
Efficient Maximum-Likelihood Decoding for TBCC

and CRC-TBCC Codes via Parallel List Viterbi

Jacob King∗, William Ryan, Chester Hulse∗, and Richard D. Wesel∗

∗Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA

Email: jacob.king@ucla.edu, ryan@ece.arizona.edu, chulse@ucla.edu, wesel@ucla.edu

AbstractÐMaximum-likelihood (ML) decoding of tail-biting
convolutional codes (TBCCs) with S = 2v states traditionally
requires a separate S-state trellis for each of the S possible
starting/ending states, resulting in complexity proportional to
S

2. Lower-complexity ML decoders for TBCCs have complexity
proportional to S logS. This high complexity motivates the
use of the wrap-around Viterbi algorithm, which sacrifices ML
performance for complexity proportional to S.

This paper presents an ML decoder for TBCCs that uses list
decoding to achieve an average complexity proportional to S at
operational signal-to-noise ratios where the expected list size is
close to one. The new decoder uses parallel list Viterbi decoding
with a progressively growing list size operating on a single S-state
trellis. Decoding does not terminate until the most likely tail-
biting codeword has been identified. This approach is extended
to ML decoding of tail-biting convolutional codes concatenated
with a cyclic redundancy check code as explored recently by Yang
et al. and King et al. Constraining the maximum list size further
reduces complexity but sacrifices guaranteed ML performance,
increasing errors and introducing erasures.

Index TermsÐTail-Biting Convolutional Codes, Convolutional
Codes, Cyclic Redundancy Check, List Viterbi Decoding, List
Decoding

I. INTRODUCTION

Tail-biting convolutional codes (TBCCs) [1] have been

shown to improve over the performance of zero-terminated

convolutional codes (ZTCCs) because they avoid the rate loss

of zero-termination. A well-studied problem is the design of

computationally efficient decoders for TBCCs that achieve

good frame error rate (FER) performance. Many efficient de-

coders have been proposed for TBCCs with O(S) complexity,

including WAVA [2] and the approximate maximum-likelihood

(ML) linear-time decoding algorithm [3]. However, while

these algorithms are desirable from a complexity standpoint,

they do not achieve ML performance.

For a TBCC with S = 2v states, a brute force ML decoder

implementation includes S separate Viterbi decoders, one for

each of the S tail-biting sub-trellises. This algorithm has a

complexity of O(S2), which is too complex for practical

use. Shankar et al. [4], [5] have proposed a more efficient

ML decoder for TBCCs with complexity O(S logS), which

consists of a Viterbi step followed by an A* search to find the

This research is supported by National Science Foundation (NSF) grant
CCF-2008918. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect views of NSF.

ML codeword. This algorithm was later improved by Pai et

al. [6]. However, these algorithms are still significantly more

complex than the suboptimal decoders with O(S) complexity.

Seshadri and Sundberg proposed parallel and serial list

Viterbi algorithm (LVA) decoders in [7]. This paper modifies

the parallel LVA decoder to achieve ML decoding performance

of TBCCs and concatenated CRC-TBCCs with a conjectured

O(S) average complexity at operational signal-to-noise ratios

where the expected list size is close to one.

A. Contributions

In this paper, we present an algorithm for ML decoding

of TBCCs with average complexity that scales linearly with

the number of states, and we prove that it achieves ML

decoding. We also show how adding an additional step to

this algorithm can also achieve ML decoding performance for

concatenated CRC-TBCCs. We compare the FER performance

of our algorithm to WAVA [2] and the WAVA-inspired adaptive

parallel list Viterbi decoder (WI-APLVD) in [8] for selected

TBCCs and CRC-TBCCs, respectively. We also compare the

average complexity of WAVA and the new algorithm.

B. Organization

Section II reviews TBCCs and the challenges in designing

good decoders for them. Section III gives an overview of

parallel list Viterbi decoding (PLVD), as well as how a modi-

fication to a standard PLVD algorithm can be made to achieve

ML decoding performance for TBCCs. Section IV shows how

to generalize this ML decoder to CRC-TBCC concatenated

codes, and details a sub-optimal decoder for CRC-TBCCs that

is shown to have good performance in [9] [8]. Finally, Section

V shows simulation results comparing FER performance and

decoding complexity for our proposed ML decoder and several

sub-optimal decoders, for both TBCCs and CRC-TBCCs.

II. TAIL-BITING CONVOLUTIONAL CODES

Convolutional codes, first introduced by Elias [10], have

found wide application. There are two main classes of feedfor-

ward convolutional block codes: zero-terminated convolutional

codes (ZTCCs), and tail-biting convolutional codes (TBCCs)

[1]. Tail-biting convolutional codes use the final v message bits

to initialize the state of the convolutional encoder so that the

beginning state is the same as the final state. This ensures that

all message bits enjoy the same protection from channel errors

while avoiding the rate penalty incurred by zero-termination.

U.S. Government work not protected by U.S. copyright.
141

 2023 12th International Symposium on Topics in Coding (ISTC)



Compared to ZTCCS, TBCCs require additional decoding

complexity to ensure that the selected codeword satisfies the

tail-biting (TB)-condition. The TBCC decoder must either sep-

arately consider candidate codewords for every possible start-

ing/ending state or determine (or guess) the starting/ending

state of the ML path. The rate penalty of zero-termination is

significant for short messages, and TBCCs have been shown

to outperform ZTCCs in FER vs. Eb/N0 performance [11].

Thus, low-complexity decoders for TBCCs are of practical

interest. The following section reviews PLVD for TBCCs and

introduces the proposed ML decoder.

III. ML DECODING VIA PARALLEL LIST VITERBI

A. Parallel list Viterbi decoding

Seshadri and Sundberg proposed an efficient PLVD algo-

rithm in [7]. For each state in the trellis, instead of selecting a

single best path, the PLVD keeps a metric-ordered list of the

L best paths arriving at each state. Once the end of the trellis

is reached, each ending state has a list of L best trellis paths

to each state. This produces an overall list of SL trellis paths.

The valid codeword with the best metric is selected.

For a TBCC, PLVD selects from the list of SL survivors

the survivor with the best metric that also satisfies the TB

condition. Note that some paths with better metrics than the

SL surviving paths may be excluded from the list of survivors.

Thus, the best TB path found on the list of survivors might

not be the ML decoding decision.

B. Adaptive Parallel List Viterbi Decoding

If L is large, PLVD has high average complexity due to

computing SL trellis paths before checking if any of them are

valid codewords. The SL paths are organized as a set {Lσ}
of S lists Lσ , one for each possbile ending state. We can

reduce the average computational complexity of the PLVD by

using an adaptive PLVD (APLVD). The APLVD begins by

initializing the list size L = Lmin, where Lmin is usually 1.

PLVD is run with list size L. If a TB codeword is found by

the PLVD, then that codeword is selected and the decoder

terminates. Otherwise, L is doubled and PLVD is run again.

Yang et. al. [11] shows that for serial LVA decoders, the

expected list rank of the decoded codeword converges to 1

as SNR increases, and is typically close to one at operating

SNRs where the FER is acceptable. A PLVD needs a list size

of at most γ to find a codeword of serial list rank γ. Thus,

for typical SNR operating points the APLVD terminates with

an average list size close to one. At such operating points, the

average time and space complexity of APLVD is comparable

to SLVD since both have average complexity similar to the

standard Viterbi algorithm.

As stated above, the (A)PLVD is not an ML decoder for

TBCCs, since the list of SL trellis paths it generates are not

guaranteed to be the SL most likely paths. In the next section,

we show that a modification to the APLVD algorithm can

achieve ML decoding of TBCCs and CRC-TBCCs without

incurring much additional complexity. An APLVD with this

modification was originally proposed in [12], where it is called

a resolution-terminated adaptive parallel list Viterbi decoder

(RT-APLVD). We will continue to use this name for the

remainder of this paper.

C. Description of RT-APLVD

We will first define some terminology. A trellis path (or

simply path) is any sequence of states from the beginning of

the trellis to the end. A tail-biting (TB) path is a trellis path

such that the starting state and ending state are the same, and

a codeword is the encoded output generated by a TB path. We

will use TB path and codeword interchangeably.

The candidate codeword Ĉ is the codeword with the best

metric that the RT-APLVD decoder has seen up to that point

and the candidate metric M̂ is the metric of this codeword.

There is always at most one candidate codeword. The state

metric Mσ of a given end state σ is the metric of the best TB

path for that state, or if no TB path has been found at this end

state with list size L, it is the best possible metric that a TB

path for that state could have, i.e. the worst metric observed

so far at this end state. The state path Pσ is the path that has

the state metric Mσ .

Each end state is classified as either resolved or unresolved.

A state is resolved either when the most likely codeword

that ends in that state is found or when it is known that

the ML codeword cannot end in that state. Every state begins

unresolved, and the decoder will switch each state to resolved

during the decoding process. We prove in Section III.D that

once all of the states are resolved, the candidate codeword

must be the ML codeword and the decoder can terminate.

The RT-APLVD algorithm is detailed in Algorithms 1, 2,

and 3. It uses the PLVD(.) function as described in [7], except

that resolved states are removed from the set of initial states

and end states for which paths are listed. In Alg. 1, the list

size L doubles after every iteration. An alternative would be to

maintain the same L for multiple iterations doubling L once no

additional states become resolved. Comparing the complexity

of these alternatives is an area of future interest.

D. Proof of ML Decoding and Complexity Analysis

Lemma 1. The PLVD algorithm with list size L identifies the

L most likely trellis paths that end at each state σ.

Proof: See Seshadri and Sundberg [7].

Theorem 1. RT-APLVD is an ML decoder for TBCCs.

Proof of Theorem 1: By Lemma 1, executing PLVD with

a list size L identifies the L most likely (not necessarily tail-

biting) trellis paths for each ending state. Thus, traversing the

list for a given end state in order starting from the most likely

path, the first TB path encountered is the most likely TB path

that ends at this state. Thus, one ML decoding algorithm for

TBCCs is to repeatedly run PLVD with increasing list sizes

until the most likely TB path for each end state is found.

The most likely TB path among this group must be the ML

codeword. The RT-APLVD is a modification to the above

algorithm that reduces complexity by allowing termination

before every end state has identified a TB codeword.

142

 2023 12th International Symposium on Topics in Coding (ISTC)



Algorithm 1: RT-APLVD

Input: Lmin, Lmax, channel outputs

Result: Decoded Codeword c
L← Lmin

(Ĉ, M̂)← ({},∞)
S∗ ← {}
while L ≤ Lmax and S\S∗ ̸= {} do
{Lσ} ← PLVD(L, S\S∗)
(S∗, {(Pσ,Mσ)})←
StateMetricCalculation(S∗, {Lσ})
(Ĉ, M̂ , S∗)←
CandidateSelection({(Pσ,Mσ)}, Ĉ, M̂ , S∗)
L← 2L

end

c← Ĉ

Algorithm 2:

(S∗, {(Pσ,Mσ)}) = StateMetricCalculation(S∗, {Lσ})

Input: Set of resolved states S∗, Set of Lists {Lσ},
one for each end state, of paths and metrics

sorted by metric.

Output: S∗, {(Pσ,Mσ)}
for s = σ0, . . . , σS−1 do

if s ∈ S∗ then
(Ps,Ms)← ({},∞)

else

for p ∈ Ls do

if p is TB then
(Ps,Ms)← (p,metric(p))
S∗ ← S∗ ∪ s
break

end

else if p is Lth path then
(Ps,Ms)← (p,metric(p))

end

end

end

end

Algorithm 3:

(Ĉ, M̂ , S∗) = CandidateSelection({(Pσ,Mσ)}, Ĉ, M̂ , S∗)

Input: {(Pσ,Mσ)}, Ĉ, M̂ , S∗

Output: Ĉ, M̂ , S∗

for s = σ0, . . . , σS−1 do

if Ms < M̂ and Ps is TB then

(Ĉ, M̂)← (Ps,Ms)
end

end

for s = σ0, . . . , σS−1 do

if Ms > M̂ then
S∗ ← S∗ ∪ s

end

end

For a specified list size L, RT-APLVD identifies a candidate

codeword Ĉ, which is the codeword that has the best metric

from among the codewords that have been found. RT-APLVD

concludes that Ĉ is the ML codeword when all end states

are resolved. A state becomes resolved in either of two ways.

Firstly, the state can become resolved if its best TB path is

found. Secondly, the state can become resolved before its best

TB path is found if it becomes clear that best TB path is

less likely than Ĉ. These two conditions combined imply that

once all states are resolved, the candidate codeword is the most

likely codeword among the set of most likely codewords for

each end state, i.e., it is the ML codeword.

The proof above shows that if RT-APLVD doesn’t terminate

until all states are resolved, then it is an ML decoder for

TBCCs and CRC-TBCCs. This raises the question of whether

all states will eventually resolve.

Yang [11] shows that when decoding TBCCs or CRC-

TBCCs with a serial list Viterbi decoder (SLVD), there exists

a supremum list rank λ such that a codeword is guaranteed

to be found with a list rank less than or equal λ. By an

identical argument as in [11], each individual end state of the

RT-APLVD algorithm has a supremum list rank λσ by which

a TB path is guaranteed to be found. Thus, there must exist

a finite supremum Lmax = maxλσ for which RT-APLVD

will always terminate with every state resolved, and thus there

exists a finite supremum Lmax for which RT-APLVD is an

ML decoder for TBCCs and CRC-TBCCs. Finding concrete

bounds on this supremum Lmax is a question of future interest.

IV. DECODING CONCATENATED CRC-TBCC CODES

A. Maximum Likelihood Parallel List Viterbi Decoding

The RT-APLVD algorithm is easily adapted to concatenated

CRC-TBCC codes as explored by, e.g., [9], [11]. Instead of

only checking that a trellis path is a TB path, the adapted

RT-APLVD algorithm also checks if it passes the CRC check.

Only if a path passes both checks is it validated as a code-

word. Given the extra CRC-passing requirement, RT-APLVD

typically requires larger list sizes for ML decoding of CRC-

TBCCs compared to TBCCs with the same number of states

but no CRC.

B. WAVA Inspired Adaptive Parallel List Viterbi Decoding

RT-APLVD provides an ML decoder for a sufficiently large

list size, but for smaller list sizes a WAVA-inspired modifi-

cation of APLVD can be competitive in both performance

and complexity. WAVA selects a tail-biting codeword with

low complexity because multiple passes through the trellis

rapidly coalesce toward a matching start/end state. We propose

a WAVA-inspired (WI)-APLVD that performs a single pass

through the trellis with a list size of 1 to find the metrics of all

of the ending states. We then use these metrics as the initial

metrics for the APLVD, terminating as soon as a codeword

that passes both the tail-biting and CRC checks is found. This

decoder has been used for the decoding of CRC-TBCCs by

King et al. in [9] [8]. While not ML, it achieves near-ML

performance with low complexity, as shown in Sec. V.

143

 2023 12th International Symposium on Topics in Coding (ISTC)



1 1.5 2 2.5 3 3.5

Eb/N0 (dB)

10-4

10-3

10-2

10-1
E

rr
o
r 

R
a
te

v = 8 TBCC, WAVA FER

v = 8 TBCC, RT-APLVD FER

v = 14 TBCC, WAVA FER

v = 14 TBCC, RT-APLVD FER

(128,64) RCU bound

v=8 CRC-TBCC, WI-APLVD TFR

v=8 CRC-TBCC, RT-APLVD TFR

v=8 CRC-TBCC, WI-APLVD UER

v=8 CRC-TBCC, RT-APLVD UER

Fig. 1. FER curves of v = 8 and v = 14 TBCCs and v = 8 CRC-TBCC.
RT-APLVD outperforms WAVA for v = 11 and v = 14 TBCCs, and beats
the RCU bound for the v = 14 TBCC. RT-APLVD performs worse than WI-
APLVD for the CRC-TBCC due to constraining Lmax to 1024. However,
RT-APLVD has a lower undetected error rate than WI-APLVD.

TABLE I
TABLE OF RATE-64/128 TBCCS FROM [13]. POLYNOMIALS ARE IN

OCTAL.

v g1(x) g2(x)

8 515 677

11 5537 6131

14 75063 56711

We considered applying to the WI-APLVD decoder the

more stringent stopping criterion of RT-APLVD to guarantee

that the codeword with the best metric is found. However,

this resulted in a degradation in FER for this decoder, perhaps

because the WAVA step results in a non-ML metric.

V. SIMULATION RESULTS

We now show simulation results for FER of selected

TBCC and CRC-TBCC codes, as well as simulation-assisted

average complexity calculations of our decoders. This section

compares the performance of RT-APLVD and WAVA on

three selected rate-1/2 TBCCs from [13]. The generator

polynomials for these TBCCs are given in Table I. We also

compare the performance of RT-APLVD and WI-APLVD

on a rate-32/512 CRC-TBCC from [14]. This code is an

11-bit outer CRC code with polynomial 0xF69, concatenated

with a rate-1/12 inner convolutional code with polynomials

{533, 727, 765, 445, 715, 635, 563, 555, 737, 557, 677, 511}
and punctured bits in positions {47, 60, 129, 504}. This code

was originally studied in [14] to compare against a CRC-polar

code compatible with the 5G standard.

A. Frame Error Rate Performance

For TBCCs, Fig. 1 shows the FER performance vs. Eb/N0

for WAVA and RT-PLVD decoders for v = 8 and v = 14
as well as the RCU bound. For the TBCCs, WAVA and RT-

APLVD have nearly identical performance for the v = 8
TBCC. However, RT-APLVD has noticeable improvement

over WAVA for the v = 14 TBCCs. For the v = 11 code (not

shown), RT-APLVD also provided a noticeable improvement

over WAVA. The v = 14 TBCC decided with RT-APLVD has

an FER below the RCU bound until around 3 dB.

For the CRC-TBCCs, Fig. 1 shows the total failure rate

(TFR) (including both undetected errors and erasures) and un-

detected error rate (UER) (not including erasures) vs. Eb/N0

for RT-APLVD and WI-APLVD. For these simulations the

maximum list size was restricted to Lmax = 1024, which

is not large enough for ML decoding of this CRC-TBCC.

As a result, the WI-APLVD has better FER performance than

the RT-APLVD. However, the RT-APLVD has a lower UER

compared to WI-APLVD. Once Lmax is sufficiently large to

provide ML decoding, RT-APLVD would have no erasures and

a lower TFR than WI-APLVD, but the list size necessary to

achieve this is likely prohibitively large.

B. Expected Complexity

This section analyzes the complexities of each of the de-

coders, found though a combination of mathematical analysis

and simulation. Following the complexity calculations in [11],

we assign one unit of complexity for each branch addition, and

one unit of complexity for each comparison of two values.

The calculated complexity values depend on the average

number of trellis passes for WAVA, the distribution of how

often WI-APLVD and RT-APLVD terminate at each list size,

and the proportion of unresolved states at each list size for

RT-APLVD. All of these values are intractable to calculate

analytically, so we found them through simulation. We re-

stricted Lmax to 8192 for these simulations due to technical

limitations.

Even with using simulation to calculate these values, there

are still a couple simplifying assumptions used in the calcu-

lation of these average complexities. However, our results for

average complexity generate curves consistent with average

decoding runtimes found through simulation.

The full derivation of expected complexity for each decoder

cannot be included in this paper due to space limitations. We

give the final expected complexities of each of the decoders.

In these equations, E[npass] represents the expected number

of trellis passes performed by WAVA before terminating,

L represents the list size of the adaptive decoders when

terminating, p2j represents the proportion of starting states

that are unresolved with a list size 2j , log refers to log2, and

ln refers to loge (i.e. the natural logarithm).

CWAVA = 3KSE[npass] + S + (E[npass]− 1)(S + 1) + 2K

144

 2023 12th International Symposium on Topics in Coding (ISTC)



0 0.5 1 1.5 2 2.5 3 3.5

Eb/N0 (dB)

10
4

10
5

10
6

10
7

10
8

10
9

A
v
e

ra
g

e
 C

o
m

p
le

x
it
y

v = 8 TBCC

v = 11 TBCC

v = 14 TBCC

v = 8 CRC-TBCC

Fig. 2. Complexities CRT (dashed) and CWAV A (solid) vs. Eb/N0 for
TBCCs and Complexities CRT (dashed) and CWI (solid) vs. Eb/N0 for
the v = 8 CRC-TBCC.

CWI =

logLmax
∑

k=0

Pr[L = 2k] ∗

(

2S(2L− logL− 2)

+ 3KS + 2K + (S + 1)(2L− 1)

+ (2L− 1)(2KS − 4S)

+ (8L logL+ 4)

(

KS − 2S

log e

))

CRT ≈

logLmax
∑

k=0

Pr[L = 2k] ∗

(

2S(2L− 1)

+ 2K + (S + 1)





k
∑

j=0

(

2j ∗ p2j
)





+ S





k
∑

j=0

2j+1

(

K −

⌈

log

(

2j

p2j

)⌉)

(

1 + 2 ln(2j+1)
)





)

Fig. 2 shows the expected complexity of each decoder on

each code as a function of Eb/N0. We see that RT-APLVD

tends to be more complex than WAVA and WI-APLVD,

as would be expected. However, as Eb/N0 increases, the

gap between RT-APLVD and the corresponding sub-optimal

decoder tends to decrease. In addition, the complexity curves

appear to scale linearly with S.

VI. CONCLUSION

In this paper, we presented an efficient maximum likelihood

decoder for TBCCs and concatenated CRC-TBCCs. We moti-

vate the design of this algorithm and show both its ML nature

and its desirable complexity.

Simulations show that the RT-APLVD outperforms the

WAVA decoder in terms of FER for TBCCs with large

memory, although WAVA is still competitive. We also show

that RT-APLVD decoding of a v = 14 TBCC in [13] slightly

beats the RCU bound up to around Eb/N0 = 3dB. WAVA

is less complex than RT-APLVD due to its less stringent

stopping condition and its list size of one for the Viterbi step.

However, the RT-APLVD decoder is not prohibitively complex

and can be used for practical situations in the case where ML

decoding is desired. Further optimization can likely reduce the

complexity of RT-APLVD.

For CRC-TBCC concatenated codes, the RT-APLVD is

much better at filtering out undetected errors compared to the

WI-APLVD; however, it often requires a very large list size

to avoid erasures. Further analysis in this area is needed.

Our calculations for complexity on RT-APLVD imply that

the complexity is O(S) supposing that E[L] and p2j do not

increase with increasing S. Our simulations show a very slight

increase in these values as we varied S for our TBCCs,

but the sample size of our simulations is not large enough

to definitively disprove statistical variance given how small

the change is. Even if the complexity is slightly worse than

O(S) asymptotically, the complexity is effectively linear for

blocklengths, trellis sizes, and SNR ranges of practical interest.

REFERENCES

[1] H. Ma and J. Wolf, ªOn tail biting convolutional codes,º IEEE Trans.

Commun., vol. 34, no. 2, pp. 104±111, February 1986.
[2] R. Y. Shao, S. Lin, and M. P. C. Fossorier, ªTwo decoding algorithms

for tail-biting codes,º IEEE Trans. Commun., vol. 51, no. 10, pp. 1658±
1665, Oct 2003.

[3] K. M. Krishnan and P. Shankar, ªApproximate linear time ML decoding
on tail-biting trellises in two rounds,º in 2006 IEEE Inter. Sym. on Info.

Theory (ISIT), Jul 2006, pp. 1±5.
[4] P. Shankar, P. N. A. Kumar, K. Sasidharan, and B. S. Rajan, ªML

decoding of block codes on their tailbiting trellises,º in Proc. 2001 IEEE

Inter. Sym. on Info. Theory (ISIT), Jun 2001, p. 1.
[5] P. Shankar, P. N. A. Kumar, K. Sasidharan, B. S. Rajan, and

A. S. Madhu, ªEfficient convergent maximum likelihood decoding on
tail-biting trellises.º [Online]. Available: https://arxiv.org/abs/cs/0601023

[6] H.-T. Pai, Y. S. Han, T.-Y. Wu, P. ning Chen, and S.-L. Shieh, ªLow-
complexity ML decoding for convolutional tail-biting codes,º IEEE

Commun. Letters, vol. 12, no. 12, pp. 883±885, Dec 2008.
[7] N. Seshadri and C. E. W. Sundberg, ªList Viterbi decoding algorithms

with applications,º IEEE Trans. Commun., vol. 42, no. 234, pp. 313±323,
Feb. 1994.

[8] J. King, ªCRC-aided list decoding of short convolutional and polar
codes for binary and nonbinary signaling,º Master’s thesis, University
of California, Los Angeles (UCLA), 2022.

[9] J. King, A. Kwon, H. Yang, W. Ryan, and R. D. Wesel, ªCRC-aided list
decoding of convolutional and polar codes for short messages in 5G,º
in 2022 IEEE Int. Conf. on Commun. (ICC), May 2022, pp. 1±6.

[10] P. Elias, ªCoding for noisy channels,º Proc. IRE Conv. Rec. part 4, pp.
37±46, 1955.

[11] H. Yang, E. Liang, M. Pan, and R. D. Wesel, ªCRC-aided list decoding
of convolutional codes in the short blocklength regime,º IEEE Trans.

Inf. Theory, vol. 68, no. 6, pp. 3744±3766, Jun 2022.
[12] C. Hulse, ªFPGA implementation of decoders for CRC-aided tail-biting

convolutional codes,º Master’s thesis, University of California, Los
Angeles (UCLA), 2022.

[13] M. C. CoËskun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and
F. Steiner, ªEfficient error-correcting codes in the short blocklength
regime.º [Online]. Available: https://arxiv.org/abs/1812.08562

[14] J. King, H. Yao, W. Ryan, and R. D. Wesel, ªDesign, performance,
and complexity of CRC-aided list decoding of convolutional and polar
codes for short messages.º [Online]. Available: https://arxiv.org/abs/
2302.07513

145

 2023 12th International Symposium on Topics in Coding (ISTC)


