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Coupled oscillations of double-walled carbon nanotubes
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A study of the coupled axial and angular oscillations of double-walled carbon nanotubes (DWNTSs)
was performed using molecular dynamics simulations. In order to determine the oscillation
frequencies inner and outer shells have been assumed to behave as rigid bodies, a 6—12 Lennard—
Jones potential was used to model the van der Waals forces between them, and friction was
neglected. Armchair (5, 5)/(10, 10) configurations, with tube lengths in the range of 25-1000 A were
investigated. The axial oscillation frequency was found to be a decreasing function of the DWNT
length L (~78 GHz for L=25 A and ~2 GHz for L=1000 A). The angular oscillation frequency
was found to be nearly constant at ~58 GHz, independent of the DWNT length. In addition,
sustained high-frequency angular motion can be maintained for sufficiently long DWNT (on the
order of a few nanometers). For shorter DWNTS, the angular motion can be altered by interference
with the axial motion, and becomes irregular. © 2010 American Institute of Physics.

[doi:10.1063/1.3359654]

I. INTRODUCTION

Carbon nanotubes have exceptional electrical and me-
chanical properties, such as remarkably high strength
coupled with extreme flexibility and low weight. Soon after
their discovery by Iijirnal’2 it became clear that these unique
properties opened new ranges of applications in
nanomechanics.’ Experiments by Cumings and Zettl
showed that double-walled carbon nanotubes (DWNTSs) may
be employed as gigahertz oscillators when the core is par-
tially pulled out of the outer shell and then released. The
force driving the oscillation is an excess van der Waals in-
teraction that is established between the inner and outer
tubes. Sustained high-frequency oscillations are possible be-
cause the effective friction, arising from dissipation of core
kinetic energy into other degrees of freedom, is small when
compared to the restoring van der Waals force, as demos-
trated by experiments4_7 and confirmed by molecular dynam-
ics (MD) simulations.*"° The role of damping on the oscil-
latory behavior of DWNTs was extensively studied by
Rivera et al.""'? and shown to be significant only on a time
scale large compared to typical periods of oscillation. While
the maximum and optimum sizes of fullerenes inside nano-
tubes were calculated by Hodak and Girifalco," their appli-
cations in tribology and as fast mechanical oscillators have
also received increasing attention.' "

A detailed model of the atomic interactions governing
the oscillation behavior of a DWNT should include both co-
valent bonds between the atoms in each tube as well as van
der Waals interaction forces between atoms in the inner and
outer tubes. However, some reasonable approximations can
be made when studying the oscillation characteristics of
DWNTs, and thus permit simple mechanical modeling of
these extremely high-frequency systems. First, since cova-
lent bonds are much stiffer than van der Waals interactions,
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nanotubes can be modeled as rigid bodies in a first
approximation.” Second, since it was suggested8 that sus-
tained oscillations are possible independent of tube type
when the radial distance between the tubes is ~3.4 A, dissi-
pative forces may be neglected, allowing the derivation from
a potential of the interaction force between the nanotubes.
The Lennard—Jones (LJ) potential was used'®* ™ to model the
van der Waals interaction in a DWNT system and is adopted
in this work. Finally it can be assumed that when the lengths
of the nanotubes are large compared to their diameters, the
two tubes in a DWNT move coaxially, relative to each other.
With these considerations, the DWNT can be described
in first approximation as a system of two rigid tubes moving
coaxially under the effect of a LJ potential between their
atoms. When the outer shell is fixed the only degrees of
freedom of this system are the axial displacement and the
axial rotation of the inner tube with respect to the outer tube.
In this work, a study of the coupled motion in the axial and
angular directions is performed by MD simulations, with
particular emphasis on how the respective frequencies
change as a function of the DWNT length. The equations of
motion that describe the simplified dynamics of a DWNT
will be presented next in Sec. II. Details of the MD compu-
tational method, including the geometry and boundary con-
ditions are given in Sec. III. We proceed to show simulation
results for the oscillation of the DWNT, delineating the na-
ture of axial, angular, and coupled oscillations in Sec. IV.
Finally, conclusions of the study are given in Sec. V.

Il. EQUATIONS OF MOTION
The equations of motion of the system illustrated in Fig.
1 can be derived by vanishing the variation in the total

Hamiltonian H
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FIG. 1. (Color online) Schematic representation of a DWNT. The present
model assumes that the outer tube is fixed and rigid while the inner tube is
rigid, and coaxial with respect to the outer tube. The axial displacement z
and the rotation angle € along the DWNT axis define the position of the
inner tube atoms. The inner and outer tubes are assumed to have the same
length L.

SH=8T+U)=0, (1)

with 7 and U being the total kinetic and potential energy of
the system, respectively. The total potential energy is calcu-
lated as the sum extended over the total number N, of atoms
in the system, with interactions governed by the interatomic
potential u;; between two generic atoms

Np Np

v=33 S, 2)

k=1 j=1

Since the total number of atoms is Ny=N,+N; with N, and
N, the number of atoms in the outer and inner tubes, respec-
tively, Eq. (2) can be rewritten in a more convenient form as:

1N0 N, | N, N; N; N,
U=_EEMU+_E Euij+EEW(d,~2j)
230 4 P i=1 j=1
=U0+Ui+Um'. (3)

The first and second terms in Eq. (3) represent the energies
stored in the bonds of the outer and inner tubes, respectively.
The third term represents the energy associated with the van
der Waals interaction between the two tubes and it is well
represented16 as a LJ potential. The LJ potential between two
atoms located respectively at x; and x; is a function of their
squared distance d,~2j=d,-j-d where d;;=x;—x;. It can be ex-
pressed in the form:

-
w(d;) = 4e{<dizj dizj ; 4)

where € and d, are constants. The total kinetic energy of the
DWNT system T is given by

ij»

R TR O T
T= Em‘EI vjz» = EmCEI vf + Emczl v? =T,+ T, (5)
J= J= J=

m, being the mass of a carbon atom. With these notations,
the variation in the Hamiltonian reads

&T;+U,)+ 6T, + U, + 6U;=0. (6)

Let’s now consider the implications of the assumptions con-
sidered in this model. First, since the outer tube is fixed, and
rigid then 7,,=0 and 6U,=0 because there is no variation in
the positions of the outer tube atoms. Second, since the inner
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tube is modeled as being rigid, then 6U;=0, since there is no
relative change in the positions of its atoms. Finally, rigidity
and the assumption of coaxial motion allow to express 7; by

Konig theorem in the form T;=3J;6°+3M 7. The total mass
M and mass moment of inertia J; can be written as M;
=N;m,. and J=M iriz for an inner tube of radius r; containing
N; atoms. Combining the previous considerations, Eq. (6)
becomes

1 o1
§<—N,»mcr?6’2 + =Nm 3+ Um-) =0, (7)
2 2

from which the following associated equations of motion can
be derived:

N; N,

PPN

i=1 j=1

. J
Nm?0=—-—
a6

N; N,
> 2 wdr). (8)

i=1 j=1

d
NmZ7=—-—
dz
The dependence of dizj on the degrees of freedom 6 and z can
be introduced considering that positions of atoms in the outer
tube are fixed and therefore xj=)7j. Moreover, positions of
atoms in the inner tube can be expressed by the rototransla-
tion x;=Q(60)x;+zZ where Q(6) and Z are respectively the
orthonormal rotation matrix and the unit axial vector trans-
forming the initial positions X; into the current ones. With
these considerations, after applying the chain rule for deriva-
tives, it’s finally possible to write the equations of motion in
the following form:

N; N,
chr2é=—22 (E W’d”) . Q, .ii

i=1 \ j=1

N; N,
NmCZ'=—22 (E W’d,‘j) ‘ZA, (9)

i=1 \j=1

where w' and €' indicate the total derivatives of w(dfj) and
Q(6) with respect to their own argument, respectively.

lll. THE DWNT SIMULATION CELL

The initial configuration of the atoms in a nanotube can
be obtained by rolling up a graphene sheet along one on the
discrete directions ma,+na, in the graphene plane, as illus-
trated in Fig. 2. The carbon-carbon bond length o and the
chiral indices (m,n) define a cylindrical cell of radius and
height respectively:

r=——\Vm"+mn+m-,
2

h=|(m'—m)a, +(n' —n)ay, (11)
where

m' =m— (m+2n)/GCD(m + 2n,2m + n),
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FIG. 2. (Color online) Illustration of an elementary nanotube cell with in-
dices (n,m).

n' =n+ (2m+n)/GCD(m + 2n,2m + n), (12)

are the chiral indices of the vertex opposite to (0, 0) and
GCD indicates the greatest common divisor operator. Nano-
tubes of (m,0)-type are called zigzag while the (m,m)-type
are called armchair.

A DWNT defined by the pair (m,n)/(M,N) of chiral
indices of the inner and outer tube is axially commensurate
when m/n=M/N, otherwise it is said to be axially incom-
mensurate. Commensurability plays an important role in the
rotational dynamics of DWNTs because it affects the angular
periodicity of the interaction energy. Since angular oscilla-
tions are expected to be significant only in DWNT with high
degree of commensurability and angular symmetry, it pos-
sible to narrow the choice of the chiral indices based on a
few considerations. First, armchair-armchair systems, de-
noted by (m,m)/(M,M), are expected to have more pro-
nounced angular coupling because their atoms are aligned in
narrow bands along the axial direction. Second, since the
inner and outer tubes in an armchair system have angular
periodicity m/m and 7/ M, respectively, then the DWNT has
angular periodicity 7GCD(M,m)/Mm,*® which is mini-
mized by taking M=2m. For this choice, by using a radial
distance between the tubes of ~3.4 A (as suggested by
experiments,4 theoretical ~ predictions, B and MD
simulations®) in Eq. (10), the choice of the (5, 5)/(10, 10)
DWNT is a natural one for our analysis. Effective friction
forces were also found to be particularly low for this
conﬁguration,&21 hence strengthening our assumption of con-
servative motion. Table I summarizes the main characteris-
tics of the DWNT analyzed in this paper.

A series of MD simulations is used to analyze the fre-
quency behavior of the (5, 5)/(10, 10) DWNT. With refer-
ence to Fig. 1, the outer layer is assumed fixed and the inner
layer is assumed to move as a rigid body coaxially, relative
to the outer one. Free boundary conditions apply and no
cut-off distance is employed for the LJ potential. The time
integration method used for the equations of motion is a
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TABLE I. Physical properties of the DWNT.

Inner tube Outer tube

Chiral indices (5,5) (10,10)
Radius[A] 3.39 6.78

N atoms (L=25 A) 200 400

N atoms (L=50 A) 400 800

N atoms (L=100 A) 820 1640

N atoms (L=1000 A) 8140 16280
Mass of C eV ps? A2 1.2437x 1073
C—C bond length A 1.42

€ eV 2.964 X 1073
dy A 3.4

standard velocity Verlet algorithm, with a time step of 0.1 ps.
Such large value of the time-step compared to traditional
MD of typical atomic crystals is possible because of the rela-
tively high mass and moment of inertia of the rigid core and
weak restoring forces.

IV. SIMULATION RESULTS

Three types of simulations were considered: (1) axial
oscillations only (angular motion was suppressed); (2) angu-
lar oscillations only (axial motion was suppressed); and (3)
coupled axial and angular oscillations.

For the case of axial motion only, the time evolution of
the axial coordinate z and restoring axial force are shown in
Fig. 3, where the inner layer is released from an initial ex-
trusion d=L/2. The influence of the DWNT length on the
axial frequency f, was studied by considering four different
lengths: 25, 50, 100, and 1000 A. As reported in previous
studies (e.g. Ref. 17) the characteristic feature of the axial
motion is that its frequency decreases with increasing length.
In fact when long range effects are negligible, as in the case
of van der Waals interactions, the net force on the atoms of
the inner tube vanishes due to opposite contributions as long

(@ —— L=1000A
——L=100A

1 ——L=50A
—— L=25A

2d[-]
o

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
time [ps]

force [eV/A]

[T

0 50 100 150 200 250 300 350 400 450 500
time [ps]

FIG. 3. (Color online) Axial oscillations of (5, 5)/(10, 10) DWNTs for
different lengths. (a) Evolution of the axial coordinate z normalized to the
extrusion distance d=L/2. (b) Evolution of the restoring force: the average
value of ~0.59 eV//ok, independent of the DWNT length, is consistent with
previous results (Ref. 9) for the same DWNT configuration.
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FIG. 4. (Color online) Comparison of axial and angular frequencies for
uncoupled motions.

as they are within the ends of the outer tube. Hence, the net
average force on the inner shell is due to end effects and is
independent of the DWNT length. Using the value of the
average restoring force F,=0.59 eV/ A it is possible to esti-
mate the axial period of oscillation 7, by writing

1F.[(T.\?
(L), W
2M;\ 4

For a mass per unit length m;=1.0198 [eV ps> A—*] and an
extrusion distance d=BL we obtain (8=1/2)

1 F, 1900 [GHz A]
fZ = 4— = . (14)

A plot of Eq. (14) and a comparison with the results from our
MD simulations are shown in Fig. 4.

The high-frequency component of the restoring force is
due to the axial corrugation of the interaction energy and
increases with length of the DWNT and with z approaching
zero (more overlapping for the same DWNT length).

For the case of angular oscillations alone, shown in Fig.
5, the inner tube was constrained at z=0 and only the degree
of freedom 6 was allowed freely to evolve starting from a
position near maximum interaction energy. The characteristic
of angular oscillations is that their frequency f, do not ex-
hibit dependence on the length of the DWNT. In fact in this
case not the restoring torque but the restoring torque per unit
length is constant. From our simulation results the uncoupled
angular frequency is fy=58.6 [GHz] and is higher than the
axial frequency for L>33 A. The maximum amplitude of
the angular oscillation is 7GCD(M ,m)/ Mm=/m=18°, for
M=2m=10.

When both degrees of freedom are let free to evolve
coupling of the axial and angular motion is developed. It
should be noted, for example, that constant angular fre-
quency is achieved only if displacement in the axial direction
are small compared to the DWNT length because the restor-
ing torque is proportional to the overlapping length. In order
to preserve constant angular frequency we limit our analysis
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FIG. 5. (Color online) Angular oscillations of (5, 5)/(10, 10) DWNTs for
different lengths. (a) Evolution of the angular coordinate 6. (b) Evolution of
the restoring torque: the torque magnitude scales as L.

to the case of small 8 and consider two regimes, f,<<f, and
f.=f¢ respectively. For the first case we choose, 8=0.1 and
using Eq. (14) we pick a DWNT of length

. 1 | F. o
L;=1000 A> — — =73 A. (15)
Adfy N 2m;B

For the second case we choose 8~0.05 and a length

1 F, g

=— ~ 100 A. (16)
4fg N 2m;B

Figure 6 shows the results of the MD simulations for the two
cases. When the axial motion of the inner shell is slow com-
pared to the uncoupled rotational frequency (f,<f,) the two
vibration modes are independent, even in the presence of non
negligible axial displacement (BL=100 A). On the other
hand, at comparable frequencies the angular motion becomes
largely affected by the axial motion and unstable, even for
small axial displacements (BL=5 A).
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FIG. 6. (Color online) Coupled axial and angular oscillations of (5, 5)/(10,
10) DWNT. (a) Case f,<f, angular oscillations are almost unaffected by
the axial motion. (b) Case f.=~f,: angular oscillations are completely sup-
pressed by the axial motion.
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V. CONCLUSIONS

Coupled axial and angular oscillations of a (5, 5)/(10,
10) armchair DWNT were studied for lengths in the range
25-1000 A using the MD simulation technique. The forces
between atoms in the inner and outer tubes were represented
with a LJ interatomic potential.

When only axial oscillations were considered, the oscil-
lation frequency turned out to be a decreasing function of the
DWNT length. The frequency decreases because the mass
increases linearly with length while the restoring force, due
to end effects, is independent of the length. The 25 A nano-
tube oscillates at an axial frequency of ~78 GHz. As the
tube length was increased keeping the initial extrusion ratio
B=d/L constant, the axial frequency followed the expected
1/L law, reaching the value of 2 GHz for the 1000 A nano-
tube

When only angular motion was considered, the resulting
oscillation frequency was constant, at ~58 GHz, indepen-
dent of the DWNT length. This can be explained by observ-
ing that the restoring torque is not due to end effects; there-
fore, both restoring torque and moment of inertia scale
proportionally with length of the inner tube, resulting in a
length independent equation of motion governing the angular
degree of freedom. For sufficiently long nanotubes, the an-
gular frequency is higher than the axial frequency: for the (5,
5)/(10, 10) armchair DWNT with 8=1/2 this happens at L
~33 A. The maximum amplitude of the angular oscillation
is governed by the angular periodicity of the DWNT, which
in our case is 18°. It should be noticed that such high angular
frequencies are still much smaller than the critical speed of
nanotube collapse reported in previous studies.”

The coupled motion reveals a strong dependence on the
(5, 5)/(10, 10) DWNT length. For short DWNTS (in the sub-
nanometer range) the axial and angular frequencies are com-
parable and a regular angular motion cannot be sustained.
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For longer DWNT the angular and axial motion decouple
and a sustained periodic angular oscillation is observed.
When the axial vibration is small compared to the axial
length (8<<1), full amplitude and constant high-frequency
rotational oscillations can be obtained.
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