

Laboratory for Ultra Fast Optical Science (UFOs)

Strong THz generation from air plasma using a long wavelength laser

Kiyong Kim

Department of Physics, Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742

ONR MURI annual review meeting at UMD, Oct 25-26, 2018

Acknowledgements:

Dogeun Jang, postdoc Robert M. Schwartz, grad student Daniel Woodbury, grad student Howard M. Milchberg

Project goals

G Study of THz/microwave emission from 10 μm filamentation

- Investigate THz/microwave generation mechanisms (single-color, two-color, 10.3 μm + 10.6 μm mixing schemes)
- High-power THz/microwave generation

Development of THz/microwave detection schemes

- THz/microwave characterization (energy, spectrum, polarization,...)
- Single-shot THz/microwave spectroscopy

□ Characterization of CO₂ laser produced air filaments

- THz/microwave radiation spectral analysis
- Plasma density measurement with a B-dot probe
- Time-resolved THz spectroscopy with a femtosecond laser

Outline

Strong THz field generation

• Two-color laser mixing

□ THz/harmonics generation at long wavelengths

- 1% laser-to-THz conversion efficiency
- Coherent control of ionization, THz, and harmonics

□ Future experiments & simulation

- mJ-level THz generation
- Accurate phase-dependent measurements
- UPPE simulation

G Summary

Strong THz field generation: Two-color laser mixing

THz generation via two-color laser mixing:

$$\mathbf{P}(t) = \varepsilon_0 \left(\chi^{(1)} \mathbf{E}(t) + \chi^{(2)} \mathbf{E}^2(t) + \chi^{(3)} \mathbf{E}^3(t) + \dots \right)$$

D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).

THz generation mechanism: *Plasma current model**

ė

e-

ė

e

Current surge → THz generation

THz

BBO crystal

 2α

*K. Y. Kim *et al.*, Nature Photonics **2**, 605 (2008). K. Y. Kim *et al.*, Optics and Photonics News **19**, 49 (2008).

Wavelength scaling with two-color mixing

THz energy scaling:

Need more studies!

Plasma current $(\sim\lambda^2)$ Plasma length & radius $(\sim\lambda)$ Peak intensity $(\sim\lambda^{-2})$ Longitudinal current $J_z^{(2)}$ $(\sim\lambda^4)$ Transverse current $J_x^{(3)}$ $(\sim\lambda^6)$

Brunel radiation*

- Brunel proposed harmonic generation due to plasma effects in a gas undergoing ionization
- Bound-free transition (plasma current) produces harmonics
- THz = 0th order Brunel radiation
- Explains lower-order harmonics

(N. H. Burnett et al., PRA 51, R3418 (1995))

 Higher-order harmonics due to recollisions

(P. B. Corkum, PRL **71**, 1994 (1993))

*F. Brunel J. Opt. Soc. Am. B 7, 521 (1990)

Contributions from bound vs free electrons

Time-dependent Schrödinger equation (TDSE)

THz & harmonics generation: Experiment

OPCPA laser at UMD ($\lambda = 3.9 \ \mu$ m)

Optical Parametric Chirped-pulse Amplification (OPCPA)

- High harmonic generation:
- T. Popmintchev et al., Science 336, 1287 (2012).
- Mid-IR filamentation in air: A. V. Mitrofanov et al., Sci. Rep. 5, 8368 (2015).
- Plasma wakefield acceleration: D. Woodbury et al., Opt. Lett. 43, 1131 (2018).

Experimental setup

• Measured phase dependent THz, harmonics, and plasma fluorescence

Relative phase θ control

- Laser energy loss \approx 10 % at ϕ = 0°
- Group velocity walk-off \approx 20 fs at ϕ = 42°
- Transverse beam separation $\approx 1 \ \mu m$ at $\phi = 42^{\circ}$

Phase dependent ionization, THz, & harmonics

At $\theta = \pi/2$, less ionization but more THz expected from plasma current model

Laser-to-THz conversion efficiency THz Harmonics Plasma $3.9 \,\mu m CaF_2$ Laser loss considered Coverslip GaSe pulse Lens 30 **H**Z 10% 30% 25 coversion efficiency **Fresnel** loss loss 20 ,01 energy 15 Max. 1% efficiency 0.1 with $I_{2\omega}/I_{\omega} = 0.02$ 10 THZ Higher efficiency 5 expected with greater 0 (% 0.01 $I_{2\omega}/I_{\omega}$ 3 5 2 4 Laser energy (mJ)

Wavelength scaling

THz generation via two-color mixing

- Better than λ^2
- Surprisingly high
 THz energy
 expected at 10 μm

Coherent control of broad EM waves

Future Experiments & Simulation:

UPPE simulation

Unidirectional pulse propagation equation (UPPE)*

$$\frac{\partial \tilde{E}(z,\omega,k)}{\partial z} = ik_z \tilde{E}(z,\omega,k) + \frac{i\omega^2}{2\varepsilon_0 c^2 k_z} \tilde{P}_{NL}(z,\omega,k) - \frac{\omega}{2\varepsilon_0 c^2 k_z} \tilde{J}(z,\omega,k)$$

Dispersion Nonlinear polarization Plasma current

$$k_{z} = k_{z} (\omega, k) = \sqrt{\omega^{2} \varepsilon(\omega)/c^{2} - k^{2}}$$
$$\tilde{P}_{NL} = \varepsilon_{0} \left(\chi^{(3)} E^{3} + \chi^{(5)} E^{5} + \cdots \right)$$
$$\tilde{J} = \frac{e^{2} (\nu_{e} + i\omega)}{m_{e} (\nu_{e}^{2} + \omega^{2})} \tilde{\rho} \tilde{E}$$

- Carrier based, no envelope approximations used
- Capture phase-dependent plasma, THz, harmonics generation with propagation

*M. Kolesik and J. V. Moloney, PRE 70, 036604 (2004)

Next experiment with 3.9 μ m laser (1)

Next experiment with 3.9 µm laser (2)

Short plasma generation for accurate phase measurements

- Phase integrated effects occur by a long plasma created in air (due to plasma dispersion and Gouy phase shift)
- A short plasma will allow accurate measurements of phase θ dependent plasma, THz, and harmonic generation

Summary:

□ THz generation at long wavelengths:

- Observed 1% THz conversion efficiency with two-color laser mixing in air
- Generated broadband EM waves from microwave to UV
- Studied coherent control of ionization, THz, and harmonic generation

❑ Near future experiments & simulation:

- Generate mJ level THz radiation with 5~10% efficiency
- Use a thin nozzle to localize phase-dependent effects in plasma, THz, and harmonic generation
- UPPE simulation for propagation effects

Anticipate more exciting results over the next 4 years!