

Michigan Engineering

2.8 µm Er:ZBLAN Fiber Array Technology

ONR MURI Kick-off Meeting, UCLA, October 11-12, 2017

Almantas Galvanauskas

Center for Ultrafast Optical Science (CUOS), University of Michigan, Ann Arbor, Michigan, USA

Motivation

Concept

Michigan Engineering

Example of fiber laser integration: 100kW modular-integrated industrial laser system

Commercial 100kW cw fiber laser!

10kW cw fiber laser

37.5% Wall-plug efficiency!

Why 2.75µm pumping?

- Quantum defect 11% (for 1 μ m \Rightarrow 9 μ m)
- Signal losses at 8-12 μ m
- Relatively narrow signal bandwidth

- Quantum defect 21% (for 2 μ m \Rightarrow 9 μ m)
- Signal losses at 8-12 μ m
- Relatively narrow signal bandwidth

- Quantum defect 31% (2.75 μ m \Rightarrow 9 μ m)
- No signal losses at 8-12 μ
- Broadband signal covering 8-12μm

Michigan Engineering

Why Er:ZBLAN fibers?

S.D. Jackson, Nature Photonics, vol. 6, 2012, p 423

Proposed architectures

Architecture 1:

OPCPA pump using a directly modulated source

Architecture 2: OPCPA pump using a mode-locked oscillator

(20-40)x1ns pulse burst at 2.75um

Comparison of the two architectures

Architecture 1:

- Advantages:
 - Direct pulse forming by modulation
 - Electronic synchronization with OPCPA seed source
 - no stretcher
 - Simple source (singlefrequency Er:ZBLAN cw laser)
- Challenges:
 - Speed of EOM modulators at 2750nm?
 - high gain pre-amplifier chain/ASE suppression?

Architecture 2:

- Advantages:
 - Automatic synchronization with OPCPA seed
 - Low speed EOM at 2750nm are sufficient

- Challenges:
 - Stretcher is required
 - Low in-burst repetition rate – increases stacker size or reduces its efficiency

Current State-of-the-art in Coherent Pulse Stacking Amplification

Michigan Engineering DOE funded LPA driver development of time- and spatially-combined Yb-fiber arrays at 1μ m

- Bulk of the system is envisioned to be an integrated rack-mount assembly of multiple fiber-laser "circuit boards"
- Provides with a scalable architecture of >30% WPE laser drivers with E_{pulse} 0.1J - > 10J at kHz repetition rates

DNN and DHS funded high energy and power Thomsonscattering source for mono-energetic gamma rays

Chirped Pulse Amplification (CPA)

- CPA reduces peak power by ~10⁵
 - ~10⁴ to 10⁵ energy increase comes from pulse stretching
- In a solid-state CPA further 10¹ to 10² energy increase from transverse crystal size scaling
- In a fiber CPA:
 - Limited transverse aperture scaling achievable energies are ~2 orders of magnitude below stored energy level
- To extract full energy from a fiber: extend pulse duration by further ~10²

Energy Scaling of Fiber based CPA and CPSA Systems

Coherent Pulse Stacking Amplification (CPSA)

CPSA – is a Coherent Time-Domain Combining Technique

Current CPSA Experiment

4+4 GTI Cascade Stacking and compression of 81 Pulses

Er:ZBLAN properties, technical challenges, and proposed research directions

Spectroscopic properties

- Emission cross-section peak values are similar at various wavelengths
- However, since $E_{sat} \sim 1/\lambda$, achievable pulse energies tend to decrease with increasing wavelength

S. D. Jackson, Nature Photonics, vol. 6, 423 (2012)

Summary of Er:ZBLAN fiber laser results

- Max slope efficiency:
 - 35.4% with 20W cw output (air cooled)
 - Note: quantum defect is 35% for 980nm pumping!
- Max power:
 - 30W cw with 188W @ 980nm
- Max pulse energies:
 - 0.6 mJ in 50ns (Q-switched)
 - 1.9 mJ (pulse pumped)
- Shortest pulse durations:
 - ~200fs at 55MHz from a NPE mode-locked laser
 - Note: Bandwidth-limit <100fs

Er:ZBLAN fiber laser challenges

^{*}first demonstration: "Towards a 20W-level industrial-grade Er:ZBLAN fiber laser at 2.8um" Paper JTu2A.38, in ASSL 2017, Nagoya, Japan, October 1-5 2017

Outline of Research Directions

Summary

- Er:ZBLAN fiber platform offers an interesting "window" into mid-IR spectral range
 - Compatible with ultrashort pulses
 - Potentially compatible with high energies
- It is an "early stage" technology, which needs to be explored.
 - It has a significant potential for future mid-IR sources (direct and parametrically down-converted)