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Abstract

In this paper, we provide a dynamic graph theoretical framework for flocking in presence
of multiple obstacles. Particularly, we give formal definitions of nets and flocks as spatially
induced graphs. We provide models of nets and flocks and discuss the realization/embedding
issues related to structural nets and flocks. This allows task representation and execution for
a network of agents called α-agents. An α-agent needs to maintain a certain distance from
other α-agents in their spatial neighborhood (or shell). This formalism eventually leads to the
definition of flocking as structural and translational stability of flocks. We also consider flocking
in the presence of multiple obstacles. This task is achieved by introducing two other types of
agents called β-agents and γ-agents. These two agents are born as soon as an α-agent gets in
close proximity of an obstacle. They later die when the α-agent leaves the neighborhood of
the obstacle. This framework enables us to address split/rejoin and squeezing maneuvers for
nets/flocks of dynamic agents that communicate with each other. The problems arising from
switching topology of these networks of mobile agents make the task of analysis and design
of the decision-making protocols for such networks rather challenging. We provide simulation
results that demonstrate the effectiveness of our theoretical and computational tools.

1 Introduction

A special behavior of large number of interacting dynamic agents called “flocking” has attracted
many researchers from diverse fields of scientific and engineering disciplines. The term “flocking”
in English means “moving together in large numbers”. This behavior exists in the nature in the
form of flocking of birds, schooling of fish, and swarming of bacteria [18].

Reynolds introduced three ad-hoc protocols for autonomous agents moving in a 3-D space called
“boids” [16]. The combination of these three protocols led to creation of the first animation of
flocking in 1987. In [16], the society of boids is viewed as a distributed system. This is precisely the
point of view in the present paper. No analysis of the proposed protocols or definition of flocking is
stated in [16]. Later, the work of Reynolds motivated a group of scientists to simulate and analyze
one of the three protocols of Reynolds for attitude alignment in Vicsek et al. [19]. A similar
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attitude alignment problem was recently investigated in [8]. That work is, in turn, motivated
by the work in [19]. Similar to the work of Vicsek et al., in [8], no connections are established
between the first two flocking protocols of Reynolds and the connectivity of the network of mobile
agents. The connectivity of the network is the key in achieving consensus among the agents [15].
In [9], a centralized approach is provided for control design and analysis of swarms with fixed
interconnection topology. Similarly, in [5], a centralized method is used for control of swarms
that makes use of social potentials and each agent has an infinite radius of sensing/communication.
Obstacle avoidance for multi-agent systems using gyroscopic forces is recently discussed in [3]. This
method only uses local information and relies on the work in [2]. As a by-product of treating all
nearest neighbors as moving obstacles, using the protocol in [3], the group of agents demonstrate
a flocking behavior that has not yet been fully understood. The use of gyroscopic forces is an
alternative approach to obstacle avoidance compared to the classical work in [17] which relies on a
centralized construction of a potential function. This construction is explicit but suffers from the
problem that prior information regarding all existing obstacles must be available. This is rather
restrictive in a dynamically changing environment.

In this paper, our main goal is design and analysis of distributed algorithms (or protocols) for
cooperative decision-making in networks of mobile agents. Flocking is an example of cooperative
behavior in a complex system that is formed by the communication and interaction among large
number of agents. Flocking in presence of multiple environmental or adversarial obstacles, leads
to solving decision-making problems in networks of dynamic agents with switching topology [13].
Particularly, this is the case in missions that requires low-altitude flight of unmanned air vehicles
(UAVs). Moreover, in a competitive team-on-team game, few players of the team B might block
the view or communication between the members of team A. In this paper, we consider flocking
with multiple fixed obstacle avoidance where the obstacles can be viewed as immobile players of
the team B that break the communication links between the agents in a flock (i.e. members of
team A). This is due to the fact that for groups of agents that move in large numbers, it might not
be possible to pass through tight spaces all together while maintaining a safe inter-agent distance.
This phenomenon is also known as “escape panic” [6]. Escape panic claims the lives of so many
people in disasters that occur in crowed enclosed places with few exits (see [6] and Figure 8).

The main contributions of this work is as follows: i) providing a graph theoretical framework
that allows formal modeling of nets and flocks, ii) defining stability of nets and flocks, iii) introduc-
ing protocols that lead to creation of a connected network of agents that move towards the same
direction and maintain inter-agent distances (i.e. do flocking), iv) showing that Reynolds first two
protocol is a special case of a single protocol used by an α-agent (to be defined) in interaction
with another α-agent, v) showing that the third protocol of Reynolds is the same as the consensus
protocol in a network with switching topology [13], vi) providing a protocol for creating a connected
network out of an initially disconnected network of dynamic agents, vii) introducing a separation
principle for structural stability and tracking in flocking, viii) multiple obstacle avoidance by mod-
eling the effect of an obstacle as the combine effect of a β-agent and a γ-agent (both to be defined),
and ix) prioritization strategies for simultaneously performing a set of conflicting tasks. We pro-
vide examples of flocking for n = 100 agents that avoid m = 6 obstacles and are forced to perform
split/rejoin maneuver [12] and squeezing maneuver. We also state some open problems that need
to be addressed in the future.

An outline of the paper is as follows: in Section 2 nets and flocks are defined as spatially induced
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graphs. In Section 3, the differentiability issues of state-dependent graph Laplacians for networks
with switching topology is discussed. In section 4, the notion of structural nets are introduced as
looser types of multi-agent formations. In Section 5, structural energy of nets and flocks is defined
as the Hamiltonian of a dynamic graph. In Section 6, the issues regrading the differentiability of
structural energy of nets and nets with switching topology is discussed. In Section 7, two types
of protocols for maintaining a given distance between two α-agents are given. In Section 8, the
connections between Reynolds three rules of flocking and the interaction protocol between two
α-agents are clarified. In Section 9, the results on flocking using dissipation of structural energy
of nets are presented. In Section 10 Quasi-realization of nets and the notion of the defect factor
of conformations of structural nets are discussed. A separation principle for flocking is given in
Section 11. In Section 12, obstacle avoidance and the definition and behavior of β and γ agents
are stated. The simulation results are presented in Section 13. Finally, in Section 14, concluding
remarks are made.

2 Nets and Flocks: Spatially Induced Graphs

In this section, we use several basic notions from graph theory. Further information on graph theory
is available in [1, 4, 7]. A graph is denoted by G = (V, E) with V as the set of nodes and E as the
set of edges of the graph. The order of graph is the number of nodes of the graph n = |G| = |V|.
An edge is denoted by ij, (i, j) or (vi, vj) with i, j ∈ N as the node indices and vi, vj ∈ V.

Let qi ∈ Rd (e.g. d = 2, 3) with i ∈ N denote the position of the ith node vi. Define q = colqi ∈
Rnd where n = |V| is the number of nodes. We refer to q as a cluster (or configuration). A spherical
neighborhood (or sell) of radius ri ≥ 0 around qi is defined as

B(qi, ri) := {x ∈ Rd : ‖x− qi‖ ≤ ri} (1)

Let ~r = col(ri) We refer to (q, ~r) as a cluster with configuration q and vector of radii ~r. We define
a spatial adjacency matrix A(q) = [aij(q)] induced by a cluster q as follows

aij(q) =

{

1, if qj ∈ B(qi, ri), j 6= i
0 otherwise.

(2)

The spatial adjacency matrix A(q) defines a spatially induced graph G(q). We call G(q) a net,
i.e. a net is a graph that is spatially induced by a cluster. Figure 1(a) shows an example of a node
with a spherical neighborhood and the set of neighbors Ni defined as

Ni = Ni(q) := {j : aij(q) > 0} (3)

In general, a net is a directed graph (or digraph). This is because if ri > rj , then j ∈ Ni but i 6∈ Nj .
Notice that the graph G(q) is undirected (i.e. aij(q) = aji(q) for all i, j) if and only if ri = rj for
all i, j. This means that if all the nodes have reached an agreement regarding the radius of their
shell, then the induced net by cluster q is an undirected net.

If ri = r for all i, we denote a cluster by (q, r) and call it a uniform cluster. Furthermore, the
graph G(q) that is induced by a uniform cluster is called a uniform net. All uniform nets that are
induced by clusters with spherical neighborhoods are undirected. However, this is not the case for
clusters with conic neighborhoods as shown in Figure 1(b).
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Figure 1: (a) A spherical neighborhood (or shell) and (b) a conic neighborhood.

Now, consider a cluster with nodes that have a position xi ∈ R2 and an attitude (or heading
angle) θi ∈ R. The configuration of the node i can be written as qi = col(xTi , θi) ∈ R3. A conic
neighborhood of node i is defined as

C(xi, θi, ri, ϕi) := {(x, θ) ∈ R2 × R : ‖x− xi‖ ≤ ri, |θ − θi| ≤ ϕi}. (4)

The use of conic neighborhoods for flocking is due to Reynolds [16]. A cluster with nodes that have
conic neighborhoods can be represented as (q, ~r, ~ϕ) where ~r = colri and ~ϕ = colϕi. Similarly, a
uniform cluster with conic shells is represented by (q, r, ϕ0) where ri = r and ϕi = ϕ0 for all i. The
spatial adjacency matrix for a uniform cluster with conic shells can be written as

aij(q) =

{

1, ‖xj − xi‖ ≤ r, |θj − θi| ≤ ϕ0, j 6= i
0 otherwise.

(5)

Remark 1. In general, for agents with configuration (xi, Ri) ∈ SE(d), a conic region in Rd (d ≥ 2)
can be defined as

Si = {(x,R) ∈ Rd × SO(d) : ‖x− xi‖ ≤ ri, ϕ(R,Ri) ≤ ϕi}, (6)

where 0 ≤ ϕi < 2 and ϕ(R,Ri) =
1
2Trace(I −RTRi) is distance function on the Lie group SO(d).

In general, a uniform net induced by a uniform cluster with conic shells is a directed graph.
This makes the motion planning analysis related to nets/flocks induced by clusters with conic shells
rather challenging.

Definition 1. (flock) A flock is a weakly connected net.

Note that a digraph is called weakly connected, if there exists a path that connects any two
distinct nodes of the graph irrespective of the direction of the edges that constitute the path, i.e.
for any two nodes i, j, i 6= j, there exists a set of indices i1, i2, . . . , im with i1 = i and im = j that
defines a path

πi,j = {(i1, i2), (i2, i3), . . . , (im−1, im)}
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such that for all k ∈ {1, . . . ,m− 1}, E(G) contains (ik, ik+1) or (ik+1, ik).
Suppose a net N = G(q) consists of m weakly connected components, then N contains m flocks

F1(q), F2(q), . . . , Fm(q). We refer to |N | (i.e. the order of a net/graph) as the population of a net.
The density of a net is defined as follows

δ0 = δ0(N ) :=
maxk |Fk|
∑m

k=1 |Fk|
(7)

Apparently, a net of density 1 is called a flock. We call a net with a relatively high density satisfying
0 < 1− δ0 ¿ 1 a quasi-flock.

Throughout this paper, we assume that all the nets are uniform. For a uniform net, the elements
of the adjacency matrix A(q) can be rewritten as

aij(q) =

{

1, ‖qj − qi‖ ≤ r, j 6= i
0 otherwise.

(8)

Note that aii(q) = 0. Let us define the in-degree and out-degree of node vi as

degin(vi) =
∑

j∈Ni
aji =

∑

j aji(q)

degout(vi) =
∑

j∈Ni
aij =

∑

j aij(q)
(9)

The spatial degree matrix ∆(q) = [∆ij(q)] is diagonal matrix with diagonal elements

∆ii(q) = degout(q) (10)

The spatial Laplacian matrix L(q) of the net G(q) is defined as

L(q) = ∆(q)−A(q) (11)

In general, if q(t) changes in time, both the net G(q(t)) and its Laplacian L(q(t)) (possibly) change
in time. This creates a network with switching topology [14]. We call a net (or graph) balanced if
and only if degin(vi) = degout(vi) for all nodes vi ∈ V. Let 1 = (1, 1, . . . , 1) ∈ Rn, then the following
result summarizes the properties of a balanced net G(q).

Proposition 1. Let N = G(q) be a directed net. Then, the following properties hold:

i) If N is uniform, then N is a balanced net.

ii) N = G(q) is balanced if and only if 1TL(q) = 0 for all clusters (q, ~r).

Proof. All uniform nets are undirected and all undirected graphs are balanced. This proves part
i). The condition 1TL(q) = 0 means that the column sum of L(q) is zero for all columns. On the
other hand, the ith column sum of L(q) is equal to degin(vi)− degout(vi). Thus, 1

TL(q) = 0 if and
only if degin(vi)− degout(vi)0 for all nodes vi, i.e. G(q) is balanced.

The result in Proposition 1 can be used for attitude alignment in a flock of agents or any other
consensus problem for agents with dynamics

θ̇i = ωi (12)

using the agreement protocol

ωi =
∑

j∈Ni(q)

(θj − θi) (13)

with nonsmooth (or smooth) adjacency matrix A(q). Further information on agreement in networks
with switching information flow is available in [14].
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Figure 2: (a) A bump function ρ(z) and (b) ρ′(z).

3 Differentiability of State-Dependant Laplacians

In this section, we show that even for a small net with n = 2 nodes, the graph Laplacian L(q) is a
discontinuous function of q for nets. The following two adjacency matrices

A1 =

[

0 0
0 0

]

, A2 =

[

0 1
1 0

]

(14)

correspond to the cases where a12 = 0 and a12 = 1, respectively. The Laplacians associated with
a1 and A2 can be expressed as

L1 =

[

0 0
0 0

]

, L2 =

[

1 −1
−1 1

]

(15)

Clearly, all four elements of L(q) are discontinuous functions of q and the jumps occur at q satisfying

‖q2 − q1‖ = r.

This is certainly not a problem if one does not try to differentiate L(q(t)) as a function of time.
Later, we explain a smoothing process for L(q).

Consider a smooth bump function ρ(z) : R→ [0, 1] satisfying the following properties:

ρ(z) =







1, z ≤ k0

0, z ≥ 1
∈ (0, 1) otherwise.

, ρ′(z) =
dρ(z)

dz
=







0, z ≤ k0

0, z ≥ 1
≤ 0 otherwise.

(16)

where 0 < k0 < 1. We assume that all the bump functions in this work satisfy |ρ′(z)| ≤ Lρ (i.e.
have uniformly bounded derivative). An example of a bump function ρ(z/r) with k0 = 5

6 and
r = 12 is shown in Figure 2. Clearly, for all z ≤ k0r, ρ̃(z) = ρ(z/r) = 1.
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For a uniform cluster (q, r) with spherical shells a smooth adjacency matrix A(q) = [aij(q)] by
its elements

aij(q) := ρ(‖qj − qi‖/r) (17)

Similarly, for a uniform cluster (q, r, ϕ0) with conic shells, the elements of the adjacency matrix of
the directed net G(q) are defined as

aij(q) := ρ(‖xj − xi‖/r)ρ(|θj − θi|/ϕ0) (18)

The following lemma is used later to demonstrate the calculations required by the protocols
presented in this paper can be performed in a distributed manner.

Lemma 1. For all the nodes j 6∈ Ni that are not among the neighbors of node i, aij(q) ≡ 0 and
∇aij(q) ≡ 0.

Consider a cluster of n = 2 nodes with spherical shells. A smooth Laplacian of the net induced
by this net is given by

L(q) = ρ(‖qj − qi‖/r)
[

1 −1
−1 1

]

. (19)

4 Structural Nets/Flocks and their Realizations

Let us refer to all the nodes of a net/flock as α-agents. Roughly speaking, the objective of an
α-agent is to maintain a distance dα between itself and another α-agent provided that 0 < dα < r.
In the presence of obstacles, an α-agent tries to avoid collision to the obstacles and meanwhile try to
maintain a distance dα from its neighboring α-agents. However, since in many situations including
split/rejoin maneuver and squeezing maneuver these two objectives of an α-agents are conflicting
goals, an α-agent prioritize its tasks and gives the highest priority to collision-avoidance with
respect to all obstacles. Later, we formalize what we mean by prioritizing performing conflicting
tasks. First, we assume that temporarily there are no obstacles and formalize the task of keeping
a distance dα from other neighboring α-agents.

Remark 2. For future use, we need to distinguish between the agents in a net and other types of
agents that are due to the presence of obstacles or adversarial agents in an environment.

A net G(q) of α-agents is called an α-net. We refer to the pair (dα, r) with k0 = dα/r < 1 as an
indefinite structural α-net. A definite structural α-net is a triplet (n, dα, r) where n in an integer.

Note 1. Let (q, r) be a uniform cluster. By calling G(q) a “net”, we mean both G(q) as a “graph”
G = (V, E) = G(q) and G(q) as a“framework” (G, q) (i.e. a graph together with the coordinates of
its nodes) whichever makes sense in the context.

We say a net G(q) is a realization (or embedding) of the indefinite structural net (dα, r) in R2

if and only if the following condition is satisfied

‖qj − qi‖ = dα, ∀j ∈ Ni (20)

for all the α-agents vi ∈ V. Furthermore, if G(q) is a net with n nodes, then G(q) is referred to as
a realization (or embedding) of a definite structural net (n, dα, r). It is rather trivial to provide a
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Figure 3: Different realizations of a definite structural α-net (n, dα, r) with n = 4 nodes satisfying
dα < r <

√
2d:(a) an α-net (or quasi α-flock) with density δ0 = 1

4 , (b) a quasi α-flock with
density δ0 = 2

4 consisting of two flocks, (c) an α-flock with 4 edges, (d) a chained-form α-flock or
conformation with 3 edges, (e) a rigid conformation with 5 edges, and (f) a rigid α-flock with 5
edges (but different set of edges than part (e)).

realization of a definite (or an indefinite) structural net. A polygon with n vertices and equilateral
sides of length dα specifies a cluster that induces a cycle of length n as a (generic) realization of a
definite structural net (n, dα, r).

Let (q̃, r) be a uniform cluster that is obtained from cluster (q, r) via permutation of the 2
blocks of q. We call Ñ = G(q̃) a permutation of the net N = G(q).

Lemma 2. Let (n, dα, r) be a structural net with realization N = G(q). Then, any permutation of
Ñ of N is also a realization of (n, dα, r).

Proof. The proof follows from the definition.
Following the result of Lemma 2, let [G(q)] denote the similarity class of all graphs that are

obtained via permutation of the nodes of G(q). We call [G(q)] a conformation of the structural net
(n, dα, r).

Note 2. All the properties and names of a net is carried over to a flock if the net is weakly
connected. For example, an α-flock is a weakly connected α-net.

Example 1. In Figure 3, six different realizations of a structural α-net (n, dα, r) with n = 4 nodes
satisfying the condition 1 < r/dα <

√
2 are shown. In Figure 3(a), all nodes are mutually too far

from each other to form links (i.e. undirected edges). In Figure 3(b), two pairs of nodes (1, 2) and
(3, 4) are close enough to form links but the end points of these two links are too far from each
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other. In Figure 3(c), a cycle is formed via the 4 links that are formed. However, since the distance
between the pairs of nodes (1, 4) and (2, 3) is equal to

√
2 × dα > r, no links are formed between

these two pairs. In Figure 3(d) a chain (i.e. a path of length n going through all nodes) is shown as
the realization of (n, dα, r). All the nodes that are not connected in this chain are at least 2dα > r
apart from each other. Figure 3(e) shows a flexing of the non-rigid framework in Figure 3(c) where
nodes 1 and 4 get close enough to each other to form a link (see [12] for the definition of a flexing
and graph rigidity). Similarly, Figure 3(f) shows another flexing of the non-rigid framework in
Figure 3(c) so that nodes 2 and 3 get closer to each other and form a link. Both realizations in
Figures 3(e) and (f) belong to the same conformation of this structural net.

From Figure 3, it is evident that the generic realizations (or conformations) of structural nets
are not unique. This is the opposite of the local uniqueness property of the realizations of rigid
structured graphs [12]. Here is an problem for researchers interested in combinatorics:

Problem 1. Calculate f(n, k), the number of conformations of a definite structural α-net (n, dα, r)
with r = kdα for n ≥ 2 and k > 1.

Lemma 3. f(n, k) ≤ 2
n(n−1)

2 where f(n, k) is defined in Problem 1.

Proof. Let [G] be a conformation of the structural net in the question. In general, [G] has a subset
of the edges of a complete graph on n nodes.

Remark 3. One can show that for 1 < k <
√
2, f(n, k) takes the following values 1, 2, 4, 9, respec-

tively, for n = 1, 2, 3, 4. Clearly, 2
n(n−1)

2 is a conservative upper bound on f(n, k) which is by no
means tight for n > 2. It is not the intention of the authors to address problem 1.

5 Structural Energy of Nets and Flocks

We assume that each α-agent has a dynamics given by

agent dynamics:

{

q̇i = pi
ṗi = ui

(21)

Let us define the position/velocity of an α-net as the average position/velocity of all the α-agents
in the net, i.e.

q̄ = Ave(q), p̄ = Ave(p) (22)

with Ave(x) := 1
n
(
∑n

i=1 xi). Defining ū = Ave(u), the dynamics of the position and velocity of the
net can be expressed as

translational dynamics:

{

˙̄q = p̄
˙̄p = ū

(23)

with q̄, p̄, ū ∈ R2. Let 1 = (1, . . . , 1)T ∈ Rn denote the vector of ones and ⊗ denote the Kronecker
product of two matrices defined by

A⊗B = [aijB]

which means the ijth block of A⊗B is aijB. Define relative position, velocity, and control of agent
i as

q̃i = qi − q̄, p̃i = pi − p̄, ũi = ui − ū ∀i (24)
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Figure 4: The potential and action functions with parameters a = 1 and b = 5: (a) ψα(z) and (b)
φα(z).

Then, one can write
q̃ = q − 1⊗ q̄
p̃ = p− 1⊗ p̄
ũ = u− 1⊗ ū

(25)

and define the relative dynamics of the net as

{

˙̃q = p̃
˙̃p = ũ

(26)

Following the general idea of construction of potential/cost functions for structural graphs in [11,
12], we define the following Hamiltonian as the structural energy of an α-net (or α-flock):

Hs(q, p) = V (q) +Kr(p̃) (27)

where potential energy V (q) and relative kinetic energy Kr(p̃) of the α-net are defined as the
following

V (q) = 1
2

∑n
i=1 Vi(q),

Vi(q) =
∑

j∈Ni
ψα(‖qj − qi‖ − dα)

Kr(p̃) = 1
2

∑n
i=1 ‖p̃i‖2

(28)

The potential and action functions ψα(z) and φα(z) are defined as follows

ψα(z) =
(

a+b
2

)

(
√

1 + (z + c)2 −
√
1 + c2) +

(

a−b
2

)

z

φα(z) =
(

a+b
2

) z + c
√

1 + (z + c)2
+
(

a−b
2

) (29)

where b > a > 0 and c = (b−a)/2
√
ab > 0. Notice that φα(z) = dψα(z)/dz is a uniformly bounded

sigmoidal function. These functions are plotted in Figure 4. If a node has no neighbors, or Ni = ∅,
we set

Vi(q) = 0 (30)
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The following result shows that reducing Hs(q, p) to zero is meaningful for the purpose of
“flocking” (i.e. “to gather or move in large numbers” Longman Dictionary).

Proposition 2. (zero structural energy) Given the definition of the structural energy Hs(q, p) of a
net in (27), the following statements hold:

i) V (q) = 0 if and only if the net G(q) is a realization of the structural net (dα, r).

ii) If Kr(p̃) = 0 for all t ≥ t0, then the distance between any two α-agents remains constant for
all t ≥ t0. Moreover, the converse holds if a) the net is an undirected flock, b) no two agents
ever collide, and c) there exists no two agents with different velocities such that pj − pi is
orthogonal to qj − qi.

iii) If Kr(p̃) = 0 for all t ≥ t0, then the topology of the net G(q(t)) remains invariant for all
t ≥ t0.

Proof. Part i): We have

V (q) = 0 ⇐⇒ ψα(‖qj − qi‖ − dα) = 0, ∀j ∈ Ni, ∀i ⇐⇒ ‖qj − qi‖ = dα∀j ∈ Ni, ∀i

which means q is a realization of the structural net (dα, r).
Part ii): Kr(p̃) = 0 ⇐⇒ p̃i = 0 for all i. This means that for any two nodes i and j, the distance
‖qj − qi‖ is a constant because

d

dt
‖qj − qi‖2 = (pj − pi)T (qj − qi) = (p̃j − p̃i)T (qj − qi) = 0.

This property holds regardless of whether these two nodes are neighboring nodes or not. To
prove the converse, suppose that the net is an undirected flock (i.e. the graph G(q) is connected)
and the distance between any two nodes is constant but Kr(p̃) 6= 0. Thus, there exists a node
i∗ with p̃i∗ 6= 0. On the other hand, the distance between any other node j 6= i∗ and i∗ remains
constant for all t ≥ t0. Thus, we have

d

dt
‖qj − qi∗‖2 = (pj − pi∗)T (qj − qi∗) = (p̃j − p̃i∗)T (qj − qi∗) = 0.

But if (pj − pi∗) = (p̃j − p̃i∗) 6= 0, then it is not orthogonal to (qj − qi∗) based on part c) of ii) and
qj 6= qi∗ based on part b) of ii). Therefore, p̃j = p̃i∗ for all j 6= i∗. In other words, the relative
velocities of all agents are equal and the same as p̃∗i . By definition,

∑n
i=1 p̃i = 0. This implies

np̃i∗ = 0 or p̃i∗ = 0 which contradicts the assumption that p̃i∗ 6= 0 and the result follows.
Part iii): This follows from part ii) and the fact that G(q(t)) remains invariant for all t ≥ t0 if the
distance between any two nodes remains invariant for all t ≥ t0.

We summarize the results of Proposition 2 in the following:

Proposition 3. (zero structural energy) Suppose that the structural energy Hs(q(t), p(t)) is zero
for all t ≥ t0. Then, the following statements holds:
i) the net G(q(t)) has an invariant topology over [t0,∞) that is a realization of the structural net
(dα, r).
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ii) the distance between any two arbitrary α-agents in the α-net remains constant for all t ≥ t0.
iii) the velocity of all α-agents are equal.

Proof. Parts i) and ii) follow from Proposition 2. Part iii) is due to the fact that Hs(q, p) =⇒
Kr(p̃) = 0 =⇒ p̃i = 0 for all i. Thus, pi = p̄ for all i and the velocities of all nodes are equal.

Motivated by Proposition 3, we define “flocking” as follows.

Definition 2. (flocking) Given the protocol u = k(q, p), we say a dynamic net (G(q), q, p, u) is
structurally asymptotically stable if and only if both of the following conditions hold:

i) There exists a constant C > 0 such that Hs(q(t), p(t)) ≤ C for all t ≥ 0.

ii) limt→∞Hs(q(t), p(t)) = 0, i.e. for all ε > 0, there exits T = T (ε) > 0 such that

Hs(q(t), p(t)) < ε

for all t > T .

6 Smoothness and Nonsmooth Structural Energies

In general, for nets with nonsmooth spatial adjacency matrices A(q), the Hamiltonian Hs(q, p) is a
discontinuous function of (q, p). The Hamiltonian associated with an α-net G(q) can be expressed
as

Hs(q, p) =
∑

i,j,i<j

aij(q)ψα(‖qj − qi‖ − dα) +
1

2

n
∑

i=1

‖pi‖2 (31)

Suppose that a link {(i, j), j, i} is created in a net and no other links are created or lost. Then,
there will be a positive jump in the energy before and after the creation of this link that is given
by

∆Hs = H+
s (q, p)−H−s (q, p) = V +(q)− V −(q) = ψα(r − dα) =: h0 > 0 (32)

where H±s (q, p) denotes H(q(t), p(t))|t=t±0
and ‖qj(t0)− qi(t0)‖ = r, i.e. the link is created at time

t = t0. Similarly, V ±(q) = V (q(t±0 )). The loss of a link {(i, j), (j, i)} causes a negative jump in
energy that is equal to the constant h0 > 0. This is not the case for a net with smooth adjacency
matrix A(q) = [aij(q)] with aij(q) = ρ(‖qj − qi‖/r).
Example 2. The discontinuity of the potential function of a net with two α-agents is shown in
Figure 5(a). For two agents, the potential function takes the form

V (q) = a12(q)ψα(‖q2 − q1‖ − dα) (33)

Define a scalar edge deviation variable

η = ‖q2 − q1‖ − dα (34)

and plot the potential energy as a function of η. The condition ‖q2− q1‖ ≤ r reduces to η ≤ r−dα.
Figure 5(a) shows the plot of the potential between a pair of α-agents as a function of η. The
choice of parameters are dα = 10, r = 1.2dα, a = 1, b = 5, and c = |a− b|/2

√
ab. The discontinuity

occurs at η = r − dα = 2. Later, we explain the smoothing process of a nonsmooth potential to
obtain differentiable pair-wise potentials as shown in Figure 5(b).
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Figure 5: The pair-wise potential function between two α-agents: (a) the nonsmooth potential and
(b) the smooth potential.

7 Protocol for (α, α)-Interactions

A dynamic net is a net in which each node is a dynamical system. Consider the following (α, α)
protocol for the interaction between an α-agent and all of its neighboring α-agents (i.e. an (α, α)
interaction) in a dynamic α-net with a nonsmooth A(q):

u
(α,α,1)
i =

∑

j∈Ni

φα(‖qj − qi‖ − dα)nij + c1(pj − pi), c1 > 0 (35)

with nij = (qj − qi)/‖qj − qi‖.
For a dynamic α-net with smooth A(q), the protocol for an (α, α) interaction is as follows

u
(α,α,2)
i =

∑

j∈Ni
[aij(q)φα(‖qj − qi‖ − dα) + 1

r
ρ′(

‖qj−qi‖
r

)ψα(‖qj − qi‖ − dα)]nij
+

∑

j∈Ni
c1aij(q)(pj − pi)

(36)

Consider an approximation of protocol (36) given by

û
(α,α,2)
i =

∑

j∈Ni

aij(q)[φα(‖qj − qi‖ − dα)nij + c1(pj − pi)] (37)

which is the same as protocol (35) as k0 → 1− for the bump function ρ(z). Then, assuming
‖ρ′(z)‖ ≤ Lρ uniformly in z, the approximation error can be bounded as follows

n
∑

i=1

‖u(α,α,2)
i − û(α,α,2)

i ‖ ≤ 2Lρ

r
V (q). (38)

Thus, the approximation error remains relatively small if the net has a relatively low structural
potential.
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8 Reynolds Rules of Flocking and (α, α) Protocol

According to the first two protocols of Reynolds in [16], an agent goes towards the center of mass
of its neighbors and avoids going to the average position of its nearest neighbors if it is getting too
close to its neighbors. In the following, we establish that both of these rules follow as special cases
of protocol (35) with c1 = 0. Furthermore, there is a special case that has not been addressed (or
accounted for) by any of the three rules in Reynolds flocking work. Moreover, the third rule for
attitude alignment is the same as a consensus protocol given in equation (13).

Let us define the weights between agent i and its neighbors j ∈ Ni as

wij(q) =
φα(‖qj − qi‖ − dα)

‖qj − qi‖
, j ∈ Ni (39)

with the property that wij(q) > 0, if agents i and j are more than dα apart, otherwise wij(q) ≤ 0.
Particularly, if these two agents get too close to each other (or ε = ‖qj − qi‖ ¿ 1) agent i gets
pushed away by agent j with a force proportional to 1/ε ¿ 1, i.e. agent i cannot get too close to

agent j. Now, let us rewrite the approximate u
(α,α,1)
i with zero damping terms (or c1 = 0) as

ûi =
∑

j∈Ni

wij(q)(qj − qi) =
∑

j∈Ni

wij(q)qj − (
∑

j∈Ni

wij)qi (40)

Set Si(q) =
∑

j∈Ni
wij(q) and define the vector of weighted average of the position of the neighbors

of agent i as

qavei =
1

Si(q)





∑

j∈Ni

wij(q)qj



 (41)

whenever Si(q) 6= 0. We call Si(q) the neighbors vote which quantifies how all spatial neighbors of
agents i “think” whether agent i is close, far or neutral with respect to its neighbors. There are
three possible cases:

i) Si(q) > 0: In this case the neighbors vote is positive and based on

ûi = Si(q)(q
ave
i − qi) ∝ (qavei − qi) (42)

implies agent i moves towards qavei (because Si(q) > 0).

ii) Si(q) > 0: In this case the neighbors vote is negative (or the neighbors all think that agent i
is far from them). Based on

ûi = Si(q)(q
ave
i − qi) ∝ −(qavei − qi) (43)

we conclude that in this case agent i moves away from qavei .

iii) Si(q) > 0: In this case the neighbors total vote is zero, i.e. the neighbors are divided into
three groups: a) neighbors N+

i = {j ∈ Ni : wij(q) > 0} whose votes are positive and their
total vote adds up to S+

i (q) =
∑

j∈N+
i
wij(q), b) neighbors N

−
i = {j ∈ Ni : wij(q) > 0} whose

votes are negative and their total vote adds up to S−i (q) =
∑

j∈N−i
wij(q), and c) neighbors
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N0
i = {j ∈ Ni : wij(q) = 0} whose votes are zero (i.e. they are exactly dα away from agent

i) and their total vote adds up to zero, because of S0
i (q) =

∑

j∈N0
i
wij(q)=0. Notice that

S−i (q) = −S+
i (q) due to Si(q) = S−i (q) + S0

i (q) + S+
i (q) = 0. Let us define the following two

weighted averages

q
ave(+)
i =

1

S+
i (q)





∑

j∈N+
i

wij(q)qj



 , q
ave(−)
i =

1

S−i (q)





∑

j∈N−i

wij(q)qj



 (44)

In this case, we get

ûi = S+
i (q)(q

ave(+)
i − qi) + S−i (q)(q

ave(−)
i − qi)

= S+
i (q)[(q

ave(+)
i − qi)− (q

ave(−)
i − qi)]

= S+
i (q)(q

ave(+)
i − qave(−)

i )

(45)

which means
ûi ∝ (q

ave(+)
i − qave(−)

i ). (46)

Thus, the protocol for case iii) is as follows: agent i ignores all agents that had neutral

(or zero) votes and goes towards q
ave(+)
i − qave(−)

i , i.e. the difference between the weighted
averages of all who voted positive and all who voted negative. For the case that there are
two groups that have voted equally in opposite directions, surprisingly protocol (46) cannot
be found among the three flocking rules of Reynolds in [16].

Finally, protocol (13) (viewed as the third rule), can be obtained from a scalar version of
protocol (35) with c1 = 1 and pi replaced by θi. In conclusion, all three flocking rules of Reynolds
are “hidden” in the (α, α) protocol (or (35)) with a “minor glitch” that c1 should not be set to zero
as implied by the first two flocking rules of Reynolds.

9 Flocking by Structural Energy Dissipation

Here are two results on dissipation of nonsmooth and smooth structural energy of nets for the
purpose of flocking:

Proposition 4. Consider a uniform α-net with protocol (35). Let t0, t1, t2, . . . be an increasing
sequence of switching times of the topology of the net G(q(t)) over the interval [t0,∞) so that at

t = tk+1, k ≥ 0 at least one link is created or lost in the undirected net Gk = G(q(tk)). Let H
(k)
s (q, p)

be the structural energy of the net Gk with discontinuous adjacency elements aij(q) ∈ {0, 1}. Then,
H

(k)
s (q, p) is a weak Lyapunov function for the closed-loop net dynamics over the interval [tk, tk+1),

i.e. H
(k)
s (q, p) ≤ 0 for all t ∈ [tk, tk+1). Moreover, if the switching sequence is finite and G(q(tm))

is a flock, then asymptotically all α-agents asymptotically move with the same velocity and their
inter-agent distances are preserved.

Proof. Given that the topology of the net is invariant for all t ∈ [tk, tk+1), the (nonsmooth)
structural energy of the net can be expressed as

H(k)
s (q, p) = V (q) +K(p) =

1

2

n
∑

i=1

∑

j∈Ni

ψα(‖qj − qi‖ − dα) +
1

2

n
∑

i=1

‖pi‖2 (47)
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where Ni = Ni(q(tk)) is invariant in time over [tk, tk+1) and thus H
(k)
s (q, p) is differentiable with

respect to (q, p). This is because no new links are created in the net and no existing links are lost
(i.e. no energy jumps exist). Furthermore, if G(q) is a flock, then by definition G(q) a connected
undirected graph satisfying rank(L(q)) = n−1 with n = |G(q)| and L(q) is the Laplacian associated

with the flock G(q). Given ui = u
(α,α,1)
i , we have

∑

i ui = 0 and thus p̄ = (
∑n

i=1 pi)/n is an invariant
quantity, i.e. ˙̄p = 0. Define p̃i = pi− p̄ and notice that

∑

p̄i = 0 and ˙̃pi = ṗi = ui. By differentiating

H
(k)
s (q, p) with respect to time, we get

Ḣ
(k)
s (q, p) =

∑n
i=1(∇qiV (q)pi + uTi pi)

= c1
∑n

i=1

∑

j∈Ni
pTi (pj − pi)

= c1
2

∑

i,j,i<j p
T
i (pj − pi) + pTj (pi − pj)

= − c1
2

∑

i,j,i<j(pj − pi)T (pj − pi)
= − c1

2

∑

i,j,i<j ‖pj − pi‖2 ≤ 0

= − c1
2

∑

i,j,i<j ‖p̃j − p̃i‖2 ≤ 0

(48)

which means H
(k)
s (q, p) is a weak Lyapunov function. Now, suppose the topology of the net does

not change after t = tm. This means H
(m)
s (q, p) is a weak Lyapunov function for all t ≥ tm. On

the other hand, Ḣ
(m)
s = 0 ⇐⇒ p̃i = p̃j for all edges (i, j) of the net Gm. But Gm is a flock and

thus connected. Therefore, p̃i = p̃j for all nodes i, j, i 6= j. Since
∑

i p̃i = 0 and all the pi’s are

equal, one concludes that p̃i = 0 for all i. In other words, Ḣ
(m)
s = 0 implies pi = p̄ = Ave(p(t0))

for all i. Since all relative inter-agent velocities are zero, given Ḣ
(m)
s = 0 u(α,α,1) = −∇V (q) = 0.

In other words, based on LaSalle’s invariance principle, (q(t), p(t)) asymptotically converges to a
relative equilibrium (q∗, p∗) with p∗ = 1⊗ p̄ and q∗ in the set of local minima of V (q). Since p̃i = 0
for all nodes, we get

d

dt
‖q∗j − q∗i ‖2 = (p∗j − p∗i )T (q∗j − q∗i ) = (p̃∗j − p̃∗i )T (q∗j − q∗i ) = 0,

and the length of all existing edges are asymptotically invariant.

Remark 4. At this point, the authors are unaware of the quantitative sufficient conditions that
guarantee the switching time sequence in Proposition 4 remains finite. Our observation from
experimental results demonstrates that under the conditions in Proposition 4, the switching time

sequence is always finite due to the fact that H
(k)
s (q(tk), p(tk)) is a decreasing sequence. The

complete analysis of this case including finding appropriate conditions that guarantee the finiteness
of the switching times is the subject of ongoing research. This scenario certainly never occurs for
the case where the structural energy is a smooth function of (q, p) (see Proposition 5).

Proposition 5. Consider an α-net with a smooth structural energy Hs(q, p). Given the protocol
in (36), Hs(q, p) is a weak Lyapunov function for the closed-loop net dynamics, i.e. Ḣ(q, p) ≤ 0
for all t ≥ t0. Furthermore, if there exists a time T > t0 such that the net G(q(t)) induced by the
cluster (q(t), r) with open spherical neighborhoods is a flock for all t ≥ T , then asymptotically all
the α-agents move with the same velocity and their inter-agent distances are preserved.

Proof. The proof is rather similar to the proof of Proposition 4 and will not be repeated. The only
major difference is that the damping forced in (36) have positive nonlinear coefficients c1aij(q) and
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as a result, we get

Ḣs(q, p) = −
c1
2

∑

i,j,i<j

aij(q)‖p̃j − p̃i‖2

If the graph G(q(t)) induced by (q(t), r) with open spherical neighborhood is connected for all
t > T . Then, for the edges of G(q(t)), aij(q) > 0 and thus p̃j = p̃i. Since G(q(t)) is connected,
p̃j = p̃i for all nodes i, j, i 6= j in the net. This implies p̃i = 0 for all i. Therefore, asymptotically
all α-agents move with equal velocities and the inter-agent distances are preserved.

10 Quasi-Realizations and Defect Factors

We define the defect function (or factor) associated with a net G(q) with structural potential V (q)
as follows:

µ = µ(G(q)) = V (q) + ‖∇V (q)‖2 ≥ 0 (49)

We also define the normalized defect factor of G(q) as

µn = µn(G(q)) =
1

|E(G(q))|
(

V (q) + ‖∇V (q)‖2
)

(50)

where |E(G(q))| denotes the total number of edges in the net G(q). From a computational point
of view, the normalized defect factor is more meaningful. Since, for a large-scale net with many
agents, µn stays relatively small if a small subgraph of the net is not a realization of the structural
net (dα, r) but the rest of the net is a valid realization of (dα, r). The following lemma demonstrates
the consistency of the definition of the defect factor of a realization of a structural net.

Lemma 4. An α-net G(q) is a realization of a structural net (dα, r) if and only if G(q) has a zero
defect factor, i.e. µ(G(q)) = 0.

Proof. The proof follows from the definition of the defect factor of a net.
Any α-net G(q) that is a realization of a structural net (dα, r), has a zero defect factor. This

is due to the fact that for any realization of (dα, r), V (q) = 0 and ∇(q) = 0. However, in presence
of external forces, α-flocks (or α-nets) do not usually converge to a realization of a structural net
(dα, r). Instead, flocks converge to what is rather “close” to a realization of (dα, r). To quantify
the quality of similarity of the limiting formation of a flock to a realization of (dα, r), we need to
define the notion of quasi-realizations of a structural net (dα, r) and measure its “perfectness” (in
terms of satisfying all algebraic inter-agent distance-based constraints imposed by (dα, r)) using
the defect factor.

Definition 3. (quasi-realizations) We say G(q) induced by the cluster (q, r) is a quasi-realization
(or quasi-embedding) of the structural net (dα, r) with the defect factor µ = µ(G(q)).

In both limiting cases in Propositions 4 and 5, the flock converges to a formation (i.e. framework
(G(q), q)) in which asymptotically the inter-agent distances are preserved and the defect factor of
G(q) is a constant µ = µ∗. If this constant defect factor µ∗ is zero, then the flock converges to
a realization of the structural net (dα, r). Otherwise, it converges to a quasi-realization of the
structural net (dα, r) that is not a flexing of any realization of (dα, r) (recall that flexings preserve
edge length of frameworks [12]).
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11 A Separation Principle for Flocking

One notices that in both (α, α)-interaction protocols given in equations (35) and (36),
∑n

i=1 ui(α, α, k) =
0 for k = 1, 2. This guarantees the invariance of p̄ = (

∑n
i=1 pi)/n in time. Motivated by this simple

fact, assume each α-agent uses the following protocol

ui = uαi + ū, (51)

with the property that
∑

i u
α
i = 0. Let Hs(q, p) be the smooth structural energy associated with

the net G(q). Then, Ḣs(q, p) does not depend on the choice of ū.
Following the line of construction of tracking (or navigation) integrated cost functions in [10],

we define the translational energy of the net (or group) G(q) as

Htr(q̄, p̄) = Vtr(q̄) +
1

2
‖p̄− pd‖2 (52)

where q̄, p̄ ∈ R2, Vtr(q̄) =
√

1 + ‖q̄ − qd‖2 − 1, and (qd, pd) denotes a desired destination. If pd = 0,
we call this destination a sink. If Vtr(q) ≡ 0, then pd is called a desired group velocity. Our objective
is to combine Hs and Htr to perform both structural stabilization and tracking. In the following,
the term CLF stands for a control Lyapunov function.

Proposition 6. (flocking separation principle) Let H(q, p) = Hs(q, p) + Htr(q̄, p̄) where Hs(q, p)
and Htr(q̄, p̄) are smooth structural energy and tracking energy of the dynamic net (G(q), q, p, u)
with protocol 51, respectively. Then, the following separation principles hold:

i) Ḣs(q, p) does not depend on the choice of ū and Ḣs(q, p) is a weak CLF for the dynamic net,
i.e. there exists a protocol uα such that Ḣs(q, p) ≤ 0, ∀t ≥ 0.

ii) Ḣtr(q̄, p̄) does not depend on the choice of uα and Ḣtr(q̄, p̄) is a weak CLF for the average
dynamics of the net for both cases of a desired sink and group velocity, i.e. there exists a
protocol ū such that Ḣtr(q̄, p̄) ≤ 0, ∀t ≥ 0.

Furthermore, H(q, p) is a weak CLF for the dynamic net.

Proof. Notice that ˙̄q = p̄ and ˙̄p = ū. To prove i), we explicitly calculate Ḣs(q, p) with Ḣs(q, p) =
V (q) + 1

2

∑

i ‖p̃i‖2 as follows

Ḣs(q, p) = ∇V (q) · p+
∑

i

p̃i(ui − ū) = ∇V (q) · p+
∑

i

p̃iu
α
i ≤ 0, ∀t ≥ 0 (53)

The last inequality holds with uα = u(α,α,2) based on Proposition 5. Similarly, given Htr(q̄, p̄) with
pd = 0 for the case of a desired sink, we obtain

Ḣtr(q̄, p̄) = ∇Vtr(q̄) · p̄+ p̄T · ū = −c2p̄Tφ(p̄) ≤ 0, c2 > 0 (54)

with the bounded state feedback

ū = k
(1)
tr (q̄, p̄) := −∇Vtr(q̄)− c2φ(p̄) = −φ(q̄ − qd)− c2φ(p̄), c2 > 0 (55)
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where φ(z) = z/
√

1 + ‖z‖2 in a uniformly bounded function φ : R2 → R2 satisfying zTφ(z) > 0 for
all z 6= 0. Clearly, Ḣtr(q̄, p̄) does not depend on the choice of uα provided that

∑

i u
α
i = 0. For the

case of a desired group velocity pd 6= 0 and Vtr(q) ≡ 0, we have Htr(q̄, p̄ =
1
2‖p− pd‖2 and thus

Ḣtr(q̄, p̄) = ∇Vtr(q̄) · p̄+ (p̄− pd)T · ū = −c2(p̄− pd)Tφ(p̄− pd) < 0, ∀p̄ 6= pd (56)

with the bounded velocity feedback

ū = k
(2)
tr (p̄) := −c2φ(p̄− pd), c2 > 0 (57)

Notice that ‖k(1)
tr (q̄, p̄)‖ ≤ 1+ c2 and ‖k(2)

tr (p̄)‖ ≤ c2. Finally, based on parts i) and ii), according to

Ḣ(q, p) = Ḣs(q, p) + Ḣtr(q̄, p̄) ≤ 0

given that uα = u(α,α,2)) and ū = kjtr with j = 1, 2, Ḣ(q, p) can be rendered non-positive for all
t ≥ 0.

Let ū = ktr(q̄, p̄) denote the translational controller of the net. Each α-agent can calculate
uαi in a distributed manner. But calculation of ktr(q̄, p̄) requires the knowledge of q̄ and p̄ which
are not immediately available to each agent. Either this information can be communicated to the
agent via a coordinator, or all agents need to solve average-consensus problems [15] in a distributed
fashion. The former approach is clearly a centralized algorithm which is highly undesirable for
flocking where large number of agents move together due to its high communication cost. The
second approach is feasible. Here, we would like to discuss a third approach that is distributed.
Suppose each agent uses the following protocol

ui = uαi + fi, fi = −qi − c2pi, c2 > 0 (58)

to solve flocking in the presence of a sink at the origin qd = 0 with pd = 0. Notice that fi can be
calculated by each agent without any need for communication with other agents. One can rewrite
protocol (58) as

ui = uαi − q̃i − c2p̃i + ū, (59)

with the PD controller ū− q̄− c2p̄. Keep in mind that (59) will be used for the purpose of analysis
and not calculation of the input of agent i. In lack of uα (i.e. if no edges ever exists between any
two agents), ui = −q̃i − c2p̃i and thus Ha(q̃, p̃) defined by

Ha(q̃, p̃) = ‖q̃‖2 + ‖p̃‖2 (60)

is a valid Lyapunov function for the system and all agents will converge to the center of mass
(CM) of the net at q̃ = 0, i.e. (q̃, p̃) = 0 is globally asymptotically stable. However, if all agents
converge to the origin, after some finite time T > 0, all agents enter a closed ball B(q̄, r0) where
0 < r0 < r/2. Thus, any two agents become neighbor of each other and the induced net G(q) is
flock and a complete undirected graph). Therefore, in presence of the (α, α)-interaction forces (or
uα), convergence of all the agents to the origin is in contradiction with reduction of the structural
energy of the net. Since when all agents coincide Hs(q, p) takes its global maximum. In other
words, in presence of both uαi and fi, the center of mass of the flock exponentially converges to
zero and all agents “try to converge to the CM of the net” and “keep a distance dα from their
neighbors”. The tasks in quotes are conflicting as described earlier. As a result, we observe that
the net asymptotically converges to a flock with its CM at the origin and after some finite time
T > 0, it remains a flock. At this point, we are unable to prove that our observation formally holds.
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12 Obstacle Avoidance and Notions of β-Agents and γ-Agents

In this section, we present our approach to multiple fix obstacle avoidance for a net/flock of α-
agents. We postpone stating any formal results regarding multiple obstacle avoidance by groups
of agents to upcoming papers. But we give the main protocols that combine the results from the
preceding sections on (α, α)-interaction protocols and the flocking separation principle.

For a net of α-agents we consider the task of moving with a desired group velocity pd 6= 0 along
the desired direction nd = pd/‖pd‖ that is a unit vector while avoiding collision to finite number
of fix obstacles. The main assumption on the obstacles is that they are convex and compact sets
and their boundaries are closed differentiable Jordan curves in R2. For the sake of simplicity of
representation and calculations, we only treat the case in which there exist m spherical obstacles
(or closed balls) Ok = B(bk, lk) for k = 1, . . . ,m. We define the distance between an α-agent i and
Ok as d(qi, Ok) = minx∈Ok

‖x− qi‖ and define the projection of qi on the boundary of Ok as

q̂ki = argminx∈Ok
‖x− qi‖ (61)

The existence and uniqueness of q̂ki is due to convexity and compactness properties of Ok. We refer
to an agent with position q̂ik that is the projection of an α-agent on an obstacle Ok as a β-agent
provided that d(qi, Ok) ≤ r0 (Here, we assume r0 = r/2). An example of a β-agent is agent 2 in
Figure 6. If there exists an α-agent near Ok, we call Ok an active obstacle. Otherwise, we call it
an inactive obstacle. We define a bipartite graph Knβ ,nβ with nβ edges that connect each α-agent
to its corresponding β-agent. The total number of β-agents is denoted by nβ. If all the obstacle
are inactive , or nβ = 0, we set Knβ ,nβ = (∅, ∅).

In Figure 6, agent 3 is called a γ-agent. A γ-agent is an agent with a fix position at xk = bk+λdnd
where λd ∈ (0, 1] is a constant. An α-agent views a β-agent as a repelling point on the obstacle and
treats a γ-agent as another α-agent that only exists if the corresponding β-agent exists. Both β and
γ agents associated with an α-agent vi adjacent to an obstacle Ok “disappear” as soon as no points
on the boundary of Ok belongs to the shell of node vi. In other words, the existence of β-agents
and α-agents is conditional. The presence of a γ-agent is necessary to steer an α-agent around
an obstacle. Otherwise, an α-agent vi might stay behind or near a distance r0 from an obstacle
for a relatively long time due to “peer panic” by other α-agents vj that are on the way of agent
vi and hold vi back. The role of a γ-agent is crucial in both split/rejoin maneuver and squeezing
maneuver. The latter one occurs in the escape panic phenomenon [6], i.e. cases where many agents
(or vehicles) need to pass through a narrow pathway between two obstacles (or mountains). In
the case of performing a squeezing maneuver between two nearby obstacles, both obstacles might
become active with respect to a single α-agent. In other words, there could be multiple β and γ
agents that correspond to a given α-agent.

Let (qi, pi), (q̂
k
i , p̂

k
i ), and (xi, 0) denote the pairs of (position,velocity) associated with an α-

agent, β-agent, and γ-agent, respectively. Then the protocol used by the α-agent can be expressed
as follows:

uOk

i = c3ρ(‖q̂ki −qi‖/r0)[φβ(q̂ki −qi‖−dβ)n(q̂ki −qi)+φγ(‖xi−qi‖−dγ)n(xi−qi)+c4(p̂ki −pi)−c4pi]
(62)

wherec3, c4 > 0, n(z) = z/‖z‖ for z 6= 0, φβ(z) is a repelling force, and φγ(z) = φα(z). The velocity
of a β-agent p̂ki on the boundary of obstacle Ok can be calculated as follows. The position of the
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Figure 6: The interaction between an α-agent (agent 1) and the effect of an obstacle represented
by a β-agent (agent 2) and a γ-agent (agent 3).

β-agent q̂ki can be expressed as
q̂ki = sqi + (1− s)bk (63)

with s = lk/(lk + ‖q̂i − qi‖). Given the assumption ḃk = 0, one can show that

p̂ki = spi − lk(ṡ/s)n(q̂ki − qi) (64)

where

ṡ =
lk[p

T
i · n(q̂ki − qi)]

(lk + ‖q̂i − qi‖)2
. (65)

Remark 5. Apparently, the assumption ḃk plays no crucial role in the derivation of p̂ki and can be
eliminated. This allows dealing with multiple moving obstacles. The only reason that this case has
not been considered in this work is that the simulation results for the moving obstacle case are not
currently available.

By setting c3 À 1 relatively large, one can make obstacle avoidance the task with the highest
priority. The second priority for an α-agent can be given to reaching a desired group velocity.
Finally, the third priority can be given to keeping a distance dα from other α-agents. The overall
protocol used by an α-agent is given by

ui = u
(α,α,2)
i +

∑

Ok active for i

uOk

i + utr (66)

where the first term contains all (α, α) interaction forces, the second term contains all (α, β) and
(α, γ) interaction forces, and utr is the translational controller.
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13 Simulation Results

In this section, we present the simulation results for a group of n = 100 agents that use protocol
66. The first task is to reach a desired group velocity pd = (0, 10) and maintain an inter-agent
distance of dα = 7 with r = 1.2dα while avoiding m = 6 obstacles that their locations and radii is
given by the 3timesm matrix

Mobs =





100 120 150 160 200 200
20 40 40 0 −5 50
10 2 5 3 20 20



 (67)

each row of the obstacle matrix Mobs is a vector (bi, li)
T ∈ R2×R>0 that contains the position and

radius of the ith obstacle for i = 1, . . . , 6. We use a set of n = 100 random initial positions and zero
initial velocities as the initial condition of the net dynamics. The snapshots of flocking for the first
task is shown in Figures 7 and 8. The only difference in these two figures is that the edges of the
net are drawn in Figure 8 and omitted in Figure 7. Apparently, the location of obstacles are chosen
such that split/rejoin maneuvers have to be performed upon reaching all obstacles. Furthermore,
notice that O5 and O6 are within a distance d56 = 25 from each other. Thus, it is impossible for
4 α-agents to pass between these two obstacles at the same time while their positions projected
along pd are equal. This is due to the fact that 3dα+2r0 > 4dα > 25. Thus, the position of the net
that is vertically between O5 and O6 needs to squeeze through the space between the two obstacles.
This squeezing maneuver can be seen in Figures 7 and 8. We define the heading angle of each agent
as the angle of the agent’s velocity pi, if pi 6= 0, and zero otherwise. Based on Figure 8, there are
very few agents that are not connected to the most populated flock and the density of the limiting
flock is approximately equal to δ0 = 0.94 (only 6 agents are not part of the main flock). Clearly,
all agents (approximately) move with the same velocity and heading angles.

The second task is that the group of n = 100 α-agents start from random initial positions with
zero initial velocities in lack of any obstacles and presence of a sink at qd = (30, 30). The α-agent
need to maintain an inter-agent distance equal to dα = 7 with r = 1.2dα (just as the first task). In
this case, we expect that a net that is initially disconnected, after going through a finite number
of switching events, asymptotically converges to a flock with an invariant topology. In general, the
limiting flock is a quasi-realization of the structural net (dα, r). Our simulation results for this case
are shown in Figure 9. Apparently, the limiting conformation of the net in this case is extremely
close to an embedding of (dα, r), i.e. it has a relatively low normalized defect factor. The final
conformation in this case happens to be a planar graph that dominantly has equilateral triangular
faces (only six faces are non-triangular). The net becomes connected long before converging to a
planar conformation that is highly triangulated. In is worth mentioning that the limiting flock is a
rigid graph (the proof relies on sequential edge attachment between rigid subgraphs [12]).

14 Conclusion

In this work, we provided a graph theoretical framework that enables modeling the flocking of
dynamic agents in presence of multiple obstacles. We presented formal definitions of nets and
flocks as graphs that are spatially induced by a set of node configurations (i.e. clusters). The
realization (or embedding) issues of structural nets and flocks were discussed. This discussion led
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to task representation and execution for a network of agents called α-agents. The primary α-agent
was to maintain a certain distance from other α-agents in their spatial neighborhood (or shell).
Flocking was defined as achieving structural stabilization and tracking at the same time. It was
shown that all three flocking rules of Reynolds can be obtained from the single protocol for (α, α)
interactions. In addition, we discussed certain cases that are not accounted for by Reynolds three
flocking rules.

We also discussed flocking in the presence of multiple fixed obstacles. To perform this task,
two other types of agents called β-agents and γ-agents were introduced. These agents are located
on the boundary and inside of an obstacle. The existence of β and γ agents is contingent to
the presence of an α-agent in a neighborhood of the corresponding obstacle. This framework
enables us to address split/rejoin and squeezing maneuvers for nets and flocks of dynamic agents
that communicate with each other. The presence of obstacles might force the members of a net
(or flock) to split into more flocks and lead to loss of communication links. The loss of existing
links might lead to disconnectivity of the network and change of the topology of the network. In
general, flocking in presence of obstacles leads to solving decision making problems for agents with
limited information in a network with switching topology. Analysis of the protocols for this case
is rather challenging and a number of problems including conformation of a connected network
from an initially disconnected mobile network remain open. We provided simulation results that
demonstrate flocking in presence of six obstacles and conformation of connected networks. The
simulation results were consistent with the predictions suggested by the theoretical results in our
work.
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Figure 7: Consecutive snapshots of flocking for a cluster of n = 100 agents in presence of m = 6
obstacles and split/rejoin/squeezing maneuvers.
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Figure 8: Consecutive snapshots of flocking for a net of n = 100 agents in presence of m = 6
obstacles and split/rejoin/squeezing maneuvers.
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Figure 9: Consecutive snapshots of conformation of a flock from a net for a cluster of n = 100
agents in presence of a sink at qd = (30, 30)T .
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