2.8 μ m Er:ZBLAN Fiber Array Technology

ONR Mid-IR MURI 1st Annual Review, University of Maryland, Baltimore, October 25-26, 2018

Almantas Galvanauskas

Center for Ultrafast Optical Science (CUOS), University of Michigan, Ann Arbor, Michigan, USA

The Team

- Prof. A. Galvanauskas group:
 - Weizhi Du, PhD student (100% on MURI 1GSRA + supplementary equipment support)
 - pulse amplification in Er:ZBLAN LMA fibers
 - Yifan Cui , PhD student (part time on MURI)
 - Mode-locking of Er:ZBLAN fiber lasers
 - Mingshu Chen, MS student (part time on MURI)
 - ZBLAN fiber processing and protective end-cap fabrication
- In collaboration with Prof. I. Jovanovic group:
 - Xuan Xiao, PhD student
 - OPO/OPA "surrogate" seed source for testing Er:ZBLAN amplifiers

MichiganEngineering

Proposed solid-state laser architecture for generating 8-12µm TW peak power ultrashort pulses

Why 2.75 μ m Er:ZBLAN fibers for ~10 μ m OPA pumping?

• Er:ZBLAN fiber amplifiers

- Pumping @ 975nm common telecom pump diodes
- Signal @ 2.75µm
 - Option for 3.6μm signal (needs combined 975nm and 2μm pumping)
- High power (per channel): max demonstrated cw power ~100W
- Good mid-IR efficiency: max demonstrated slope efficiency ~35%

OP-GaAs OPA pumped at 2.75μm

- Quantum defect 31% (2.75 μ m \Rightarrow 9 μ m)
- Low-loss signal and broadband at $8-12\mu m$

Project Objectives

Example of a ns-pulse based source architecture (20-40)x1ns pulse burst at 2.75um

Example of a fs-pulse based source architecture

- Establish mid-IR fiber laser capability
- Explore key enabling factors of coherently-combined femtosecond fiber systems in Mid-IR:
 - Pulse generation and amplification technologies and achievable performance
 - Energy storage and extraction
 - Power and energy scaling potential
 - Monolithic integration

...

• Possible with ZBLAN fibers, but splicing technology is incipient

Outline of Research Directions (Actual and Aspirational)

Current efforts

Yifan Cui

Oscillator is working!

NPE based Oscillator design and layout

Erbium doped ZBLAN fiber (3.9 m)

Gain fiber: Le Verre Floure 15µm/0.12 NA core, 240-290µm/0.5NA clad Absorption @980 nm: 2.5 dB/m

- Operation parameters
 - Pump power at 975nm:
 - 2.04W (coupled)
 - Oscillator output at 2.75μm:
 - 87mW
 - Repetition rate:
 - 42.5 MHz
 - Pulse energy:
 - 2.05nJ
 - Pulse duration:
 - Expected ~100-200fs
 - Autocorrelator is currently under construction...

- Challenges:
 - Degradation of unprotected fiber ends:

- Further plans:
 - Amplification in Er:ZBLAN fibers
 - Supercontinuum generation to ~4-5 μ m
 - OPA seed
 - Er:ZBLAN CPA?
 - Explore ~3.6µm mode-locked operation using combined
 975nm and ~2µm pumping with Tm-doped fiber laser?

High energy amplification in Er:ZBLAN fiber amplifiers

Weizhi Du (Er:ZBLAN amplifier) and Xuan Xiao (OPO/OPA source)

 Our objective is to explore feasibility of obtaining 2-5mJ ~100ns pulses from 30-50um core Er:ZBLAN fiber amplifier

High energy amplification in Er:ZBLAN fiber amplifiers

- These are initial results
 - More experiments and analysis needed, but it already indicates that mJ range is feasible with 30-70µm core Er:ZBLAN fibers
- To increase energies into ~mJ range it is necessary to protect fiber ends with spliced endcaps

Development of ZBLAN fiber splicing capabilities

Mingshu Chen, MS student

- Endcaps for fiber end protection from degradation and optical damage
 - At this point critical for
 - Reliable operation of the mode-locked oscillator
 - Er:ZBLAN LMA fiber end protection from optical damage and degradation

	ZBLAN	AIF ₃
Glass transition temperature (Tg)	265 °C	367 ºC
Thermal expansion (a)	200 x 10-7 /°C	186×10-7 /ºC
Water solubility (Dw)	29.2wt%	0.27 wt%
Acid solubility (Da)	32w t %	0.69 wt%*
Young's modulus (E)	53 GPa	66 GPa
Knoop hardness (HK)	2.2 GPa	3.1 GPa

Development of ZBLAN fiber splicing capabilities

- Monolithic fiber-optic components ZBLAN fiber splicing, pump combiners?
- Technical challenge: low splicing temperatures required by ZBLAN glass
- We are working with Vytran to develop low-temperature splicing processes

Vytran LDS 1250

old equipment we are using:

- Vytran is no longer supporting this equipment (no replacement options for old iridium filaments, currently Vytran uses different type of filaments)
- New splicing equipment is beyond current budget: LFS4100 splicer is optimized for low-T splicing but the cost is \$48,200

Summary and next steps

- Established critical mid-IR fiber laser exploration capabilities:
 - Mode-locked fs pulse source
 - High-energy amplification system
- Mode-locked oscillator:
 - Reliability (end protection), full characterization, etc...
 - Direct amplification
 - Extend mode-locked operation to ~3.6μm?
 - Will need construction of Tm-doped silica fiber laser pump
 - Contact with prof. S. Jackson's group at Macquarie University in Australia
- Amplification (using surrogate OPO/OPA seed source):
 - Measure stored energies in 30μm core Er:ZBLAN LMA amplifier and fully characterize it
 - End protection endcaps are critical
 - Need longer pulses
 - Explore high energy amplification in 50μm and 70μm core Er:ZBLAN LMA fibers
 - Explore ~3.6µm amplification?
 - Atmospheric transmission window
 - 30% higher OPA quantum defect/conversion efficiency

•

Possible future directions

• Er:ZBLAN fiber based CPA system

• Er:ZBLAN fiber based coherent pulse stacking amplification (CPSA) system

