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Concept

* Exploit monolithic-integration advantages of

fiber technology to develop compact, power
and energy scalable OPCPA pump source
* Exploit efficiency of OPA pumping at 2.75um

Monolithically integrated fiber
laser array

into 8-12um range

Fiber amplifier array

. 1ns 1.2-1.5J at 2.75um at kHz rep. rates
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Example of fiber laser integration:

100kW modular-integrated industrial laser system

1 10kW cw fiber laser
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Why 2.75um pumping?
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Why Er:ZBLAN fibers?

Silica ZBLAN
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| Er ZBLAN 0975 2.8 > %y 2 30w )X 35% |
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Dy?* ZBLAN 171 29 Hyp>Hs, 0275 45
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S.D. Jackson, Nature Photonics, vol. 6, 2012, p 423
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Proposed architectures
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Architecture 1:

OPCPA pump using a directly modulated source

(20-40)x1ns pulse burst at 2.75um

~200-600 parallel channels (assuming 2-6mJ per channel)
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Architecture 2:

OPCPA pump using a mode-locked oscillator

(20-40)x1ns pulse burst at 2.75um

~200-600 parallel channels (assuming 2-6mlJ per channel)

- | Er:ZBLAN fiber Beam Pulse -
Stretcher | amplifier array > Combiner [ | Stacker
T — —
Modulator Pair
) . h— )
Er:ZBLAN fiber based 1ns 1.2-1.5) at 2.75um
ML Oscillator + Amplif.
¥
Supercontinuum or o A—H5~ OPCPA é ——
parametric down- Stretcher | mem [Il Compressor i
conversion 1ns 8-12um

stretched pulse 80fs 80mJ @ 8-12um
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Comparison of the two architectures

Architecture 1: Architecture 2:
* Advantages: « Advantages:
— Direct pulse forming by — Automatic
modulation synchronization with
. Elgctronic synchronization OPCPA seed
with OPCPA seed source — Low speed EOM at
* no stretcher

_ _ 2750nm are sufficient
— Simple source (single-

frequency Er:ZBLAN cw

laser)
* Challenges: * Challenges:
— Speed of EOM modulators at — Stretcher is required
2750nm? — Low in-burst repetition
— high gain pre-amplifier rate —increases
chain/ASE suppression? stacker size or reduces

its efficiency

10



Current State-of-the-art in
Coherent Pulse Stacking Amplification

11
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DOE funded LPA driver development of time- and
spatially-combined Yb-fiber arrays at 1um

* Bulk of the system is envisioned to be an
integrated rack-mount assembly of
multiple fiber-laser “circuit boards”

* Provides with a scalable architecture of
>30% WPE laser drivers with E 0.1)->
10J at kHz repetition rates
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DNN and DHS funded high energy and power Thomson-
scattering source for mono-energetic gamma rays

Spectral and space combined system for
synthesizing flat-top high energy ps pulses

h GTI phase stabilization

K
\Npllfler phase control and stabilization

SEEE Monitoring inputs
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Chirped Pulse Amplification (CPA)

D. Strickland, G. Mourou, “Compression of amplified chirped optical pulses,” Compressed
Optics Communications, vol. 56, pp. 219-221 (1985) output signal
Amplified
: signal
Stretched signal &
i ~10% ti i
Oscillator A (by ~10% times) Amplifier
e TSN
—> —>
Z
o~
Stretcher Compressor

* CPAreduces peak power by ~10°
* ~10%to 10° energy increase comes from pulse stretching

* In asolid-state CPA - further 10! to 102 energy increase from transverse crystal size scaling

* In afiber CPA:

* Limited transverse aperture scaling - achievable energies are ~2 orders of magnitude below
stored energy level

* To extract full energy from a fiber: extend pulse duration by further ~10? 14
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Energy Scaling of Fiber based CPA and CPSA Systems
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Coherent Pulse Stacking Amplification (CPSA)

~1GHz mode-locked phase-modulated effectively ~100ns long pulse
pulse train stacking burst Burst shape:

- compensates gain saturation
- equalizes nonlinear phase within
amplitude

% e, the burst
‘ | Ll ||"""|TITI'I‘.':'
phase I

lllllll

Oscillator [~——————EOM-A |- EOM-P |

Stacking Burst Formation

Stretcher

Fiber Amplifier Chain
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Pulse Pulse stacker

compressor “ll
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Pulse Stacking and Compression

SM AOM SM AOM LMA AOM 85CCC 85CCC H Signal Amplification/Energy Extraction

Amplified Stacking Burst:
Compressed Pulse Stacked Pulse Effectively ~100ns long 16
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CPSA - is a Coherent Time-Domain Combining Technique

EOM Control |_| l_J

FPGA

Stacking Controls
feedback 4

PC

GTI phase control and
1 stabilization

Peak detection
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Current CPSA Experiment
LD, AA - ans

~1GHz fs Pulse Train 81 pulse modulated burst Effectively ~100ns long pulse
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4+4 GTI| Cascade Stacking and compression of 81 Pulses
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Er:ZBLAN properties, technical challenges,
and proposed research directions

20
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Spectroscopic properties
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e Emission cross-section peak values are similar at various wavelengths

* However, since E.,,~ 1/\, achievable pulse energies tend to decrease with
increasing wavelength

S. D. Jackson, Nature Photonics, vol. 6, 423 (2012) 21
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Summary of Er:ZBLAN fiber laser results

* Max slope efficiency:

— 35.4% with 20W cw output (air cooled)
* Note: quantum defect is 35% for 980nm pumping!

* Max power: N . "] £
— 30W cw with 188W @ 980nm £ | ¢ ExzmLay "%
* Max pulse energies: R
— 0.6 mJ in 50ns (Q-switched) ER oy E 8 }é
— 1.9 mJ (pulse pumped) il ’ j R

¢ S h O rteSt p u Ise d u ratio n S : Advances?n OptokElectronics, vol. 2010, p1

— ~200fs at 55MHz from a NPE mode-locked laser
 Note: Bandwidth-limit <100fs

22
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Er:ZBLAN fiber laser challenges

e Multi-mJ pulsed energy extraction f T
— Is 2mJ— 6 mJ per-burst achievable? | [T | |7 A28
* Average power/thermal issues due to high QD v y ..
— Airvs |iCIUid cooling? e Energy transfer
* Efficiency (i.e. bottlenecking in lower level) / between Er* ions
— Has been largely addressed by high Er3* doping i:;r:gm
* Modal properties

— Lower V-numbers due to long wavelengths: LMA vs single-mode?
* Fiber end protection from degradation and damage R

— ZBLAN endcaps? Fusi .

S _ _ _ o usion-splicing

* Monolithic integration (crucial for fiber array combining) of ZBLAN glass

— Passive to active ZBLAN fiber splicing

— Silica to ZBLAN splicing

— ZBLAN fiber pump combiners®

— ZBLAN fiber pigtailing of components (isolators, modulators, etc.)

~ fibers

“first demonstration: “Towards a 20W-level industrial-grade Er:ZBLAN fiber laser at 2.8um”
Paper JTu2A.38, in ASSL 2017, Nagoya, Japan, October 1-5 2017 23
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Outline of Research Directions

2017 2018 2019 2020 2021 2022

Explore Er:ZBLAN gain-medium operation and

performance of critical components at 2.75um:
Construct and explore mode-locked oscillator
Explore ns-pulse modulated source: linewidth, pulse
duration and shape, 2.75um EOM speeds
Explore single-mode and LMA amplifiers: pulse energies,
powers; optical isolation and ASE gating between stages
Explore fusion splicing ZBLAN: endcaps, fibers, etc.

Er:ZBLAN based time and space
combined system design

Single-channel pulse stacking at mJ

energies 2.75um pulsed pump driven OPA/OPO
at 8-12um

2.75um pumped OPCPA at 8-12um

24
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Summary

* Er:ZBLAN fiber platform offers an interesting
“window” into mid-IR spectral range

— Compatible with ultrashort pulses
— Potentially compatible with high energies

* Itis an “early stage” technology, which needs to
be explored.

— It has a significant potential for future mid-IR sources
(direct and parametrically down-converted)

26



