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Abstract—List Viterbi decoders are a very effective way to
improve the performance of block codes in combination with
an error detection outer code. In this work, we combine an
efficient serial list Viterbi decoder design with an existing serially-
concatenated, convolutionally-encoded, pulse position modulated
code (SCPPM) used in space communication, that exhibits poor
performance because of an error floor. The SCPPM code features
a 32-bit CRC that provides powerful error detection capability
and an outer four-state convolutional code that makes it suitable
for a list Viterbi decoder. The system’s code is very long,
consisting of 15, 120 bits, which renders a high complexity
decoder impractical, while the high error detection allows for
a list decoder with very low undetected error probability. We
use a very efficient list Viterbi decoder algorithm to avoid most
of the redundant operations to produce low complexity serial list
Viterbi decoder. The combined system reduces the error floor,
moderately for the original version of the system, and completely
suppresses it when the code length is increased to four times
longer.

Index Terms—Channel codes, list decoding, space Comms.

I. INTRODUCTION

In this work, we attempt to use a serial list Viterbi decoder
(SLVD) to improve the performance of an existing space com-
munication system by suppressing and reducing an error floor.
The system consists of a serially concatenated convolutional
code with pulse position modulation (SCPPM) over a free-
space optical channel.

The Viterbi decoder was introduced by G. D. Forney in [1]
using the Viterbi algorithm developed by A. Viterbi [2]. List
decoding was introduced earlier by P. Elias [3] and by J. M.
Wozencraft [4]. P. Elias [5] later developed an (n, e, L) list
decoder that corrects all sets of e or fewer errors per block
of n binary symbols. F. Soong and E. Huang proposed a fast
trellis search method to obtain a list of the best L hypotheses
in speech recognition. The best overall hypothesis was found
in a forward pass and the other L − 1 in a backward pass.
A list Viterbi decoder was later developed by N. Seshadri
and C. Sundberg [6] to find the best L decoding estimates.
They proposed a parallel list Viterbi decoder (PLVD), that
produces the L best paths at the same time, and a (SLVD)
that finds the k + 1-th best candidate only after the k-th best
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candidate is found. Seshadri and Sundberg combined the LVD
with an error-detecting code to obtain significant improvement
in the block error probability. To reduce the complexity of the
LVD, M. Roder and R. Hamzaoui [7] pioneered a LVD that
used Soong and Huang’s trellis-search method but replaced a
sorted list with multiple unsorted lists collecting candidates
of the same metric. Lou et al. [8] proposed using a error-
detecting cyclic redundancy check (CRC) code designed for
specific convolutional code (CC) in a concatenated code.
Their design attained a significant reduction in the undetected
error probability compared to other CRC choices of the same
degree. Yang et al. [9] studied an optimal joint design of a
CRC and CC pair to achieve a target frame error rate. Yang
et al. used the signal-to-noise ratio (SNR) gap between the
joint design and the random coding union (RCU) bound as
optimization criterion and proposed that the optimal CRC and
CC pair is the one that achieves a target SNR gap with the
least complexity. Yang et al. [10] also analyzed the trade-off
between undetected error probability and maximum list size
of a SLVD decoder. After Lou et al. [8], Yang et al. further
identified the CRC polynomial that maximizes the minimum
distance between codewords of the concatenated code where
the CC used the polynomials (561, 753) octal in the 3GPP
standard [11]. Other recent works on list decoding of CCs
include Sui et al. [12] and Wang et al. [13].

Specific to space communication systems, Schiavone et al.
[14] studied the distance spectrum of the joint CRC and
convolutional code of the code options provided in the consul-
tative committee for space data systems (CCSDS) telemetry
recommendation [15]. Schiavone et al. estimated that the
coding gain of maximum likelihood decoding of the joint code
is 3 dB higher than with Viterbi decoding.

In this work we attempt to use a list decoder to suppress or
reduce the error floor on an existing SCPPM system, from the
consultative committee for space data system (CCSDS) rec-
ommended standard [16]. To maintain backward compatibility,
modifications to the SCPPM standard should be avoided, but
few with low implementation impact could be considered. The
SCPPM system, however, exhibits particular properties that
make a list Viterbi decoder suitable to aid in the decoding
process. The most important of these properties are an outer
convolutional code where a list Viterbi decoder could be
applied; a powerful error-detecting, 32-bit CRC; and an error
floor region where many codeword error (CWER) events
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have very sparse bit errors after the execution of the existing
decoder. The information sequence in this system is very long,
either 5, 006, 7, 526 or 10, 046 depending on the mode the
system is operating in. The length of the information sequence
demands a complexity-conscious implementation of the list
decoder.

We implement a list Viterbi decoder with a new algorithm
that significantly lowers the computational complexity when
the number of states in the convolutional code is small com-
pared to the length of the code. Simulation results show that
our list decoder does reduce the error floor, very moderately
in the original version of the system and completely when
some modifications are included. The results also show that
the new algorithm executes very fast when the maximum list
size is set below 2000, which is the region where most of the
performance gain is attained.

A. Contributions

The main contributions of this work are as follows:
• We demonstrate how a list Viterbi decoder can be used

to eliminate or significantly reduce the error floor in
the SCPPM system when the code length is allowed to
increase to four times the original length.

• We propose a method to significantly reduce complexity
for a serial list Viterbi decoder when the number of trellis
states is small compared to the number of trellis stages.
The reduced complexity is especially significant for the
first few hundred candidate codewords, which is where
most of the list decoding improvement is obtained.

• We further propose a method to reduce the memory and
run-time complexities required to search for candidate
codewords. This method stores the message bits and met-
rics for the detours of all previous candidate codewords.
This allows a low complexity differential approach to
computing the metric of subsequent candidate codewords
while using only a constant amount of memory equal to
the number of edges in the trellis since each trellis edge
is only traversed once.

II. SCPPM STANDARD

The encoder and decoder of the SCPPM system recom-
mended by the CCSDS in [16] is shown in Fig 1. For the
purpose of this work, we consider the information sequence
from the “source” a randomized slice of a CCSDS Transfer
Frame. We also consider the processing that starts with the
channel interleaver up to the guard slot insertion, shown in
Fig. 3-1 of the CCSDS standard [16] to be part of the channel.
We proceed with a high-level description of the encoder and
decoder and direct interested readers to the standard [16] for
a detailed description.

The SCPPM encoder is depicted on the left side of Fig.
1. The outer code is a zero-terminated convolutional code
(ZTCC) with 2 memory elements and its encoder polyno-
mials are {05, 07, 07} in octal. The inner code is an ac-
cumulator with a single memory element. Between the two
codes is quadratic interleaver with polynomial 11s + 210s2.

Decoder
List Viterbi

Source

failed
pass

Code
De-interleaver

Code BCJR
Convolutional

CRC
Attachment

BCJR Symbol
Accumulator

PPM
Symbol mapper

Termination bits

Accumulator

Attachment

Encoder

Convolutional
Encoder

Code
Interleaver

Channel

ENCODER

Es
tim

at
e

N
A

C
K

C
od

e
In

te
rle

av
er

DECODER

CRC check

failed
pass

NO YES

YESNO

CRC check

max iter?
scppm

max size?
list

Fig. 1. SCPPM Encoder (left side) from [16] Fig 3-1 and Iterative Decoder
coupled with a list Viterbi decoder.

The output of the accumulator is a 15120-bit sequence
that is mapped to M−ary PPM symbols C1, C2, . . . with
M ∈ {4, 8, 32, 64, 128, 256} each encoding m bits, where
m ∈ {2, 3, . . . , 8}. The encoder’s output is a vector of
symbols C1, . . . ,Cn/m, where symbol Ci is a vector Ci =
{Ci,1, Ci,2, . . . , Ci,M}, where Ci,j ∈ {0, 1} and Ci has a
single 1 entry. There are three operating rates, 1/3, 1/2,
and 2/3, with the latter two obtained by puncturing the
output of the outer code with the patterns {1, 1, 0, 1, 1, 0} and
{1, 1, 0, 0, 1, 0}. The outer encoder receives an input sequence
of length 5040, 7560, or 10080 bits depending on the rate. This
sequence includes the information sequence, a 32-bit error-
detecting CRC, and two terminating zero bits.

The channel is assumed to be a memoryless Poisson channel
defined by a background noise rate of Kb average photons per
non-pulsed PPM slot and Ks+Kb average photons per pulsed
PPM slot. The received signal for each transmitted symbol i
is vector Yi,j and for each PPM slot j ∈ {0, . . . ,M − 1} Yi,j

is modeled by:

Pr(Yi,j = y | Ci,j = 0) =
Ky

b e
−Kb

y!
(1)

Pr(Yi,j = y | Ci,j = 1) =
(Kb +Ks)

ye−(Kb+Ks)

y!
. (2)
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Initial Viterbi Path

Potential Branch

Unexplored Edge

Fig. 2. Trellis segment showing the "initial Viterbi path," solid green arrows
and the potential branches diverging from it, dashed green arrows. The “initial
Viterbi path” is used to construct the most likely overall estimate, while its
branches are used to construct subsequent paths.

The SCPPM code is decoded using an iterative decoder (ID)
that is implemented using standard methods, i.e.. [17]. The
decoder, depicted in the right side of Fig. 1, takes as input the
signals received at each PPM slot and outputs an estimate of
the information bits. The inner decoder (accumulator) takes as
input the received signal and the a priori log-likelihood ratio
(LLR) estimate of the coded bits from the outer decoder (con-
volutional code). The output of the inner decoder are estimated
log-likelihood ratios (LLRs) of the coded bits (convolutional
code) based on the structure of the inner code. The outer
decoder takes as input the output of the inner decoder and
produces its own LLR estimates of its coded bits, which are
used to obtain an estimate of the information sequence. The
estimated information sequence is then checked with the 32-bit
CRC. If the CRC check fails the interleaved LLRs estimates
of the outer code are used as the a priori input by the inner
decoder for a subsequent attempt. The process repeats until the
CRC check succeeds or the maximum number of iterations
is reached, in which case an erasure is produced. We refer
interested readers to the literature for a detailed description
of an iterative decoder. One example of iterative decoding of
serially concatenated CC can be found in chapter 7.3.2 of [17].
On the decoder side, the input signal is scaled and quantized to
integer values. Also, look-up tables (LUTs) are used to speed
up many of the operations and all the intermediate data is
proceeded in integer values for efficient processing.

The proposed list Viterbi decoder (LVD) is included in Fig.
1 as a possible architecture to combine the standard SCPPM
decoder. The LVD is not required to be executed after every
iteration of the SCCC.

A. Problem Description

The existing SCPPM system sometimes exhibits an error
floor that appears when the codeword error rate (CWER) falls
between 10−4 and 10−6, depending on the rate, modulation,
and background noise rate Kb. The error floor is more sig-
nificant for the rate-2/3 code. Modifications that have been
investigated (but not exhaustively) before the current work
include different interleaver and puncture pattern designs,
termination to the inner code, and running the iterative decoder
for more iterations. These yielded little success except that
increasing the code (and interleaver) length improved the error
floor in some cases. The objective of this work is to use a list
Viterbi decoder (LVD) to suppress or reduce the error floor.
Solutions involving the SCPPM decoder are preferred over

Firs Simple DetourNew Potential Branch

Fig. 3. Trellis segment showing the first detour from the “initial Viterbi path,”
solid blue arrows, and the potential branches that diverge from it, dashed blue
arrows. The “first simple detour” is taken by the second most likely path, while
new and existing “potential branches” are taken by subsequent paths.

changes to the encoder, since the code itself is an approved
international standard.

III. LIST DECODER WITH EFFICIENT DETOUR
MANAGEMENT

We propose a serial list Viterbi decoder (SLVD) that sig-
nificantly reduces the run-time complexity when the number
trellis states is much smaller than the number of trellis stages.
The key to the complexity reduction is that our algorithm
does not trace back trellis detours that branch from a state
already visited by previous paths. Instead, we store enough
information to reconstruct these detours when they become
relevant. Our approach is related to the method proposed by
[6], where only the portion of a sequence that has not been
discovered yet is stored. We remark that storing this sequence
only requires an amount of memory equal to the number of
trellis edges. This method allows for a very fast trellis search
while using very little extra memory compared to a full trellis
trace-back.

A. Serial List Viterbi Overview

The SLVD we propose, as other approaches do, first pro-
duces the most likely overall estimate, and then each next
most likely one up to a maximum list size L. We initialize
the list decoder with a forward and backward trellis search,
similar to the one described in [18]. We keep a list of candidate
paths called "detours", which are sorted in the order of highest
likelihood. In the forward pass we store the edge and metric
through which the most likely path reaches every trellis stage-
state pair and separately the alternative edge and metric. In the
backward pass we trace the most likely trellis path, the “initial
Viterbi path” and make a list of the potential detours that
branch from this “initial Viterbi path.” Each potential detour

New Simple Detour New Potential Branch

Fig. 4. Trellis segment showing the “initial Viterbi path” in Fig. 2, the
first “detour” in Fig. 3 and a new “detour,” solid red arrows, along with
the potential branches diverging from it, dash red arrows. The blue and red
“detours” also combine into a valid “compound path”.
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Fig. 5. CWER vs Ks(dB), i.e. 10×log10(Ks), for iterative decoder (ID) with
and without the list Viterbi Decoder (SLVD), top subplot. Average number
of message bit errors (only for frames in error under ID), bottom subplot.
Two interleaver lengths are shown, N = 60480 and N = 15120, all with
16-PPM modulation, transmission rate 2/3 and background noise rate Kb of
0.1 photos per slot.

is defined by the state-stage where it branches from the “initial
Viterbi path” via the alternative source edge and state reaching
it, and by the likelihood difference between the two edges. A
segment of the “initial Viterbi path” and the potential branches
is depicted in Fig. 2. The second overall most likely path
will be one of the paths that branch from the “initial Viterbi
path” and can be constructed by tracing back the most likely
potential detour. We check each LVD estimate with the CRC
and terminate the decoding if the check succeeds. Otherwise,
the list decoder searches for the next most likely estimate. The
process continues until a check succeeds, or the maximum list
size L is reached, in which case an erasure is declared.

B. Successive Paths Construction and Candidate List Update

Each new list estimate is constructed from the next most
likely candidate in the list of potential detours. The list of
candidates is initialized in the backward path. Then, if the
“initial Viterbi path” fails the CRC check, the next most likely
candidate is selected from the list to construct the next most
likely path. We start a trellis trace-back from the stage-state
pair where the candidate branches from the “initial Viterbi
path” through the alternative edge and source state. The trace-
back when the new path reaches a state previously visited by
the “initial Viterbi path”. An example of a detour branching
from the “initial Viterbi path” and merging back five stages
later is depicted in Fig. 4 by the blue solid arrows. We
construct the new estimate using the original estimate and
replacing the segment branching point to the merging point
with the new detour. For this we store the original estimate
and the states visited by the “initial Viterbi path.”

Once the second path is found, the next most likely one
could either be a branch from the “initial Viterbi path,” and
be an item of the initial list of candidates, or it could branch
out of a previous detour, as depicted by the “new potential
branches” in Fig. 4. To account for the later case, the new
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Fig. 6. Average decoding time vs Ks(dB), i.e. 10× log10(Ks), for iterative
decoder (ID) with and without the list Viterbi Decoder (SLVD). The code
lenght, signal power and modulation are the same as Fig. 5.

potential branches from the new detour are added to the list of
potential candidates. A path that branches from a previous path
other than the “initial Viterbi path” will share a segment with
that previous path. To avoid retracing any segment, we store
the new segment of each path in a stack, and separately keep a
list with the start and end stage-state pairs of the detour taken,
as well as the source path it branches from, and a pointer to the
address where the segment is stored in the stack. The amount
of storage needed to store all possible segments is at most the
number of edges in the trellis since each segment consists
only of previously unused edges. Thus we can efficiently
reconstruct a path using new segments and previously stored
segments while keeping the storage requirement modest and
fixed.

It is possible for a valid path to branch out and merge into
the “initial Viterbi path,” or any other path, more than once.
These types of paths are commonly discovered by a trace-back
that continues past the point where a new segment merges back
with an existing path. However, before such a path can become
the next most likely one, each of these segments will form
paths of their own standalone. Thus we limit the trace-back to
the segment through edges and states not encountered before.
After a path is discovered, we check which of the previous
paths could be combined with the new segment to form a valid
path. To illustrate the complexity reduction attained, suppose
that the trellis consists of four states and 5040 stages, and a
new path branches from the “initial Viterbi path” at a stage
around the middle of the trellis. This new path will likely
merge back to the “initial Viterbi path” after a few stages, say
around ten, which are the only ones we will trace back. A full
trace-back would instead last for more than 2000 stages.

IV. SIMULATION RESULTS

The CWER vs. Ks(dB) performance of the SCPPM decoder
integrated with the new SLVD is shown in Fig 5 and. The code
rate is 2/3, with 16-PPM modulation and a background noise
rate of Kb = 0.1 photons per slot. The figure shows CWER vs.
Ks(dB) curves for the original code lengths: N = 15120 and a
modified one with N = 60480, which changes the interleaver
too. For each code we show the performance of the iterative
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decoder (ID) with the SLVD integrated and also that of the
ID standalone for comparison. The maximum iterations for the
ID was set at 32 with a list decoding attempt every eight. The
maximum list size of the SLVD was set at 2000.

The curves show a severe error floor for the standalone
ID, both with the standard code and the modified code. For
the original code with length N = 15120 a lower but severe
error floor persisted after the SLVD was integrated with the
ID. However, the error floor was suppressed or significantly
reduced for the modified system with code length N = 60480
when the SLVD was integrated.

Most error events in the modified system were observed to
contain less than three bits in error and the list decoder easily
found the right codeword. For the original system, adding the
SLVD was not sufficient to solve the error floor problem. Many
error events in the original system contained four or more bit
errors distributed along three or more separate segments in the
code. These cases are difficult to correct with a LVD because
the right codeword will not be found within the first thousand
of most likely ones. The issue persisted even when the list size
was allowed to grow up to 200K. Suppressing the error floor
would then require either modifying the system or making
further changes to the decoder so that the SLVD can correct
the remaining errors.

A. Running time performance of the new List Decoder

The running time results of our SLVD compared to the
iterative decoder are shown in Fig. 6. The time results are
averages, in milliseconds (ms) for only the cases where the
iterative decoder failed to decode. We show the average time
the ID took to fail and the average time SLVD took to either
produce an estimate that passed the CRC check or reach the
maximum list size and fail. Results for both the standard code
of length N = 15120 and the modified code with N = 60480
are included. Both the ID and SLVD use the maximum number
of iterations in the region where their respective codeword
error rates for match, 32 iterations for the ID and a maximum
list size of 2000 for the SLVD.

The running times for the SLVD with maximum list size of
2000 is lower than 32 iterations of the ID, even when SLV D
fails to decode and reaches the maximum list size, ans can be
noted in the region where both ID exhibit the same CWER
performance. When the modified code is used, and the SLVD
succeeds most of the time, the SLVD is much faster on average
than the ID. The running times results show that the SLVD
does not add a large delay when it executes. Also, since the
list decoder only needs to run when the ID fails, the overall
running time added by the SLVD is very low.

V. CONCLUSION

This paper demonstrates how list decoding can utilize the
existing CRC in an SCPPM to lower the error floor. While re-
sults show that the improvement is moderate when the standard
code of length N = 15120 is used, dramatic improvement is
seen when the code length is increased to N = 60480. We did
not initially find an interleaver that allowed the list decoder to

remove the error floor for the 15K blocklength, but this is an
area of ongoing research.

SLVD is able find a codeword when the iterative decoding
estimate has a small number of bit errors, but typically
cannot find a codeword when iterative decoding retains four
or more bit errors. This paper also presents an efficient SLVD
implementation for long blocklengths. In the region of interest,
where the SLVD succeeds often, our implementation takes, on
average, the same or less time than iterative decoding. Since
the SLVD is only needed in the rare cases where the iterative
decoding fails, decoding time for the combined system is
similar to the original system without list decoding. Thus,
SLVD improves the performance of the SCPPM while adding
minimal decoding time, making SLVD suitable for practical
use.
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