d : Sn × Sn → R defined by

d(L1, L2) , ||qo(L1) − q
o(L2)||,

where || · || is any norm on R
n, (Sn, d) is a metric space.

A proof is given in [6] and we conjecture that d is still a met-
ric when defined using q rather than q

o, i.e. the permutation
(or list) L that corresponds to a given q(L) is unique. In this
case, it follows from the definitions that VTI (L) = d(L, L∗).
Two other metrics, the Kendall distance K and Spearman’s
footrule distance F , are define in [1] for m = n and compar-
isons to d are made in [6].

3.2 Open-loop Behavior

To explore the issues involved in stabilizing and improving
the performance of a sorting system, we consider a model of
the simplest imaginable (buggy) sorting system. The sorter is
a dynamic system whose state at step k is the list L(k). The
pseudo-energy at time k is taken to be the value of the total
inversion function of the list

V (k) , VTI (L(k)),

which for a list of length n can vary from 0 (no pairs are out
of order) to Vmax =

(

n
2

)

(all pairs are out of order). At each
time step, the sorter picks an adjacent pair of list entries. We
suppose that this is a “correct” operation (i.e. the chosen pair
is out of order) with probability p. The sorter then swaps
the pair with probability d. If the list is already completely
sorted or unsorted (V = 0 or Vmax), the sorter simply swaps
some adjacent pair with probability d. L(k) is thus a random
variable, and V (k) is a random variable that is a function of
L(k). The probability distribution of V (k + 1) is dependent
only on the distribution of V (k), and so it can be modeled
using a Markov chain. Define the state transition matrix T
with its (i, j)th element given by

Ti,j , P [ V (k + 1) = j | V (k) = i ].

Denoting a pseudo-energy value by q = V (k), a state transi-
tion matrix of dimension m+1×m+1, where m = Vmax, is
obtained. Note that swapping an adjacent pair (with distinct
values) will always increment or decrement VTI by 1. The

state transition probabilities are

Tq,q = (1 − d)

Tq,q−1 = pd, 1 ≤ q < m

Tq,q+1 = (1 − p)d, 1 ≤ q < m

T0,1 = d

Tm,m−1 = d

Tq,q±δ = 0, ∀ δ > 1.

The left eigenvector v of this matrix corresponding to eigen-
value 1 (vT = v), which we call the (neutrally) stable
left eigenvector, describes the long-term distribution of the
pseudo-energy value V (k). Following the method of [7], we
have the following proposition

Proposition 3.1 The neutrally stable left eigenvector v of the
state transition matrix T is given by v = [v0 . . . vm]T , where
v0 = 1,

vi =
(1 − p)i−1

pi
, 1 ≤ i < m, vm =

(1 − p)m−1

pm−1
.

The proof is given in [6] and normalizing v we obtain the
long-term probability distribution v′ of V as

v′ =
v

η
, η ,

m
∑

i=0

vi.

The weighted sum of the entries of v′ is the asymptotic ex-
pected value of V , which we call the fixed point pseudo-
energy Vfp , limk→∞ E[V (k)]

Vfp =

m
∑

i=0

(i)v′(i) =
pm − (1 − p)m[1 + 2m(2p− 1)]

2(2p − 1)[pm − (1 − p)m]
.

The dependence of Vfp on p for a given list length is shown
graphically in [6]. Naturally, with higher probability of cor-
rect sort operations, the more likely the list will be sorted
(V approaches 0). Figure 1 is a plot of the Markov chain-
predicted time history, the predicted Vfp , and a time aver-
age of 10 actual sorting runs for a list of length 10. The
actual sorter performance closely matches that predicted by
the Markov chain analysis.

3.3 Closing the Loop

Underlying the following approach is the assumption that we
are allowed to control the number of iterations the software
performs and when the iterations start. The above Markov
chain model can be extended to show the benefit of includ-
ing a simple controller. We now model the same sorter along
with an approximate checker that computes an approximation
V̂ of V . After each iteration k, the checker picks l random
pairs and calculates V̂ (k), the number of sub-sampled pairs
that are out of order. The checker then rejects the sorting step
if V̂ (k) ≥ V̂ (k − 1). Although checking is here more expen-
sive than a single sort iteration (O(l2) versus O(1)), we inves-
tigate cases for small and large l to observe the tradeoff. Also,



0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

45
Open−loop sorting performance, n=10

Number of sorter iterations

V
T

I

p = 0.3 

p=0.6 

p=0.9 

Predicted  V
fp

          

Markov chain expectation        
Actual performance              

Figure 1: Comparison of actual sorter performance to model.

the restriction to checks between single sort iterations permits
tractable analysis, as shown. In the network sorting exam-
ple in the next section, we also explore cases where checking
operations are cheaper than the sort operations permitted be-
tween checks.

The accuracy of the checker, or its ability to predict the cur-
rent pseudo-energy, is here derived. The sample space of
the checker consists of

(

n
2

)

pairs. Again, we use V (k) =
VTI (L(k)). If V (k) = b, the sample space of the checker
consists of b out of order pairs and

(

n
2

)

− b in order pairs. In

order for V̂ to be equal to some value c, the checker must pick
c out of order pairs and l − c in order pairs. The probability
that the checker does so is derived as

P [V̂ = c | V = b] =

[(

b

c

)(
(

n
2

)

− b

l − c

)]

/

[(
(

n
2

)

l

)]

.

In the following, we denote V (k) (or V̂ (k)) as Vk (V̂k). Two
probabilities are used to characterize the checker – the prob-
ability r1 that V̂ decreases when V does and the probability
r2 that V̂ does not decreases when V increases. The value of
r1 is a function of b and l as

r1(b, l) = P
[

V̂k < V̂k−1

∣

∣

∣
Vk−1 = b, Vk = b − 1

]

.

Because V̂k and V̂k−1 are separate computations, they are in-
dependent random variables, and

P [V̂k−1 = c1, V̂k = c2 | Vk−1 = b, Vk = b − 1]

= P [V̂k−1 = c1 | Vk−1 = b] · P [V̂k = c2 | Vk = b − 1]

=

[(

b

c1

)(

m − b

l − c1

)(

b − 1

c2

)(

m − b + 1

l − c2

)]

/

[

(

m

l

)2
]

,

where m =
(

n
2

)

, c2 < c1. Summing the above expression
over all c1, c2 gives the needed probability

r1 =

(

m

l

)−2 m
∑

c1=1

(

b

c1

)(

m − b

l − c1

) c1−1
∑

c2=0

(

b − 1

c2

)(

m − b + 1

l − c2

)

.

5 10 15 20 25 30 35 40 45
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Checker accuracy, n = 10, b = 23

l

r 1

Figure 2: Theoretical checker accuracy

Figure 2 is a plot of r1 as l ranges from 1 to
(

n
2

)

for a list of
length 10 with V = 23 ≈

(

n
2

)

/2. Similar reasoning leads
to the probability r2 as

r2(b, l) = P [V̂k ≥ V̂k−1 | Vk−1 = b, Vk = b + 1]

=

(

m

l

)−2 m
∑

c2=0

(

b + 1

c2

)(

m − (b + 1)

l − c2

) c2
∑

c1=0

(

b

c1

)(

m − b

l − c1

)

.

The state transition probabilities are very similar to the open-
loop case, with the addition that the system may now reject
sorter steps (correctly or incorrectly) according to the above
probabilities. Using the same definition of the state transition
matrix T as before we have

Tq,q = (1 − d) + pd(1 − r1) + (1 − p)dr2, 1 ≤ q < m

Tq,q−1 = pdr1, 1 ≤ q < m

Tq,q+1 = (1 − p)d(1 − r2), 1 ≤ q < m

T0,0 = (1 − d) + dr2

T0,1 = d(1 − r2)

Tm,m = (1 − d) + d(1 − r1)

Tm,m−1 = dr1

Tq,q±δ = 0, ∀ δ > 1.

Work is currently in progress to develop a closed-form so-
lution for or approximation to the stable eigenvector of the
closed-loop transition matrix following the methods used
above. Until such a solution is found, numerical methods can
be used to predict v′ and Vfp .

Figure 3 is a plot of the Markov chain-predicted time history,
the predicted Vfp , and a time average of 10 actual sorting runs
for a list of length 10 and a sorter with p = 0.4. The open-
loop performance is shown along with that of checkers with l
equal to 20, 30, and 40. Note that Vfp drops quickly once l be-
comes larger than

(

n
2

)

/2 ≈ 23; further increasing l increases
the rate at which q approaches Vfp . The actual sorter perfor-
mance again closely matches that predicted by the Markov



0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

45
Closed−loop sorting performance, n=10, p=0.4

Number of sorter iterations

V
T

I
open loop,  V

fp
  = 42.5 

 l = 20 

 l = 30

 l = 40

Markov chain       
Actual performance 

Figure 3: Comparison of actual sorter performance to model.

chain analysis. Note that in all closed-loop cases Vfp = 0,
but lower values for l resulted in much slower convergence
rates.

Note that in the above discussion only sorter iterations were
taken into account when judging convergence rates, in which
case larger values of l will clearly always improve conver-
gence time. If one plots the closed-loop performance in Fig-
ure 3 as a function of the total number of iterations, conver-
gence rates of V̂ still improve with increasing l. The reason
appears to be that this sorter makes more bad decisions than
good ones, on average. The Markov chain-predicted closed-
loop time history in terms of sort and total iterations when
good decisions are more frequent (p = 0.6) is explored nu-
merically in [6]. In this case, l = 10 resulted in fewer total
steps than l = 30 or 40 to converge. It may be that there
is some optimal l (as a function of p) that will result in the
fastest total convergence time. This is an issue we would like
to explore in considerably more detail, especially in the case
where the sorting accuracy is not know a priori and l must be
adaptively tuned in some way.

4 A Network of Sorters
In the following, we consider a fully connected, four node
network of sorters, each of which is equipped with a pseudo
random number generator thereby making random choices
possible. The objective is that the network converge (defined
below) on the sorted version of the list, defined to be in in-
creased order from left to right. The operation of the network
is as follows:

• Each node (sorter) is initially given the same list of
length n, with elements from the set {0, ..., m}, m > n.

• The partial sort operation on each node randomly picks
j ordered pairs, with the first element of each pair
to the left of the second element, and swaps them if
they are out of order with some probability. After all

partial sorts, each node transmits its current list to all
other sorters it is connected to in the network (all other
sorters in this case).

• Once the initial partial sort and transmission has oc-
curred, each node repeatedly performs the pick and par-
tial sort operations subsequently. The pick operation
computes the approximate pseudo-energy V̂ for each
incoming list and selects the list with the smallest V̂
value to be partially sorted. The approximation of V̂
is quantified by the constant κ ∈ {1, ..., n}, which is
the length of an array window randomly extracted from
each input list. Note that randomness in the array win-
dow extractions means a node that makes the correct
sort decisions all of the time could eventually sort the
list by using its own list for subsequent operations.

• Define the output of the network at iteration k as the list
(or state) of the node with the lowest pseudo-energy at
iteration k. A network is said to converge if the pseudo-
energy of its output converges to a value Lc.

The stability and expected value of Lc, desired to be the
sorted version of the list, are the main indicators of the per-
formance of the network. We are particularly interested in
the network performance in situations where one or more of
the sorters is imperfect and κ is fairly small for computational
reasons. Will the output of bad sorters propagate through the
network or will the pickers be good enough to weed out bad
lists? We investigate the performance here by example.

In the following, (m, n, j) = (100, 30, 10) and the sorter it-
eration histories shown are actually an average of 50 separate
runs, all with a different randomly chosen initial list (picker
iterations are not shown). When all sorters make correct de-
cisions all of the time, all four sorters (and thus the network)
converge to the sorted list for κ = 5, 24, with faster conver-
gence for larger κ (see figures in [6]). To explore the effect
of a faulty sorter, node 4 is given a bad sorter that flips a
coin and if it is heads, swaps the randomly chosen ordered
pair; otherwise, the pair is kept in the original order. The
corresponding pseudo-energy histories are shown in Figure
4 for κ = 5, 24, where again we average over 50 runs, all
with different initial lists. The figure shows that for a bet-
ter approximation of the true pseudo-energy, i.e. for larger
κ, the fault-free sorters converge on average independently
of the faulty sorter. For κ = 5, convergence suffers as the
faulty sorter’s list is more likely to be chosen by the good
sorters more frequently. We can also make the conjecture
from the figures that as the number of iterations increases, the
chances of the fault-free sorters to converge improves, for the
following reason. As the number of iterations increases, the
correctly sorted lists from sorters 1-3 becomes substantially
more sorted than sorter 4’s list, which (on average) maintains
its initial unsortedness. As a result, the approximate pseudo-
energies of the four lists within pickers 1-3 suggests with
increasing frequency that lists 1-3 are more sorted and thus
tends to chose among those lists for subsequent operations.



0 50 100 150 200 250
0

50

100

150

200

250

Approx Pseudo-Energy History, 

Iterations

 = 5

Faulty Sorter No.4

0 50 100 150 200 250
0

50

100

150

200

250

Approx Pseudo-Energy History, 

Iterations

 = 24

Faulty Sorter No. 4

Figure 4: Approximate pseudo-energy history for four sorters in fully connected network; Sorter 4 is faulty.

The role of κ in the (average) number of iterations required
to reach zero approximate pseudo-energy among the agents is
also numerically investigated in [6].

5 Conclusions and Future Work

We have attempted to put the problem of making software ro-
bust to certain kinds of disturbances into a dynamical systems
and control framework by investigating the example of soft-
ware that sorts lists. We defined several metrics and pseudo-
energy functions for potential use in stabilizing and analyzing
software processes that perform sorting. Further, the case of
a single sorter operating in open and closed-loop was thor-
oughly examined, and closing the loop was shown to dra-
matically improve the accuracy of a faulty sorter. Simulation
for a network of sorters was also detailed, where approxima-
tion and randomization were important components. We plan
to further extend the analysis of the closed loop sorter dy-
namics as well as those of the networked sorters. The utility
and construction of metrics and pseudo-energies as used on
lists above for more general software systems will also be ex-
plored.

Underlying our approach is the assumption that we are al-
lowed to control the number of iterations the software per-
forms and when the iterations start. It may be of interest to
develop approaches that use feedback in software environ-
ments where the iterations cannot be so controlled and stabi-
lization must occur in real-time while the state of the software
system evolves, as is the case in traditional control problems,
e.g. mechanical systems. Such approaches will also be ex-
plored in the future.

Acknowledgments

The authors with to thank Richard Murray and Jason Hickey
for their suggesting several of the problems we consider in
this paper and Natarajan Shankar for his advice and sugges-
tions on relating this work to other, similar, fields.

References
[1] M. Ajtai, T.S. Jayram, R. Kumar, and D. Sivakumar. Approx-
imate counting of inversions in a data stream. In 34th ACM Sympo-
sium on Theory of Computing, Montral, Qubec, Canada, 2002.

[2] A. Avizienis. The Methodology of N-Version Programming.
John Wiley & Sons, New York, 1995.

[3] M. Blum and S. Kannan. Designing programs that check
their work. Journal of the Association for Computing Machinery,
42(1):269–291, 1995.

[4] A. Bogomolny. Various ways to define a permutation.
http://www.cut-the-knot.org/do you know/Perm.shtml.

[5] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):643–644, November
1974.

[6] W.B. Dunbar, E. Klavins, and S. Waydo. Feedback controlled
software systems. CDS technical report 2003-002, California Insti-
tute of Technology, 2003.

[7] W. Feller. An Introduction to Probability Theory and Its Ap-
plications. J Wiley and Sons, 1957.

[8] H. A. Khalil. Nonlinear Systems. Printice Hall, 2nd edition,
1996.

[9] E. Klavins. A formal model of a multi-robot control and com-
munications task. In Submitted to the Conference on Decision and
Control, Hawaii, 2003.

[10] M. L. Littman. CPS130 course notes - sorting(5), Fall 1997.
http://www.cs.duke.edu/mlittman.

[11] R. Rubinfeld. A Mathematical Theory of Self-Checking, Self-
Testing and Self-Correcting Programs. PhD thesis, University of
California, Berkeley, 1996.

[12] M. Schneider. Self-stabilzation. ACM Computing Surveys,
25(1), March 1993.

[13] H. Wasserman and M. Blum. Software reliability via run-
time result-checking. Journal of the Association for Computing Ma-
chinery, 44(6):826–849, November 1997.


