
Computation and Control

Jason Hickey
Richard Murray

Caltech

Eric Klavins

Adam Granicz
Cristian Tapus
Justin Smith
Xin Yu
Nathan Gray



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 2

Computation and reaction

• A reactive system is a system that describes how 
to react to events
– “moving left” “steer right”
– “slowing down” “increase thrust”

• Algorithms are a set of rules to apply repeatedly
– while(i != 0) { k *= i; i-- }



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 3

Rewriting systems

• A rewriting system us a language L, together with
a set of rules si → ti for some si, ti ∈ L.

• si is called a redex (a pattern or set of terms)

• ti is called a contractum

• A computation is a sequence of rewrite applica-
tions e1 → e2 → ·· · → en



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 4

Lambda calculus (canonical example)

Language L:

e ::= v variables
| e1 e2 function application
| λv.e function abstraction

Rewrites:

(λv.e1) e2 →β e1[e2/v]

(λx.λy.x +y) 1 2
→ (λy.1+y) 2
→ 1+ 2
→ 3



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 5

Example: vehicle formation/assembly

• Assemble a set of vehicle/parts into a formation



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 6

Formation rules

1

1

2

2

2

1

2

3

3

3

3

3

3

3

3

3

6

6

6

6

6

6



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 7

Rewriting rules

• Rule classes
– Progress: getting closer to a goal
– Dynamics
– Adversaries: destructive actions

• Technical questions
– Determinism (Church-Rosser)
– Progress (liveness)
– Termination
– Locality



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 8

Determinism (Church-Rosser)

• Does the order of 
evaluation matter?

• Often the answer is 
no
– There may be reasons 

to have more than one 
result

• Proofs are quite 
difficult



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 9

Deadlock/progress

• Is it possible to build a 
partial, final, formation?
– Show that: if a formation is 

not final, at least one rule is 
always enabled

• Easy to prevent
– Add more rules to make 

progress from partial 
formations

– Add “undo” to reverse bogus 
computations



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 10

Termination

• Does every reduction 
sequence terminate?

• Termination proofs 
require the formation 
of a metric
– Often infeasible, if not it 

can be extremely hard
– In many cases it doesn’t 

matter

1 2 2

3 3 3

1 2 2

3 3 3



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 11

Locality

• Is it possible to make 
decisions locally?
– Locality is determined 

by the scope of the 
rewrite

• Methods
– Optimize the program 

to limit the scope
– Introduce 

communication

2

2

1

3

3

3



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 12

Languages

• Rewriting languages
– Determinism(*)
– Termination(*)
– Progress
– Locality

– (*) hard to prove, not 
always useful

UNITY-like languages:

G1 → P1 decisions and actions
G2 → P2

...
Gn → Pn
Gc → Pc physics, control
Ga → Pa adversaries



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 13

Logical Programming Environments

•The LPE is a framework 
for supporting formal 
design

– Type theory is a common 
language for specification 
and synthesis

– Enables collaborative
development of verified 
control libraries and 
design automation tools

– The compiler is an 
assistant, and the link to 
executable codeRuntime Platform MVWT

Control compiler/
theorem prover

Development
automation and

heuristics

Control
Libraries

Language
Support

Application development

L1 L2



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 14

Logical Programming Environments

(planned)

Definitions of languages,
syntax, rewrite rules

Formal reasoning using
term rewriting and custom logics

Machine
code

MetaPRL

Phobos DRL

Formal, digital
Library

Mojave
Compiler



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 15

Phobos

• Phobos is a 
front-end for 
domain-specific 
languages
– Programs are 

translated to 
one of a set of 
“standard” 
languages

– or to a theorem 
prover

ML C Pascal

Backend

Formal IR MetaPRL

Java

Phobos



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 16

Language definitions

• Each language has a lexicon

• And a grammar

Tokens -longest {
NUM = "[0-9]+" { __token__[p:s]{'pos} -> num[p:s]{'pos} }
...
* SPACE = " " {}

}

%left PLUS MINUS
%left TIMES DIV
%left LPAREN RPAREN

Grammar -start exp {
exp ::= NUM { num[p:s]{'pos} -> exp{num[p:s]; 'pos}}

| ID { ... }
| exp PLUS exp { 'e1 PLUS 'e2 -> exp{sum{'e1; 'e2};

union_exp_pos{'e1; 'e2} }
...

}



Computing/Control
http://mojave.cs.caltech.edu June 4, 2002 17

Logical Programming Environments

•Parts
– Phobos language support 

complete
– DRL language design and 

control primitives
– Code compiler complete

Runtime Platform MVWT

Control compiler/
theorem prover

Development
automation and

heuristics

Control
Libraries

Language
Support

Application development

L1 L2


