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A theoretical model is developed to describe helium transport and clustering during irradiation. Diffusional reactions of 
helium with vacancies and vacancy clusters, with extended sinks for helium absorption, and direct reactions with displacement 
producing particles are included. The full description developed is employed in numerical computations. A simpler description 
is also developed in the limits where certain reactions are unimportant. Analytical expressions for the effective diffusion 
coeficient of helium are derived. Regimes of the parameter space of dose rate, temperature, helium generation rate, sink 
strength and other important conditions, where the effective diffusion coefficient is dictated by three different physical 
processes, are defined. The result is determined by the dominant release mechanism of helium bound in vacancies-thermal 
detrapping, replacement by the self-interstitial or direct displacement. Results from the full computations and the analytical 
expressions are compared. 

1. Introduction 

It has been demonstrated, through many experi- 
ments during the last decade, that the presence of 

helium atoms in metals and alloys is detrimental to their 
properties. It is also established that helium atoms assist 

the nucleation and growth of cavities in irradiated 
materials leading to volumetric swelling [l]. Helium 
migration and clustering at grain boundaries result in 
high temperature embrittlement [2]. Tensile and other 
mechanical properties are all shown to be influenced by 
the presence of helium [3]. 

Helium atoms introduced into the solid can reside in 
an interstitial position, in a substitutional position, or in 
clusters of helium and vacancies, which are at larger 
sizes termed cavities. Extensive computer simulation 
studies [4-61 have provided information on the energet- 
its of helium reactions in the previously mentioned 
form. 

Philipps and co-workers [7] concluded that the effec- 
tive helium diffusion coefficient in nickel, D&t’, between 
800 and 1250°C can be expressed as: 

oh: = 10-2.2 f0.3 exp , (1) 
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where k is Boltzmann’s constant and T is temperature. 
The effective activation energy (0.81 eV) was interpreted 
as the difference between the dissociation energy of a 

helium atom in a substitutional site and the vacancy 
formation energy. More recently, evidence to the effect 

that the activation energy for diffusion of helium as an 

interstitial may be in the range of 0.11 to 0.14 eV [8, 91 
has been obtained. 

Under irradiation conditions, where helium atoms 
are introduced concurrently with displacement damage, 
three more features complicate the understanding of 
helium transport. First the competition between self-in- 
terstitials and helium atoms to react with vacancies. 
Next, helium atoms tend to agglomerate with radiation- 
induced as well as thermal vacancies. Finally, displace- 
ment collision cascades can supply enough energy to 
remove helium “bound” to vacancies or vacancy clus- 
ters. In this paper, we present a comprehensive model 
for the transport and clustering of helium in irradiated 
structural materials. 

A comprehensive theory is presented in the next 
section including possible reactions influencing helium 
migration in irradiated structural materials. Since the 
interpretation on the numerical results involves various 
simplifications, an analytical model is given in section 3. 
While the numerical computations are essential, the 
analytical model describes the various regimes possible 
in terms of the parameters of the theory and give exact 
values of the effective diffusion coefficient in limiting 
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cases. Section 4 presents the results of the calculations. 
This is followed by discussions and conclusions in sec- 
tion 5. The symbols and notations are given in a sep- 
arate “ nomenclature” section. 

2. Theory of helium transport 

A major problem in formulating a theoretical model 
for helium migration lies in the complicated possibilities 
by which helium interacts with point defects. During 

irradiation, helium reactions include: (1) trapping and 
thermal detrapping of helium in single vacancies, di- 

vacancies and higher order clusters; (2) helium trapping 
at dislocations and grain boundaries; (3) replacement of 

helium bound to single vacancies by self-interstitials; (4) 
helium clustering into vacancy-helium complexes; (5) 
displacement of trapped helium atoms by irradiation; 
and (6) migration of helium as an interstitial atom or in 

a divancancy. 
Ignoring the majority of the above possibilities, Reed 

[lo] developed a simple model for helium diffusion in 
irradiated materials. In his model, helium was assumed 
to be thermally detrapped from irradiation produced 

vacancies. The effective helium diffusion coefficient was 

expressed as: 

Deff = ,, He exp( - EE,/kT). 

In this study, we include all of the reactions outlined 
above. The basic assumption in our analysis is that 
helium-point defect interactions are homogeneous in 

time and space. As such, the discontinuous defect pro- 
duction nature due to the generation of collision cascades 
is not treated [ll]. In the present model, reaction rate 
constants are derived by extending Chandrasekhar’s 
earlier treatment of coagulation [ 121. 

2. I Rate equations Complexes containing m-vacancies and n-helium atoms: 

Chemical reaction rate theory is used here to de- 
scribe clustering events between randomly migrating 
species. This method has been used previously to calcu- 
late nucleation rates of fission gas bubbles in nuclear 

fuels [13]. More recently, Russell and Hall [14] used 
chemical reaction rate theory to analyze point defect 
clustering in the presence of mobile helium. In order to 
calculate nucleation rates of helium-vacancy com- 
plexes, however, the mobility and binding energies must 
be included in the calculations. The detailed description 
of the time-dependent concentrations of helium- 
vacancy complexes is therefore essential. The influence 

of helium migration on clustering and vita versa is the 

major difference between our approach and previous 
attempts [ 15- 181. 

The following set of equations describe the time-de- 
pendent concentrations of various helium-point defect 
clusters: 

Unoccupied vacancies: 

dC,,/dt=(l-e)G+Z,dD,p&,e-C,,,)+gGCi, 

+ (R,,,,C2, - R,,,oC,o)C, 

+ E I? (EG-Rlo.ijCto)Ci,. (3) 
1-a J=o 

Self-interstitials: 

M N 

dC,/dt = G- c c R,,ijCijC, - Zflp,D,C, - 2R,,,C;. 
i-l j-0 

(4) 

Interstitial helium: 

dG/dt = GH, - (Zd,,D,,p, + Rlo,olClo)CO~ 

+Zd,,DH,~&G + R,,,,C,C,, 
M N 

Divacancies: 

dC,,/dt = 0.5( EG + R,,,,,Cf,) 

M N 

C C Rij.zoCij + Z!OD~OP~I 
i-0 j=O 

+ (Go + R,,,oC&o + E%,. (6) 

+Z,%,D,.p, + ngG+ R,,,,C, 

+ (EtL+,,, +R,,m+&)Cm+~,n 
+ C Rij,k/CijCk/. 

i+k-m 
j+l=n 

(7) 
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Eqs. (3)-(7) are not amenable to analytical solutions 
in the present form. Gear [19] implicit multistep 
numerical integration methods are therefore used for 

the solution of this set of stiff equations. A brief outline 

of the calculational method for the reaction rates of the 
previous set of equations is given below. It is important 
to note that in eqs. (3)-(7) reactions in the double sum 

over i and j should be implemented only once. Rates 
similar to R ,,,,mnC,,&O are meaningless, and therefore 

are naturally not included. Also, reactions involving 

diffusivities of immoble species are set to zero. 

2.2. Reaction rates 

2.2.1. Impingement rates 
In the jump method for calculating impingement 

rates, which is more suitable for small clusters (201, the 
reaction rate constant for the impingement is given by: 

R a.,,,” = KX, (8) 

where K& = effective surface area/area per atom, 

= combinatorial number for the interaction 
of mobile defect OL with an m-n complex, 

r, = jump frequency of defect a, 

= v, exp( - E,M/kT) . 

(9 

The effective surface area is written in terms of an 
effective trapping radius (R ,,) and the area per atom: 

KG, = 4aRf,/X2. (10) 

The combinatorial number Ki, can be dependent on a 
number of variables, such as the sink concentration and 
temperature. 

In order to determine the combinatorial numbers, we 
consider two groups of cavities. In the first group, M > n 
(number of vacancies is larger than the number of 
helium atoms per cluster), and in the second group 
m < n. For the case m > n, the cavity is taken to be like 
a void, and the trapping radii of these clusters for 
mobile species can be determined from the bias calcula- 
tions of Wolfer and Ashkin [21]. The effective trapping 
radius, R , r, is related to the bias factor, Z, by: 

R:ff = R(m)Z(m), (11) 

where R(m) is the physical radius of the cluster con- 
taining m vacancies. The bias factor Z(m) is calculated 
directly from ref. 21. When m < n, cavities will contain 
more helium than vacancies and a different approach is 
used. Based upon thermal desorption measurements, 
Kornelson and Gorkum [22] proposed an empirical 
equation for the effective trapping radius of the cluster. 

This is expressed as: 

R,,(n)=R,([l +0.25 (1 fn)]} 1 <nc 10, (13) 

where R, is the physical radius of the cluster. 

2.2.2. Emission rates 

Two different approaches have usually been used to 
determine the emission rates, Ei, and E,“,“. The first 
method as proposed by Wiedersich et al. [15] is based 
on the detailed balance on a hypothetical equilibrium 

Boltzmann distribution of voids. This approach is some- 

times referred to as the classical drop model. The emis- 

sion rate is given by 

Ei, = Kl,v, exp( - Ey/kT)C,’ exp( -AF/ItT), (13) 

where AF is the free energy change in the emission 
process. The free energy is calculated using the Wieder- 

sich-Hall [ 161 model, where A F depends on the surface 
energy and the work done on the helium gas. When the 
cluster size is small, this approach may not be valid. 

Small-size vacancy-helium clusters are treated by a 
different method in our analysis. The emission rate of a 
vacancy is given by: 

Ei,, = (number of sites for emission) 

X (vibrational frequency) 

X (probability of dissociation) 

=Kl,v,exp[-(Ef+Ey)/kT]. (14) 

Fig. 1. Binding energy of the last vacancy in a vacancy-helium 
complex as a function of the number of the vacancies and 
helium atoms in the complex. 
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Comparing eqs. (13) and (14), the energy needed for the 
binding of the last vacancy to a cluster containing m 
vacancies and n helium atoms is therefore given by: 

E; = AF+ E;. (15) 

The binding energy Ei is shown in fig. 1 as a function 
of the number of of vacancies and helium atoms in a 

cluster. The thermal emission rates of helium atoms are 

calculated in a similar way [23]. Values calculated using 

eq. (15) are in basic agreement with refs. 5, 6, 25-27. 
Finally, the coefficients for the migration of mobile 

species to sinks are calculated from their jump frequen- 

cies r, using the relationship: 

0, =fJ2,r,, (16) 
where f, is a numerical factor of order unity and X, is 

the jump distance for defect (Y. 

3. Analytical model for helium transport 

While the set of eqs. (3)-(8) describes the basic 
features of helium and point defect interactions, it must 

be numerically integrated under any given condition. 
This can be computationally tedious, if the most im- 
portant underlying physics is not clearly brought out. 
To guide the numerical computations by defining the 

several parameter regimes, and to find exact expressions 
for the helium effective diffusion coefficient in limiting 

cases, we present a simplified analytical model in this 
section This method is based on the one developed for 
the effective diffusion coefficient of point defects in the 
presence of impurities, as described by Mansur [28]. The 
basic assumptions of the present model are: 
(1) The system is considered to contain the following 

defects: interstitial helium atoms, substitutional 

helium atoms, vacancies, self-interstitials, disloca- 
tions and a cavity size distribution. 

(2) This system is in quasi-equilibrium (steady-state), 
and the results are applicable for times greater than 
a vacancy mean life-time. 

(3) Nucleation and clustering are ignored, existing cavi- 
ties are only in a state of growth. 

(4) Divacancy population is negligible. 

3.1. Simplified steady-state rate equations 

Unoccupied vacancies: 

G + G, + E:=C,, + gGC,, - R,,,,C,,C, 

-R 0,.&&,0 - K,oC,o = 0, (17) 

where 

G-r = thermal vacancy generation rate, 

XeXP [(F-P,)fi]jdr,, (18) 

K,, = D, Zyp,, + 4~/r~N(r.)Z~dr~ . 
( i 

Self interstitials 

(19) 

G - R,.,oC,oC, - R,,,,C,,C, - K,C, = 0, (20) 

where 

K,=D,(Z~p~+In/r,N(r,)Z;dr,). 

Interstitial helium 

(21) 

G,, + E:=C,, + R,,,,C,C,, - D,eZd,e~,Co, 

+ DH,Z;,P&Y, 

+/[EHe(r,)+igG-Rol.r~Col]4~~N(rJck 

-R 0,,,0C0,C,0 = 0. 

Substitutional helium 

(22) 

R o~,~oCO~C~~ - E:eCll -@Cl, T R~,&l~CI = 0. (23) 

Eqs. (17), (20), (22) and (23), are special cases of eqs. 
(3), (4), (5) and (7), respectively. 

Understanding helium clustering and transport un- 
der irradiation can be accomplished by the simulta- 
neous solution of the set of eqs. (3)-(7). When cluster- 
ing and divacancies are neglected, the solution of eqs. 
(17)-(23) provides a simplified insight into the problem 
of helium transport at steady-state. An effective helium 
diffusion coefficient for helium migration is defined as: 

0;: 5 : C,,,,= 5 5 Q,&,,,, (24) 
m=O n=O m=O n=O 

where the sums in eq. (24) are only for mobile species. 
This definition for D&\’ has been used to describe the 
results for both analytical and numerical calculations. 
In the special case where helium is transported only as 
either an interstitial or substitutional atom, eq. (24) 

simplifies to: 

Deff _ Do&o, 

He - c,, + co, ’ 
for D,, Q: Do,. (25) 

Solving eq. (23) for Co,, and substituting back in eq. 



100 N. M. Ghoniem er al. / Theory of helium transport 

(25): 

Deff _ DO, (EM He + gG + R,,,,C,) 
He - 

CR o,,,oG, + E:‘+ gG + hG) . 

(26) 

Eq. (26) gives the effective diffusion coefficient of helium 
in terms of the following quantities: the interstitial 
helium diffusion coefficient, the helium-vacancy bind- 
ing energy, capture radii for point defect reactions, the 
helium radiation displacement rate; and the vacancy 
and interstitial concentrations and diffusion coeffi- 
cients. In the following, we will analyze limiting cases 
for the solution of eq. (26). 

3.2. Helium effective diffusion coefficient in limiting cases 

3.2.1. Domination by thermal detrapping 

In this case, the thermal dissociation rate of substitu- 
tional helium is greater than the interstitial replacement 
rate and the radiation displacement rate. Eq. (26) there- 
fore becomes: 

substituting for E/e [eq. (15) applied to helium], R,,>,, 
[eq. (9)] and setting C,, = thermal equilibrium vacancy 
concentration; we obtain 

D 
err_aexp[-(E~,.+E,M,-Eyf)/kTf 
He - 

i+PexpC-(Ed,,-E,‘)/kT] * 
cw 

where 

P = KVK~? exp( ST/k) (30) 

and 

a = SD;, (31) 

This equation reverts to the expression derived by 
Philipps and co-workers [7] for E& v > E,’ 

3.2.2. Domination by replacement reaction 

When the irradiation temperature is low enough or 
the dose rate is high enough for thermal detrapping to 
be negligible, substitutional helium is detrapped mainly 
by the effect of irradiation. This may be by direct 
irradiation displacement or indirect by self interstitials 
replacing He in substitutional sites. We will now derive 
an approximate expression for the latter case. Under 
these conditions, Eq. (26) becomes 

Deff = DOIRIJG 
He R OI.&IO + RI&I 

(32) 

substituting for R,.,,, R,,,,,, and DOl, we obtain 

pff = vHeA2 e- Ei%/kTK,$,I e-E?/kTq 
He (33) _~~ 

k;,v. e-Ey/kTC, - 1y”v 10 Hee 
-ENM,/kTc,o 

However, at steady-state 

ziD,C, = ~,D,(C,,-c), (34) 

where c is the average thermal vacancy concentration 
and the Z’s are weighted averages of the sink capture 
efficiencies. When several not too stringent conditions 
are satisfied, the helium effective diffusion coeficient 
takes a much simpler form. Under the following condi- 
tions: 

c,o se, EH”, << E,M, z= z, (35) 

the effective helium diffusion coefficient simplifies to 

D$=qr;?;, (36) 

where D, = D,, = vacancy diffusion coefficient, and n is 
a factor of order unity; n = Ki’/K&‘. 

3.2.3. Domination by displacement reaction 

When the rate of displacement of helium from 
vacancies is greater than both the thermal dissociation 
and the self-interstitial replacement rates eq. (26) be- 
comes: 

Deff =i Doi@ 
He R ot,&,o + gG ’ (37) 

using eqs. (8) and (9) for R,,i.,u the effective helium 
diffusion coefficient is 

Doff =1 &,gG 
He 

KFdvor expf - E$./kT)C,, + gG ’ 
(38) 

In order to simplify eq. (38), an appropriate expression 
for C,, must be substituted. This depends on whether 
point defect concentrations are controlled by either 
mutual recombination or by diffusion to sinks. For 
mutual recombination to dominate, the following condi- 
tion must be satisfied (241 

R = 4K&G exp( Ey/kT)/S,S,vVX4 > I. (39) 

If R B 1 (recombination dominated regime), the vacancy 
concentration, C,,, is given by 1241: 

C,, = ( h2G S,,‘K;,S,)“2DV-1/2 (40) 

substituting in eq. (381, and rearranging, we obtain 

D,Y,;=+(GD,)“*, (41) 
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where 

(42) 

In deriving eq. (41), the second term (gG) in the demon- 
inator of eq. (38) is much than the first term, for any 
reasonable combination of parameters. 

On the other hand, when point defect diffusion to 
sinks control point defect concentrations (R s l), the 
vacancy concentration becomes 

C,, = G/W, (43) 

and the effective diffusion coefficient in eq. (38) takes 
the form 

0;; = \LD,, where # = gX2SV/K,, . (4) 

3.3. conditions for the vapidity of approximations 

In this section, we will dereve formulas representing 
the conditions under which the previous approximate 
treatments of D;l’,’ are valid. 

3.3.1. Domination by thermal detr~pping 
In this case the thermal emission rate must be large. 

K:% exp[ - ( J$$ + J% .)/k~] 3 gG, 

This is satisfied when 

II He 

Also, the following conditions must be satisfied: 

for diffusion-limited point defect kinetics, and, 

tG< 1; 

v, exp[Z( Efe + EE, v - t~,M)/k~l 

G?eKA 
(48) 

for recombination-limited point defect kinetics. 

3.3.2. Domination by replacement reaction 

RI.& =-gG, 

KEyHe exp - [( @$ + Ek, ,)/kT]. 

This is satisfied when both 

1% 1, and EG w 1 

(49) 

(50) 

for sink-controlled point defect concentrations where 

I = K;,/A2gS,. (51) 

For the case of recombination-limited point defect 
kinetics, the following must be satisfied: 

mG_ ‘/2 w 1, and&% 1, (52) 

where 

The results of eqs. (50) and (52) are strai~tfo~ard 
substitutions in condition (49). 

3.3.3. Domination by radiation displacement 

gG 2’ RI.IICI, K,VA, ew[ - (EH”, + J%, .)/kT] 

(541 

Condition (54) is satisfied when both 

1-K 1, and nG 5-> 1 

for diffusion-limited point defect kinetics. For the case 
of recombination-limited kinectics, the following condi- 
tions must be satisfied: 

nG-‘j2 c;i: 1. andnGw 1. 

4. Results 

It is computationally prohibitive to solve the previ- 
ous set of numerical equations for the entire range of 
material and irradiation conditions possible. Moreover, 
dominant reaction mechanisms are not immediately 
clear. Therefore, we will first discuss the results of the 
analytical formulation, and then proceed to compare it 
to the more exact numerical computations. 

Fig. 2 shows the dominant detrapping mechanisms 
at given combination of damage rate and irradiation 
temperature of well annealed nickel (S, - lo9 cm/cm3). 
Recombination determines the kinetics of point defects 
for any combination of C and T above the line R = 1. 
The effective helium diffusion coefficient is determined 
therefore by thermal detrapping below the line (G = 1. 
Immediately above this line, self-interstitial replacement 
of trapped helium becomes the dominant mechanism. It 
is interesting to note that the higher the damage rate, 
the higher the dividing temperature between interstitial 
replacement and thermal displacement as detrapping 
mechanisms. This is effectively a temperature shift due 
to the higher displacement damage rate. Above this 
temperature the effective helium migration energy is the 
difference between the dissociation energy of bound 
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Fig. 2. Dominant detrapping mechanisms for given combina- Fig. 4. The ratio of interstitial to vacancy flux for typical 
tions of displacement damage rate and temperature at S, = lo9 reactor conditions (G = IOm6dpa/s and pd = 10” cm/cm3), 
cm/cm3. allowing for clustering and divacancy formation. 

helium and the vacancy formation energy. Below this 
temperature the effective helium migration energy is 

roughly the vacancy migration energy. At still lower 
temperatures, radiation displacement takes over as a 

dominant detrapping mechanism. For example, the 
irradiation temperature has to be below 350 K for 
radiation displacement to be dominant under reactor 

conditions (G = 10m6 dpa/s) and below 400 K under 
typical accelerator conditions (G = 1O-3 dpa/s). At 
higher effective sink densities, point defect concentra- 

tions are controlled by diffusion to sinks, except at very 
low temperatures. The dividing line for the temperature 
between self-interstitial replacement and thermal de- 
trapping is therefore IG = 1 above the line R = 1, and 
EC = 1 below the line R = 1, as shown in fig. 3. 

0 200 400 600 600 1000 1200 1400 

TEMPERATURE ( K) 

Fig. 3. Dominant detrapping mechanisms for given combina- 
tion of displacement damage rate and temperature at S,, = lOI 

cm/cm3. 

The validity of the analytical approximations is 
dependent on the attainment of conditions satisfying 

the basic assumptions. Many of the equations have been 
simplified by the assumption that the overall self-inters- 
titial current to sinks is equal to the overall vacancy 
current to sinks. This is expressed as 

Z,D,C, = .z”D”(C” - c;>; 

the bias factors Z,., being averaged over all sinks. This 
can be violated under two conditions. First, when the 
time interval is less than a few vacancy mean lifetimes; 

and second, when a fraction of the produced vacancies 
are retained in clusters that have a different mobility 
(divacancies), or immobile higher order clusters. Fig. 4 
shows the ratio of the interstitial to vacancy flux, as 

IRRADIATION TIME (set) 

Fig. 5. Patio of interstitial to vacancy flux for typical reactor 

conditions (G = 10-6dpa/s and p, = IO” cm/cm’), without 
allowing for clustering and divacancy formation. 
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TEMPERATURE (OKI 
- 

0.0006 0.0015 0.0024 0.0033 0.0042 0.0051 

l/T (‘7’) 

Fig. 6. Effective helium diffusion coeficient in nickel with no 

divacancies and no clustering. Dashed line is the analytical 

solution and solid line represents the numerical results. 

previously defined, for typical reactor irradiation condi- 

tions (G = 10e6 dpa/s and pd = 10” cm/cm3) allowing 
for clustering and divacancy formation. It is shown that 
at higher temperatures (> 800 K), divacancy and multi- 
ple vacancy cluster formation is very weak and the flux 
ratio reaches approximately unity within seconds. How- 
ever, at lower temperatures, the ratio is much larger 

than unity at the start of irradiation and then gradually 
decreases to a steady-state value that is still larger than 
unity. The basic reason for this is the formation of 
vacancy clusters that change the balance between 
vacancies and self-interstitials. In order to have numeri- 
cal computations that are based on the same analytical 

model, the calculations were again performed without 
allowing for disvacancy or vacancy cluster formation, 
and the results are shown in fig. 5. It is clear that the 
assumptions of the analytical approach are valid for 

0 Analytical 

\ --- Numerical 
\ 

‘\ 
\ 
.\ \ , \ \ 

‘\ 
‘\ 

-mm-- 

200 400 600 800 1000 1200 1400 

TEMPERATURE (OK) 

Fig. 7. Effective helium migration energy as a function of 

irradiation temperature for nickel at reactor conditions. 

I - Analytical 

--- Numerical 

r 0.501 
0 200 400 600 800 1000 1200 1400 

TEMPERATURE (OK) 

Fig. 8. Effective helium migration energy as a function of 

irradiation temperature for nickel in typical reactor conditions 

when divacancies and vacancy-helium complexes are not al- 

lowed to form. 

times greater than few vacancy mean lifetimes. How- 

ever, this can be very long at low temperatures as shown 
in Fig. 5. The mobile self-interstitial flux is orders of 
magnitude greater than the vacancy flux at temperatures 
lower than 450 K and irratiation times less than roughly 
one year. 

A comparison between the numerical calculations 
and the analytical approximation for the effective helium 

diffusion coefficient is shown in fig. 6. While the com- 
parison is not meaningful at low temperatures because 

the point defect concentrations are still building up, it 
shows that the analytical solution can be used as a first 
order estimate of DLLf. The agreement is almost perfect 
at very high temperature where thermal detrapping is 

the only operating mechanism for helium release from 
traps. At intermediate temperatures, the combination of 
detrapping mechanisms makes the numerically evaluated 

0;: higher than the analytical approximation. 
Further comparisons between the two methods are 

shown in figs. 7 and 8. The effective helium migration 
energy during reactor irradiation for nickel is taken as 
the slope of 0;: versus T-’ as in fig. 6. Allowing for 
vacancy clustering and divacancy formation in the 
numerical model, the effective migration energy is given 
in fig. 7 as a function of temperature. Fig. 8 shows 
similar results when clustering and divacancies are sup- 
pressed in the numerical model. The agreement is rea- 
sonable in fig. 8, especially at the high temperature 

limit, and in that intermediate temperature regime. It is 
to be emphasized, however, that the analytical solutions 
are not intended to duplicate the more extensive 
numerical ones. Analytical estimates are used to explore 
mechanisms and to give a first order approximation to 
the exact value of D&L’ under irradiation. 
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5. Conclusions 

The problem of helium migration during the produc- 
tion of radiation damage is a critical one. Without 
understanding migration mechanisms and diffusion 

rates, it is hopeless to account for the fate of helium 

atoms injected or produced by structural alloys. This 
study provides two parallel and complementing ap- 

proaches to the problem. An analytical formulation is 
developed, which is valid roughly above 350 K for 
reasonable reactor irradiation times (- years). Below 

this temperature, the slow transient buildup in point 
defect concentration necessitates a time-dependent 
numerical solution. Under reactor irradiation condi- 

tions, the analytical mode1 gives the following ap- 
proximate values for helium effective migration energy 
in nickel: 

(1) Ehy=O.83 eV;(ELy 

=E;,+E,M,- E,F) T>8OOK, 

(2) E$ = 1.4 eV; (EL: = Ey) 

4OOKsT_<8OOK, 

(3) E&7=0.65 eV;Ts400 K. 

The numerical model gives values of the effective 
migration energy that are functions of material and 
irradiation parameters as well as time. It is found that, 
at temperatures between 400 K and 600 K in nickel 
irradiated in typical reactor conditions, the mobility of 
helium is enhanced over the analytically predicted re- 
sults by migration in divacancy - single helium com- 
plexes. Also, above - 800 K, helium mobility is less 
than the analytical value due to increased trapping at 
irradiation produced vacancies. The influence of such 
irradiation produced vacancies is totally negligible by 
- 1100 K. 

7. Nomenclature for the rate-equations 

Symbol Description Unit 

G Frenkel pair generation rate (+a/@ 
G He Helium atom generation rate (at/at/s) 

GT Thermal vacancy generation rate (dpa/s) 
T Temperature (W 

P&Z Gas pressure inside a cavity (eV/cm3) 

Y Surface tension (eV/cm2) 

n Atomic volume cm’ 

k Boltzmann’s constant eV K-’ 

t time (s) 
E Fraction of vacancies produced di- 

rectly as divacancies by irradiation 

Symbol Description Unit 

g 
Pd 

‘c 

R,, 
A, 
ra 
“a 

4 
S” 

F 
S” 
AF 

0, 

0,” 

Z,d 

z: 
M 

N 

&He 
1, 

EH’(rc) 

KY 

E,B 

E,F 

4% 

N(r,) 

i 

j 

KP/ 

Re-solution parameter 

Line dislocation density 

Critical growth radius 

Trapping radius 

Jump distance for defect a 

Jump frequency of specie n 

Vibration frequency of specie a 

Self-interstitial sink strength 

Vacancy sink strength 

Entropy of vacancy formation 

Free energy change due to an emis- 

sion process 

Diffusion coefficient of defect (Y 

Diffusion coefficient pre-exponential 

for defect a 

Line dislocation bias factor for de- 

fect a 

Cavity bias factor for defect a 

Maximum number of vacancies in 

the @complex 

Maximum number of helium in the 

ij-complex 

Thermal equilibrium vacancy con- 

centration 

Self-interstitial concentration 

Concentration of complex contain- 

ing i-vacancies and j-helium atoms 

Emission rate constant of a vacancy 

from an ij-complex 

Emssion rate constant of a helium 

atom from an @complex 

Helium emission rate from a cavity 

with radius rc 

Migration energy of defect a 

Binding energy of defect (Y 

Formation energy of defect a 

Helium detrapping energy from a 

substitutional site 

Reaction rate between an ij-complex 

and an mn-complex 

Reaction rate between a self-intersti- 

tial and mn-complex 

Reaction rate between an &complex 

and a cavity with radius rc 

Cavity number density per unit size 

Number of vacancies in a cavity 

Number of helium atoms in a cavity 
Combinatorial number for defect a 

impinging on an q complex 

( - 10) 
(cm/cm3) 

(cm) 

(cm) 

(cm) 

(s-l) 

(s-l) 
(cm-‘) 

(cm-‘) 

(eV) 

(cm*/s) 

(cm2/s) 

(s-l) 

(s-l) 

(s-l) 

(eV) 

(eV) 

(eV) 

(eV) 

(s-l) 

(s-l) 

(s-l) 

(cmm4) 
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