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Abstract—We consider the problem of constructing (3, L)
quasi-cyclic low-density parity-check (LDPC) codes from com-
plete protographs. A complete protograph is a small bipartite
graph with two disjoint vertex sets such that every vertex in
the variable-node set is connected to every vertex in the check-
node set by a unique edge. This paper analyzes the required
lifting factor for achieving girths of six or eight in the resulting
quasi-cyclic codes with constraints on lifting. The required lifting
factors provide lower bounds on the block-length of such codes.

I. INTRODUCTION AND BACKGROUND

Protograph-based quasi-cyclic LDPC codes (protograph
QC-LDPC) [1], [2] are LDPC codes [3] with encoders and
decoders amenable to implementation for practical purposes.
Generally, a code constructed from a protograph need not be
quasi-cyclic. A QC code is built from a protograph by re-
stricting the permutation matrices used in the lifting process to
be circulants. A protograph QC-LDPC code can be described
by specifying the permutation shift indices of the circulant
permutation matrices associated with the lifting process [2].

A protograph [1] defines the family of codes that can be
obtained from it by lifting and many properties of the codes
in the family depend on the graphical structure of the chosen
protograph. In this paper, we consider the case where the
protograph is a simple (has no loops or multiple links between
two vertices) and complete (every vertex in the variable-node
set is connected to every vertex in the check-node set) bipartite
graph. QC-LDPC codes obtained from simple and complete
protographs are called conventional QC-LDPC codes in [4],
which considers simple QC-LDPC codes in general, including
the subset which are conventional.

The performance of LDPC codes is dictated, to a certain
extent, by the girth of the codes. Also, in the regime of
short-to-moderate block-lengths, the minimum distance of an
LDPC code affects its performance in the error-floor region
if the variable-node degrees are small [5]. In this regard, the
minimum distance of a protograph QC-LDPC code and its
girth are interrelated as suggested by the work in [6]. The

This material is based upon work supported by the Broadcom Founda-
tion and the National Science Foundation under Grant Numbers 1162501
and 1161822. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation. This research was carried
out in part at the Jet Propulsion Laboratory, California Institute of Technology,
under a contract with NASA and JPL-NSF Task Plan 82-17473.

works in [2], [4] derive lower bounds on the required lifting
factors (and thus block-lengths) for obtaining various girths
for QC codes constructed from protographs and provide the
foundations for this paper. Works including [2], [4], [7]–[9]
have focused on obtaining these bounds because they are of
practical importance and have demonstrated code construction
techniques to obtain codes with as high a girth as possible.

We focus on the case of (3, L) protograph QC-LDPC codes.
These are regular codes that perform well over many rates. The
paper is organized as follows: Section II introduces notation.
Section III completely characterizes the lifting requirements to
construct a (3, L) code with girth 6 when the lifting factor is
equal to L and gives an explicit construction that achieves a
girth of 6 for any possible value of L. Section IV derives
a bound (under a constrained setting) on the lifting factor
required to obtain a girth of at least 8. This bound improves
on the bounds in [2], [4]. Section V concludes the paper.

II. DEFINITIONS AND NOTATION

A protograph [1] is a small bipartite Tanner graph [10]
and a protomatrix is a biadjacency matrix of the protograph.
A graph’s girth is the length of its shortest cycle(s). The
protomatrices considered in this paper have the form

Hprotomatrix =

1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·


3×L

. (1)

At places, the terms protograph and protomatrix are used
interchangeably. Associated with any protomatrix, the process
of lifting to obtain a QC code is the replacement of every
non-zero entry z in the protomatrix by a sum of z circulant
permutation matrices (CPMs) of size N × N with distinct
support and every 0 in the protomatrix by an N ×N matrix
of all zeros. If the protomatrix is of size J × L then lifting
yields a parity-check matrix H of size JN×LN . Because our
protomatrices are simple and complete, lifting replaces every
entry in the protomatrix with an N ×N CPM.

Definition 1 (Permutation-shift matrix [4]): The
permutation-shift matrix P of a QC-LDPC code constructed
from a J × L protomatrix with entries at most equal to 1
is the J × L matrix of permutation shift indices that are
chosen for the non-zero entries of the protomatrix during
the process of lifting. With the lifting factor being N , an
element 0 ≤ x ≤ N − 1 in P corresponds to a CPM in the



parity-check matrix H obtained via x circular shifts of the
rows of the identity matrix of size N × N . The orientation
(left or right) of the permutation shifts is unspecified in this
paper without loss of generality (WLOG).

The cyclic group of integers modulo N , {0, 1, . . . , N−1}, is
denoted Z/N . This is the set of first N non-negative integers
with addition modulo-N as the associated binary operation,
represented by xi + xj . Similarly, xi − xj = xi + (−xj)
represents adding the inverse of xj to xi. The order of a group
is its cardinality. A permutation π is a bijective map of a finite
set of elements onto itself.

Definition 2: A permutation π of Z/N is said to have a
fixed point if π(i) = i for any i = 0, 1, . . . , N − 1.

III. ON THE MINIMUM LIFTING FACTOR FOR GIRTH
GREATER THAN OR EQUAL TO 6

We consider the special case of this problem with the
constraint that the lifting factor N satisfies N = L. This is
the least value of N for which one can possibly obtain a girth
of g > 4 [2], [4]. By looking at this special case we arrive
at a combinatorial interpretation to the problem of obtaining
codes with girth at least 6 from complete protomatrices of size
J × L. Since N = L, we may use N and L interchangeably.

Works including [2] have constructed codes via computer
searches to show empirically the existence of codes with
girth g ≥ 6 for some odd values of N = L (including
analytical constructions for all primes; see [11] also). We show
analytically that for all odd values of N = L, there exist (3, L)
codes with girth g ≥ 6. [9] has established this result and
our contribution is a proof via combinatorial structures called
complete mappings [12]. We provide an algebraic construction
that produces codes with girth g = 6 for any odd N = L. This
construction includes, as a special case, the array-code based
proof of [9] for the (3, L) case.

Lemma 3 ([2]): With the lifting factor being N , in any
QC-LDPC code with a protomatrix with no entry larger
than 1, a cycle of length ` (` even) in the Tanner graph
of the code can be equivalently described by a sequence of
edges (e1, e2, . . . , e`) in the protograph whose corresponding
permutation shifts in P that are given as x1, x2, . . . , x` satisfy

∑̀
i=1

(−1)i+1xi = 0 mod N, (2)

where ei 6= ei+1 for all i ∈ {1, 2, . . . , ` − 1} and e1 6= e`.
Consecutive pairs of consecutive edges {ei, ei+1} for all i ∈
{1, 2, . . . , `−1} and {e`, e1} alternatingly lie in the same row
or same column of the protomatrix.

The elements of P are assumed to be in Z/N and thus
“mod N” may not be mentioned at most places that involve
operations with elements from P .

Lemma 4 (Extension of [2], Theorem 2.2): With a lifting
factor of N = L, any permutation-shift matrix P that could
lead to g > 4 for a (3, L) code with a complete protomatrix

may be written WLOG as

P =

 0 0 0 · · · 0
0 1 2 · · · N − 1

π(0) = 0 π(1) π(2) · · · π(N − 1)

 , (3)

where π has only one fixed point at π(0) = 0.
Proof: Irrespective of the 3L indices that are chosen for

P , one can always apply circular shifts to the row blocks and
the column blocks of H (after lifting) to obtain an isomorphic
graph for which the first row and column have all-zero indices
in P , as observed in [2]. For girth g > 4, [2] shows that no
non-zero element can repeat in the same row or the same
column. Thus the non-zero entries in each of rows 2 and 3 are
all unique within the respective rows and the ordering of row
2 in (3) can be obtained WLOG by rearranging the columns
once we have 0’s in row 1 and column 1. To ensure that no
column repeats a nonzero value, the permutation cannot have
any fixed point except π(0) = 0.

The preceding lemma implies that, WLOG, only L−1 non-
zero permutation shifts need to be specified and these belong
to the third row. As an example where repetition in the same
column prevents g > 4, the case of L = 2 leads to g = 4 as
there is only one non-zero element in Z/2. The probability that
a permutation of a finite number of elements (N − 1) has no
fixed points asymptotically, as N →∞, equals 1

e [13]. If we
search randomly for permutations of N−1 non-zero elements
to achieve a girth of g > 4, then the number of permutations
to be considered when constructing a code for large values of
N−1 is very high but only approximately 36.8% of them will
pass the preliminary test of not having a fixed point.

Definition 5 (Complete mapping [12], [14]): A complete
mapping of the cyclic group (Z/N,+) is a permutation π
which satisfies π(0) = 0 and that (0, π(1) − 1, π(2) −
2, . . . , π(N − 1)− (N − 1)) is also a valid permutation.

Theorem 6: With a lifting factor of N = L, the parity-check
matrix H of a code with a complete protomatrix of size 3×L
has a girth g > 4 if and only if the permutation π of Z/N that
specifies the third row of P in (3) is a complete mapping.

Proof: Consider any two columns of the shift matrix
of (3) and form a 2× 2 sub-matrix of rows 2 and 3 out of the
chosen columns as[

xi xj
xk x`

]
, xk = π(xi), x` = π(xj).

From the general condition of (2) in Lemma 3, xi, xj , xk, x`
lead to cycle(s) of length four if and only if (iff)

xi − xk + x` − xj = 0. (4)

Rewriting the above, the girth is greater than 4 iff

(x` − xj)− (xk − xi) 6=0, (5)

which means that x` − xj 6= xk − xi should be satisfied for
any xi, xj , xk, x` as considered above. This is possible iff

(π(row 2)− row 2) (6)



describes a permutation (i.e. the sequence contains each dis-
tinct element in the group exactly once), which occurs iff row
3 is a complete mapping.

Theorem 7: There exists a (3, L) quasi-cyclic LDPC code
with a complete protograph lifted by a factor N = L satisfying
girth g > 4 iff L is odd.

Proof: From [12], there exists a complete mapping of a
finite abelian group of order N iff the group does not possess
exactly one element of order 2. When N is even, this condition
is violated as one can verify that N

2 is the only order-2 element
in the finite abelian group Z/N . On the contrary, in finite
groups Z/N of odd orders there exists no element of order 2,
according to Lagrange’s theorem on the order of elements in
a finite group. This argument in conjunction with Theorem 6
completes this proof.

The number of complete mappings of Z/N is documented
in [14]. The first few terms of this sequence as a function
of N , from N = 1, 3, 5, . . . , are 1, 1, 3, 19, 225, 3441,
79259, 2424195, 94471089, 4613520889. For odd N = L
all the complete mappings that yield codes with girth g ≥ 6
lead to g = 6 since girth g ≥ 8 requires a higher lifting
factor (see Section IV). For odd N = L, random search
might identify a complete mapping and hence a g = 6 code,
but the probability of any randomly selected mapping being
complete decreases quickly with increasing L. For instance,
when L = 15 corresponding to a design rate R = L−3

L = 0.8
this probability is 2424195

14! = 0.000028 and when L = 17 and
R = 0.8235 this probability is 0.000004 and so on. In the
following we present a family of complete mappings and thus
a family of codes for any odd N = L,L ≥ 3 that have g = 6.

Corollary 8 (Product construction): Consider the following
mapping for row 3 in (3) with h ∈ {2, 3, . . . , N − 1}:

πp(i) = hi mod N, 0 ≤ i ≤ N − 1, (7)

where hi mod N is multiplication modulo-N of integers h
and i. For N = L odd and N ≥ 3, if h and h − 1 are each
coprime with N , then πp is a complete mapping of Z/N and
thus leads to a (3, L) code with girth 6.

Proof: Note that since h is chosen to be coprime with
respect to N , (hi mod N : 0 ≤ i ≤ N − 1) is a valid
permutation of Z/N . This is because hi− hj = h(i− j) 6= 0
mod N, ∀i 6= j as h is not a factor of N . We need to further
show that (4) from Theorem 6 has no solution. Writing (5),
which is obtained from (4), for this permutation:

(x` − xj)− (xk − xi) 6= 0

⇐⇒ h(xj − xi)− (xj − xi) 6= 0, as xk = hxi, x` = hxj

⇐⇒ (h− 1)(xj − xi) 6= 0,

which is satisfied for this permutation for all xj 6= xi since
h− 1 ≥ 1 is chosen to be coprime with respect to N .

There exists such an h for every odd N ≥ 3. An example
is h = N − 1 for which

P =

0 0 0 · · · 0 0
0 1 2 · · · N − 2 N − 1
0 N − 1 N − 2 · · · 2 1

 . (8)

Also, (3, L) array codes [2], [11], for any odd L ≥ 3
(not necessarily prime), are a special case of the preceding
construction with h = 2 and thus have g = 6 [9].

Corollary 9: If N = L is even then there exists a (3, L)
complete-protomatrix-based code with girth equal to 4 whose
Tanner graph has exactly N cycles of length four.

Proof: This follows from [12], which proves that in case
the order of a finite abelian group is even then there exists
an “almost complete” mapping π of the group such that the
sequence (0, π(1)− 1, π(2)− 2, . . . , π(N − 1)− (N − 1)) has
exactly N − 1 distinct elements. Thus, one element appears
twice. This implies that there exists a mapping for the third
row such that only one 2 × 2 block from the second and the
third rows leads to N length-4 cycles.

As shown in [9], it can also be observed that if L is even
then there exists a (3, L) complete-protomatrix-based code
with a girth of 6 if the lifting factor is N = L+ 1.

One can generalize the discussion so far to see that for
the (J, L) case there could be a code with g > 4 when the
lifting factor is N = L only if there exist J − 2 distinct
complete mappings of Z/N . This condition is necessary but
not sufficient because the rows produced by the J−2 complete
mappings also have to satisfy the following condition: Every
pair of the

(
J−2
2

)
rows indexed by {{i, j} : 3 ≤ i < j ≤ J}

are such that row j is a complete mapping of row i.
Consider the computer-search based Table I of [2] (repro-

duced below). When N = L = 9, the computer search could
not find a (J, 9) code with girth g = 6 when J ≥ 4. Using
the previous paragraph, we can confirm that such a code
does not exist. There are 225 complete mappings of Z/9. We
can corroborate the result in this table since not even one
pair out of

(
225
2

)
pairs of complete mappings can satisfy the

requirement that one row in the pair is a complete mapping
of the other.

TABLE I
SMALLEST VALUE OF N FOR WHICH A (J, L) CODE WITH GIRTH g ≥ 6

WAS FOUND IN [2] USING COMPUTER SEARCH

L 4 5 6 7 8 9 10 11 12
J

3 5 5 7 7 9 9 11 11 13

4 − 5 7 7 9 10 11 11 13

5 − − 7 7 9 10 11 11 13

IV. TOWARDS A TIGHTER BOUND ON THE REQUIRED
LIFTING FACTOR FOR GIRTH ≥ 8 WHILE L ≥ 4

Assuming L ≥ 4, it is known that the lifting factor N
has to satisfy N > 2(L − 1) to obtain a girth of g ≥ 8 for
our (3, L) codes [2]. In this section, we derive an improved
bound on this required lifting factor under a constraint by
using an additive combinatorics formulation of the problem.
It is conjectured, for future investigation, that the bound holds
without this imposed constraint.

The following lemma states the necessary and sufficient
conditions of [2] for the permutation-shift matrix P of a
complete-protomatrix-based (3, L) code to achieve g ≥ 8.



Lemma 10: For L ≥ 4, let L′ = L− 1 and the lifting factor
be N . The permutation-shift matrix

P =

0 0 0 . . . 0
0 x1 x2 . . . xL′

0 xL′+1 xL′+2 . . . x2L′

 (9)

leads to a girth of g ≥ 8 iff all the following conditions hold:
With i, j ∈ {1, 2, . . . , 2L′},

1) xi 6= xj for all i 6= j and xi 6= 0 for all i.
Fixing i ≥ L′ + 1 and j = i − L′ (so that xi and xj are in
the same column of P , with xi in the third row):

2) xi − xj 6= −xk, where k ∈ {1, 2, . . . , L′} \ {j},
3) xi−xj 6= xk, where k ∈ {L′+ 1, L′+ 2, . . . , 2L′} \ {i},
4) xi−xj 6= xk−x`, where k ∈ {L′+1, L′+2, . . . , 2L′}\
{i}, ` ∈ {1, 2, . . . , L′} \ {j}, k 6= `+ L′,

5) xi−xj 6= xk−x`, where k ∈ {L′+1, L′+2, . . . , 2L′}\
{i}, k = `+ L′.
Proof: Condition 1 is Theorem 2.4 of [2], which yields

the necessary condition N > 2(L − 1) = 2L′ for achieving
g ≥ 8. Conditions 2 and 3 apply (2) to the first column and
any other two columns of the shift matrix in (9). Condition
4 similarly considers any three columns apart from the first
(all-zeros) column. Condition 5 avoids length-4 cycles from
rows 2 and 3 of P .

Definition 11 (Girth-8 table): A girth-8 table (G8 table) of
a (3, L) complete-protomatrix-based QC-LDPC code whose
permutation-shift matrix is P , using the notation of Lemma 10,
is a table of L′ × L′ differences:

+\- x1 x2 . . . xL′

xL′+1 d1 = xL′+1 − x1 xL′+1 − x2 . . . xL′+1 − xL′

xL′+2 xL′+2 − x1 d2 . . . xL′+2 − xL′

...
...

...
. . .

...
x2L′ x2L′ − x1 x2L′ − x2 . . . dL′

A valid G8 table is one which leads to a girth of g ≥ 8.
Lemma 12: A G8 table is valid iff

1) The set of row and column headers together has 2L′

distinct non-zero elements,
2) The diagonal elements d1, d2, . . . , dL′ are all different

from the inverses of the column headers,
3) The diagonal elements are all different from the row

headers,
4) None of the diagonal elements is equal to any of the off-

diagonal elements of the table,
5) The diagonal elements are all distinct.

Proof: These conditions are the equivalent conditions of
Lemma 10 in the same order. Note that a valid G8 table has no
0 anywhere in it. Conditions 4 and 5, which are mathematically
the same albeit for the choice of elements involved but stated
separately for clarity, according to Lemma 10, justify uniquely
identifying the diagonal elements as d1, d2, . . . , dL′ .

Theorem 13: Let the L′ rows of any valid G8 table
be considered as sets of L′ elements each and denoted
A1, A2, . . . , AL′ . If there exist two rows i 6= j such that

|Ai ∩ Aj | = 0 or |Ai ∩ Aj | = L′ − 1 then such a valid
G8 table corresponds to a lifting factor of N ≥ 3L′ − 1.

Proof: In general, |Ai ∩ Aj | ≤ L′ − 1, i 6= j since every
row has a diagonal element that is distinct from the elements
in the rest of the table. The proof, which is given in the rest
of this section, applies conditions 1, 4 and 5 from Lemma 10.

The case where ∃ i 6= j : |Ai ∩Aj | = 0 is considered first.
If so, then |Ai|+ |Aj | = 2L′ and the rest of the L′ − 2 rows
contribute at least one distinct element each as their diagonal
elements have to be distinct and thus the number of distinct
non-zero elements is at least 3L′ − 2 and N ≥ 3L′ − 1.

For the second case, assume WLOG that the rows i, j are
the first two rows of the G8 table, corresponding to A1 and A2,
or the table can be rearranged accordingly (this corresponds to
permuting the columns of P ). Denote the L′ distinct elements
of A1 (in order from left to right) as

d1 = xL′+1 − x1, f1, f2, . . . , fL′−1.

Any Ai, i 6= 1 can be derived from A1 through an offset.
For example, A2 can be obtained from A1 by adding ∆ =
xL′+2 − xL′+1 to d1, f1, f2, . . . , fL′−1 in that order.

The supposition |A1 ∩ A2| = L′ − 1 implies that A1, A2

differ in only d1 6= d2. Since d1 does not repeat or “lead to”
a new element (or else |A1 ∩ A2| < L′ − 1), while adding
∆ 6= 0 to it and since the only new element that is formed in
this second row is d2 = f1 + ∆, this means that d1 + ∆ = fi
for some i ∈ {1, 2, . . . , L′ − 1}. Also ∀k ∈ {2, 3, . . . , L′ − 1}
there exists a unique `k ∈ {1, 2, . . . , L′ − 1} \ {k} such that
fk + ∆ = f`k , fk + ∆ 6= d1, fk + ∆ 6= d2.

Definition 14 (Circular representation): We choose to rep-
resent the elements of Z/N as unique points on a circle in
order from 0 through N − 1 in the anticlockwise direction
such that N − 1 appears on the circle before crossing 0 when
counting from 0 (as integers). With this representation, addi-
tion corresponds to moving along the anticlockwise direction.
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(b) With wrap around

Fig. 1. One possible arrangement of elements of row 1 for Theorem 13

A. Case 1

Fig. 1 shows one of the two possible cases for the structure
of the elements in A1 ∪ {d2} with respect to the circular
representation. In this case, the L′+ 1 elements d1, . . . , f1, d2
form a single chain from d1 to d2, through L′ intervals of



∆ = xL′+2 − xL′+1 points each, as shown in Fig. 1. WLOG
the chain begins at d1 and progresses anticlockwise or else the
two rows can be exchanged to yield this. Fig. 1(b) considers
any possible wrap around.

Lemma 15: For a valid G8 table that falls in the case
illustrated by Fig. 1, there exists a third row whose L′ elements
are all different from the L′ + 1 elements in the chain
(d1, fi1 , fi2 , . . . , fiL′−2

, f1, d2), where {i1, i2, . . . , iL′−2} =
{2, 3, . . . , L′ − 1}.

Proof: Any row beyond the first two rows of the G8 table
relates to A1 by an offset ∆′ 6= ∆. If d1 or d2 repeat in such a
row then the G8 table is not valid. With {i1, i2, . . . , iL′−1} =
{1, 2, . . . , L′ − 1} and with iL′−1 = 1, we need to show that
for a valid G8 table that falls in Case 1, for any k 6= ` ∈
{1, 2, . . . , L′ − 1}, fik + ∆′ 6= fi` and d1 + ∆′ 6= fi` .

Assume for a contradiction that ∃ k 6= ` : fik + ∆′ = fi` .
Define n∆ = ∆ + ∆ + · · ·+ ∆︸ ︷︷ ︸

n times

, where n is any non-negative

integer. If n is negative, define n∆ = −∆−∆− · · · −∆︸ ︷︷ ︸
−n times

.

If ` > k, then fi` = fik + (` − k)∆ and hence ∆′ = (` −
k)∆. Since 1 ≤ ` − k < L′ − 1 we can also obtain that
d2 = fiL′−(`−k)

+ (`− k)∆. This shows that d2 would be an
element of the new row, yielding a contradiction. The same
argument in the opposite direction will show that d1 will repeat
as d1 = fik−`

+ ∆′ if ` < k. Similarly, one can show that, if
d1 + ∆′ = fi` then d2 will repeat.

To summarize, there exist at least (L′+1)+L′+(L′−3) =
3L′ − 2 distinct non-zero elements in a G8 table that is valid
and falls in Case 1, which means N ≥ 3L′−1: L′+1 elements
from A1∪{d2}, L′ elements in a third row and the term L′−3
appears from counting at least one distinct non-zero entry (on
the diagonal) from each of the remaining rows.

B. Case 2

The situation where a single chain is not present within the
set A1 ∪{d2} is considered now. This is because, introducing
only one new element when creating the second row from the
first row, i.e. d2, can also arise from the situation shown by
the example in Fig. 2 (refer to the following description).
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Fig. 2. Alternative arrangement of elements of row 1 for Theorem 13

The elements of A1 ∪ {d2} could be in `+ 1 disjoint sets:

1) Set S with elements {d1, fi1 , . . . , fiL′−2−k`
, f1︸ ︷︷ ︸

L′−1−k` elements

, d2}.

2) ` other sets denoted S′j , 1 ≤ j ≤ ` each comprising k
elements such that within each set adding n∆, n ∈ Z to
any element yields another element within the set itself.

While this case is introduced here, the proof that the
theorem holds for it is given in the Appendix. This concludes
the proof of Theorem 13.

Although Theorem 13 only applies under specific con-
straints on the girth-8 table, we conjecture that the bound
N ≥ 3L′ − 1 applies without these imposed constraints that
∃ i 6= j ∈ {1, 2, . . . , L′} such that |Ai ∩Aj | equals 0 or
L′ − 1.

V. CONCLUSION

This paper considers the problem of constructing (3, L)
quasi-cyclic low-density parity-check (LDPC) codes from
complete protographs. An application of complete mappings
from finite group theory provides explicit constructions of
(3, L) QC-LDPC codes that achieve girth g = 6 with the
minimum possible lifting factor of L when L is odd. Iden-
tifying the minimum lifting factor required to obtain a girth
of g ≥ 8 is posed as a problem in additive combinatorics
using the construct of a girth-8 table (G8 table). An improved
bound on the lifting factor is obtained under certain constraints
on the cardinality of girth-8-table row-set intersections. We
conjecture that this improved bound applies in general.
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APPENDIX
PROOF OF CASE 2

We prove here that Theorem 13 holds for Case 2 which
was introduced in Section IV-B. The ` sets being referred to
in Case 2 (from Fig. 2) have the same number of elements,
denoted k here, or else adding ∆ will create a new element for
the second row, apart from d2 which is already being created
from f1 ∈ S. To show that the theorem holds for this case,
we focus on the k` elements from the ` sets. For this case,
a “linear” relationship within the elements of the ` + 1 sets
holds as follows. For the elements in S,

d1 + ∆ =fi1 ,

fi1 + ∆ =fi2 ,

...
fiL′−2−k`

+ ∆ =f1,

f1 + ∆ =d2.

For the elements in the ` sets S′j ,

∀x ∈ S′j , 1 ≤ j ≤ `, x+ n∆ ∈ S′j ,∀n ∈ Z. (10)

Observe that if the elements from the group Z/N are chosen
for A1 according to Case 2, then the following holds:

∀x ∈ Z/N, x+ k∆ = x. (11)

Each column of the G8 table has a diagonal element that
appears only once in the table. By adding offsets to the k`
elements in (A1 ∪ {d2}) \ S to obtain the k` corresponding
diagonal elements (and their respective rows), we have the
following crucial observation.

Lemma 16: For each column corresponding to an element
in (A1 ∪ {d2})\S, when obtaining a new diagonal element, at
least k new non-zero elements are obtained in the correspond-
ing row. Considering all k` such rows, a total of k2` distinct
elements, that are different from the elements in A1 ∪ {d2},
is guaranteed for any valid G8 table that falls under Case 2.

Proof: Consider x1 ∈ (A1 ∪ {d2}) \ S and assume that
x1 ∈ S′i1 for some 1 ≤ i1 ≤ `. There is an offset ∆1 6= ∆
such that x1 + ∆1 = dx1

, where dx1
is the diagonal element

in the column containing x1. Note that the row containing dx1

also contains every element in S′i1 +∆1 = {s+∆1 : s ∈ S′i1}.
No element in S′i1 + ∆1 appears in A1 ∪ {d2} as this would
force either S′i1 +∆1 = S′j , j 6= i1 so that dx1 ∈ A1∪{d2} or
S ⊆ S′i1 + ∆1 so that d1 and d2 appear in the row containing
dx1

due to (10). Either of these results would lead to a G8

table that is not valid.
Now consider a second element x2 ∈ (A1 ∪ {d2})\S, x2 6=

x1 and x2 ∈ S′i2 , where 1 ≤ i2 ≤ ` is not necessarily different
from i1. There is an offset ∆2 /∈ {∆,∆1} such that x2 +
∆2 = dx2

, where dx2
is the diagonal element in the column

containing x2. Note that the row containing dx2 also contains
every element in S′i2 + ∆2. Following the same reasoning as
with x1, no element in S′i2 + ∆2 appears in A1 ∪ {d2}. Also,(
S′i1 + ∆1

)
∩
(
S′i2 + ∆2

)
= ∅ or else S′i1 + ∆1 = S′i2 + ∆2

due to (10) and in particular dx2 ∈ S′i1 + ∆1 which would
lead to a G8 table that is not valid.

Continuing by induction yields k2` distinct elements that
are not in the first row and are different from d2.

Thus we have for any valid G8 table in Case 2 that

N ≥ L′ + 2 + k2`, (12)

where L′+2 arises from counting the elements in A1∪{d2, 0}.
Lemma 17: In the context of Case 2, where |S| = L′−k`+1,

L′ − k`+ 1 ≤ k. (13)

Proof: Due to (11).
Case 2 is only possible when L′ ≥ 5, k ≥ 3 and ` ≥ 1. We

consider two ranges for k as follows: If k ≥
√

2L′ − 3, then

N ≥L′ + 2 + k2`

≥L′ + 2 + k2

≥L′ + 2 + 2L′ − 3 = 3L′ − 1. (14)

If k <
√

2L′ − 3, we first use (13) in (12) to get

N ≥L′ + 2 + k2`

≥L′ + 2 + k(L′ − k + 1)

=L′ + 2 + kL′ − k2 + k, (15)

which yields a quadratic expression in k for every L′. This
is concave in k and it can be verified that the maximum of
the right-hand side is obtained at kmax = L′+1

2 . Under the
supposition that k <

√
2L′ − 3, we can also trivially verify

that k <
√

2L′ − 3 < kmax for L′ ≥ 5 and thus (by concavity)
to minimize the right-hand side, we have to set k to the
smallest feasible value, which is k = 3. This yields

N ≥L′ + 2 + 3L′ − 9 + 3

=4L′ − 4 > 3L′ − 1,∀L′ ≥ 5, (16)

which completes the proof for Case 2 and thus of Theorem 13.


