

Solid-State Coherent Sources at Long Wavelengths

Igor Jovanovic

University of Michigan Center for Ultrafast Optical Science ansg.engin.umich.edu

> MURI Kickoff, UCLA October 11, 2017

Overview

CO₂ is the current state of the art for LWIR production

Direct amplification in CO₂

D. F. Gordon et al., Proc. SPIE (2016)

D. Haberberger et al., Opt. Express (2010)

M. N. Polyanskiy et al., Optica (2015)

- high energy (1 J) needed to reach TW peak power with relatively long pulses (ps)
- limited tunability
- no CEP (yet)
- limited repetition rate (discharge in CO₂)

High-power solid-state sources in the MIR are pushing towards the LWIR range

G. Andriu

D. Sanchez et al., Optica (2016)

T. Kanai et al., Opt. Lett. (2017)

We have developed MIR OPAs at 2-5 µm

Previously: 10 Hz Now: 0.5 kHz

- G. Xu, S. Wandel, and I. Jovanovic, Rev. Sci. Instrum. (2014) S. Wandel, G. Xu, Y. Yin, and I. Jovanovic, J. Physics B (2014)
- S. Wandel, G. Xu, and I. Jovanovic, Opt. Express (2016)
- S. Wandel, M.-W. Lin, Y. Yin, G. Xu, and I. Jovanovic, JÓSA B (2016)
- 2 µm source now operates at 0.5 kHz
- 5 µm source reactivation in progress

Amplified pulse spectrum supports transform-limited pulse duration of 50 fs (~3 optical cycles)

A simple 1D coupled-wave OPA model is in relatively good agreement with the measured spectrum.

Amplified 5-µm pulses exhibit excellent shot-to-shot energy stability and a uniform beam profile

High pump depletion in the OPA II significantly improves the energy stability.

Near-field beam profile measured with InSb array camera

We need to transition to OPCPA to support higher pulse energies

Our technical approach is based on 8-12 µm OPCPA in GaAs pumped by coherently pulse stacked 2.75 µm Er:ZBLAN

Er:ZBLAN

0.5-1 J, 1 ns, 2.75 μm Coherent pulse stacking (A. Galvanauskas talk) GaAs OPCPA

50-70 mJ, <100 fs 8-12 μm Long-stretch (ns)

2.75 μm —> 10 μm + 3.8 μm

Theoretical maximum conversion efficiency: 2.75/10 = 27.5%

Expected experimental conversion efficiency: ~10 %

Path to TW solid-state LWIR source scalable to high average power

OP-GaAs 2.75 μm -> 10 μm + 3.79 μm

Atmospheric transmittance is a consideration in source design

Transparency is an important characteristic of crystals

BAE SYSTEMS

Courtesy P. Schunemann, BAE Systems

The other major consideration is the gain and bandwidth

T. Skauli et al., J. Appl. Phys. (2003)

OP-GaAs is limited in aperture, but multi-mJ pulses are possible with nanosecond OPCPA

BAE SYSTEMS

Damage threshold for both GaAs and ZGP: 2.5 J/cm², ns @ 2 μ m Operate at 1.5 J/cm² -> the required beam size for 1 J pulse is ~1 cm

Maximum OP-GaAs crystal thickness produced by BAE Systems (P. Schunemann): 3 mm

		INSPIRED WORK
∆ssume 2 mr	n heam siz 4	Wavelength (µm) 3.5 3 2.5
Ma	Er Laser	
M3 PZ	0.0 Las . Extra Las 	All 0.5mmGaP+1.12mmCaF2 eal-world efficiency of 10%:
OP-GaP M2	-1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0	2700 3000 max inatime energy of ~5 mJ from OPGaAs Wavenumber (cm^-1)
— 1	5 4.5 4	Wavelength (um) 3.5 3 2.5

-5

(dB)

0.5

M1

To take this OPCPA approach to TW (~100 mJ) and beyond, we can consider two possibilities

Generation of seed ultrashort pulses for LWIR OPCPA

We will first demonstrate the LWIR OPCPA architecture using surrogate seed and pump sources

Surrogate pump

NUCLEAR ENGINEERING & RADIOLOGICAL SCIENCES

Conclusions

- LWIR solid-state sources are in their infancy
- Under this MURI we will demonstrate a novel 8-12 OPCPA architecture based on GaAs and pumped by a 2.75 µm Er:ZBLAN fiber
- The new architecture is scalable to high peak and average power
- We will compress and use our existing 5 μm OPA source to conduct measurements at 5 μm

