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Computation and reaction

• A reactive system is a system that describes how 
to react to events
– “moving left” “steer right”
– “slowing down” “increase thrust”

• Algorithms are a set of rules to apply repeatedly
– while(i != 0) { k *= i; i-- }
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Rewriting systems

• A rewriting system us a language L, together with
a set of rules si → ti for some si, ti ∈ L.

• si is called a redex (a pattern or set of terms)

• ti is called a contractum

• A computation is a sequence of rewrite applica-
tions e1 → e2 → ·· · → en
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Lambda calculus (canonical example)

Language L:

e ::= v variables
| e1 e2 function application
| λv.e function abstraction

Rewrites:

(λv.e1) e2 →β e1[e2/v]

(λx.λy.x +y) 1 2
→ (λy.1+y) 2
→ 1+ 2
→ 3
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Example: vehicle formation/assembly

• Assemble a set of vehicle/parts into a formation
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Formation rules
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Rewriting rules

• Rule classes
– Progress: getting closer to a goal
– Dynamics
– Adversaries: destructive actions

• Technical questions
– Determinism (Church-Rosser)
– Progress (liveness)
– Termination
– Locality
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Determinism (Church-Rosser)

• Does the order of 
evaluation matter?

• Often the answer is 
no
– There may be reasons 

to have more than one 
result

• Proofs are quite 
difficult
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Deadlock/progress

• Is it possible to build a 
partial, final, formation?
– Show that: if a formation is 

not final, at least one rule is 
always enabled

• Easy to prevent
– Add more rules to make 

progress from partial 
formations

– Add “undo” to reverse bogus 
computations
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Termination

• Does every reduction 
sequence terminate?

• Termination proofs 
require the formation 
of a metric
– Often infeasible, if not it 

can be extremely hard
– In many cases it doesn’t 

matter
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Locality

• Is it possible to make 
decisions locally?
– Locality is determined 

by the scope of the 
rewrite

• Methods
– Optimize the program 

to limit the scope
– Introduce 

communication
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Languages

• Rewriting languages
– Determinism(*)
– Termination(*)
– Progress
– Locality

– (*) hard to prove, not 
always useful

UNITY-like languages:

G1 → P1 decisions and actions
G2 → P2

...
Gn → Pn
Gc → Pc physics, control
Ga → Pa adversaries
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Logical Programming Environments

•The LPE is a framework 
for supporting formal 
design

– Type theory is a common 
language for specification 
and synthesis

– Enables collaborative
development of verified 
control libraries and 
design automation tools

– The compiler is an 
assistant, and the link to 
executable codeRuntime Platform MVWT

Control compiler/
theorem prover

Development
automation and

heuristics

Control
Libraries

Language
Support

Application development

L1 L2
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Logical Programming Environments

(planned)

Definitions of languages,
syntax, rewrite rules

Formal reasoning using
term rewriting and custom logics

Machine
code

MetaPRL

Phobos DRL

Formal, digital
Library

Mojave
Compiler
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Phobos

• Phobos is a 
front-end for 
domain-specific 
languages
– Programs are 

translated to 
one of a set of 
“standard” 
languages

– or to a theorem 
prover

ML C Pascal

Backend

Formal IR MetaPRL

Java

Phobos
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Language definitions

• Each language has a lexicon

• And a grammar

Tokens -longest {
NUM = "[0-9]+" { __token__[p:s]{'pos} -> num[p:s]{'pos} }
...
* SPACE = " " {}

}

%left PLUS MINUS
%left TIMES DIV
%left LPAREN RPAREN

Grammar -start exp {
exp ::= NUM { num[p:s]{'pos} -> exp{num[p:s]; 'pos}}

| ID { ... }
| exp PLUS exp { 'e1 PLUS 'e2 -> exp{sum{'e1; 'e2};

union_exp_pos{'e1; 'e2} }
...

}
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Logical Programming Environments

•Parts
– Phobos language support 

complete
– DRL language design and 

control primitives
– Code compiler complete

Runtime Platform MVWT

Control compiler/
theorem prover

Development
automation and

heuristics

Control
Libraries

Language
Support

Application development

L1 L2


