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Abstract-We examine the characteristics of the classical ra- 
diation emitted by a relativistic electron beam that Propagates 

wave. Such a study is useful for evaluating the feasibility of 

undulators for generating short wavelength radiation. The elec- 
tron trajectories in a Plasma wave undulator are obtained using 
perturbation techniques and are then compared to numerical sim- 
ulation results. The frequency spectrum and angular distribution 
of the spontaneous radiation emitted by a single electron and the 
stimulated radiation gain are obtained analytically, and are then 
compared to 3-D numerical simulations. The characteristics of the 
Plasma wave unddator are compared to the ac FEL unddator 
and the conventional FEL. 

is in the range of 0.1-1.0 cm, and is limited by the practical 
difficulty of placing very strong and very small permanent 

peQendicuiar1y through a large 

using relativistic plasma waves as extremely short wavelength array* Among approaches to decreasing is the 

piasma magnets or electromagnets close together in an 

replacement of the magnetic undulator with an electromagnetic 
wave undulator or with a crystal structure undulator, and much 
research is underway in these directions (for example, see 
[6]-[1 '1). 

A different approach that has been suggested for decreasing 
A, is to replace the magnetic undulator with an electrostatic 
plasma wave undulator [12]-[14]. This potentially inexpen- 
sive and compact configuration is based on using a short 

I. INTRODUC~ION 
HERE is a significant ongoing research effort focused T on producing short wavelength coherent radiation having 

wavelengths down to the X-ray regime using relativistic elec- 
tron beams that oscillate in undulator fields. Many examples 
are found in the fields of free electron lasers and synchrotron 
radiation sources [l], [2]. It is well known that the radiated 
wavelength A, can be reduced by decreasing the undulator 
(wiggler) wavelength A,, or by increasing the electron energy 
y in accordance with the resonance relation 

The generation of coherent radiation in the X-ray regime 
using undulators was accomplished long ago by using large y 
electron beams, but this was done at very large and expensive 
accelerator facilities. It should be possible to reach the X-ray 
regime using less expensive and more compact low y electron 
beam facilities by decreasing A,. In the original undulator 
and synchrotron radiation schemes, and in most configurations 
since then, magnetic field undulators were used [3]-[5]. In 
magnetic field undulators, the minimum A, obtained currently 
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wavelength, large amplitude relativistic plasma wave as the 
undulator, through which is injected a modest energy but rela- 
tivistic electron beam. In this scheme, the electrons propagate 
either parallel to [12]-[14] or perpendicular to [14], [15] the 
wavefronts of the plasma wave, and emit radiation as they 
oscillate in the wave's alternating electrostatic field. Such large 
amplitude relativistic plasma waves can be excited readily by 
laser pulses or intense electron bunches, and are being studied 
theoretically, computationally, and experimentally by many 
researchers around the world [16]. 

In this paper we consider the configuration in which the 
electron beam is injected across the plasma wave parallel to 
the wavefronts. Fig. 1 shows schematically the relationships 
among the propagation directions of the excitation lasers, 
plasma wave, electron beam, and radiation in this undulator 
scheme. In this particular configuration, the plasma wave is 
shown as if it were excited by laser beams as in the beatwave 
excitation scheme, however, it also could have been excited by 
a short laser pulse (laser wakefield scheme) or by a short pulse 
of relativistic electrons (plasma wakefield scheme) propagating 
through a plasma. The wiggling of an electron as it moves 
across a plasma wave undulator is described qualitatively by 
referring to Fig. 2, in which the potential contours of the 
plasma wave are shown to be very wide so that only the 
longitudinal electrostatic fields affect the electron motion. In 
the figure, the plasma wave moves to the right at a phase 
velocity which is nearly equal to the speed of light, while the 
electron moves downward also at nearly the speed of light. 
In Fig. 2(a), the longitudinal field deflects the electron to the 
left toward the potential minimum. In the time taken for the 
plasma wave to move to the right by one-half wavelength, 
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the electron also moves across the wave vertically down a 
distance Of one-ha1f This is because both wave 
and electron move at approximately the same speed. Therefore, 
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Electrons 
Excitation Lasers 

Fig. 1. Plasma wave undulator geometry, showing propagation directions of 
the excitation lasers, electron beam, plasma wave, and radiation. 

,- electron 

Fig. 2. Idealization of a relativistic electron’s undulating trajectory in the 
potential contours of a relativistic plasma wave undulator. 

the undulator wavelength A, is effectively equal to the plasma 
wave’s wavelength A,. At its new location [Fig. 2(b)], the 
electron is again deflected toward the potential minimum that 
is now to the right. This alternating or undulating motion 
continues as the electron passes across the plasma wave [Fig. 

Typical physical parameters for a plasma wave undulator 
are: undulator wavelength, A, M 100 pm; undulator strength, 
a, 2 0.01; number of undulations or wiggles, N ,  M 100; and 
length of undulator, L, M 1.0 cm. These are typical laboratory 
parameters for a wide beatwave excited relativistic plasma 
wave. An electron beam of 20 MeV (y = 41) would emit 

2(c)l* 

30 nm radiation in the above plasma undulator. The resonance 
relation (1) is used to estimate the radiation wavelength. A 
single 33 ps micropulse of electrons (typical of a linac output) 
that passes across a 1.0-cm-wide plasma undulator would emit 
a radiation pulse approximately 33 ps in duration. 

The maximum electrostatic fields in a relativistic plasma 
wave can be very large, equivalent in undulator strength to 
magnetic fields on the order of 1.0 MG for the case of 100 
pm plasma waves. To show this we first note that a,  for the 
plasma undulator can be derived from Gauss’ law and is 

where E, is the amplitude of the plasma wave electrostatic 
field, Em, is the maximum amplitude of an electrostatic field 
in a plasma for a given plasma density (or plasma frequency), 
wp is the plasma frequency, d-,e is the electron 
charge, m, is the electron rest mass, c is the speed of light, 
no is the background plasma density, and nl is the perturbed 
plasma density. The maximum effective magnetic field B,R. 
of a plasma undulator can be estimated using 

or B,R. M 9.5 x lo5 G for a,  = l . O , A ,  = 100pm, 
and no M 1017cm-3, For comparison, in typical permanent 
magnet undulators the magnetic field is on the order of tens 
of kG and less. 

As stated earlier, the relativistic plasma waves may be pro- 
duced by laser beatwave excitation, laser wakefield excitation, 
or plasma wakefield excitation. Some typical plasma wave 
undulator wavelengths that can be obtained using laser plasma 
beatwave excitation are as follows. Using laser wavelengths of 
9.6 and 10.6 pm gives A, M 97pm; using 9.6 and 10.3 pm 
laser wavelengths gives A, x 136pm; using 10.3 and 10.6 
pm laser wavelengths gives A, M 344pm; and using 1.05 
and 1.06 pm laser wavelengths gives A, M 102pm. 

In recent years, some of the problems associated with real- 
izing a plasma undulator have been investigated theoretically 
and computationally. Potential problems related to the facts 
that the electron beam can excite instabilities and wakes in the 
plasma have been investigated in [12]. A limit on maximum 
electron beam density is imposed by the beam loading limit 
as discussed in [17]. Transverse electrostatic plasma wave 
fields should not be a problem as long as the plasma wave 
is much greater than a few (-5) plasma wave wavelengths 
wide [18]. Our simulation results [18] showed that electron 
beam quality is very important, and that the beam emittance 
should be less than one mm-mrad for the example parameters 
discussed in this paper. Methods for plasma wave excitation, 
calculations on the limitations of FEL action due to beam 
plasma interactions, and the parameters for radiation gain 
have been reported [12]. Some of the problems associated 
with building a uniform high density plasma source suitable 
for plasma wave undulators have been reported [19]. The 
problems of electron beam deflection due to the longitudinal 
and radial electrostatic fields in the plasma wave undulator, the 
effect of beam emittance, and the use of the deflected beam 
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as a diagnostic of the plasma wave’s electric field have also 
been studied through numerical calculations [ 181. 

Several plasma-based undulators other than the scheme 
discussed here have also been investigated in recent years. A 
plasma wave undulator in which an electron beam is injected 
antiparallel to the wave, and in which the transverse plasma 
wave fields wiggle the electrons, was analyzed by Joshi et 
al. [12] and Fedele et al. [15]. Fedele presented a fluid 
theory, discussed intrinsic efficiency, emittance, self-pinching, 
and alternate configurations. A plasma wave undulator in 
which a relativistic electron beam excites the wave in a 
cylindrical plasma column has been investigated theoretically 
by Lalita et al. [20]. Latila presented an instability analysis and 
discussed radiation guiding. A magnetostatic plasma undulator 
scheme that does not involve plasma waves, but makes use 
of stationary rows of laser produced plasma spots (effective 
Aw M 100,um) that are formed on a flat solid target has been 
reported, along with reports of measurements of megaGauss 
fields [21], [22]. Another undulator scheme has been suggested 
by Ym and Dawson, called the “ac Free-Electron Laser,” in 
which an electron beam propagates through a “temporally 
oscillating but spatially uniform transverse electric or magnetic 
structure” [ 131. Yan and Dawson obtained the radiation disper- 
sion relation, expressions for the growth rate and efficiency, 
and discussed design criteria for an experiment. One of their 
configurations was to propagate an electron beam parallel 
to the wavefronts of a plasma wave, which was the first 
suggestion of the plasma wave undulator upon which this 
article is based. We note that in order to have a significant 
electric field, the plasma wave must have a phase velocity close 
to that of light. In such a plasma wave, the particle trajectories 
will be somewhat different than in the purely oscillating (ac) 
case. In this paper, a single electron analysis of the ac FEL 
undulator will be presented concurrently with the analysis of 
the plasma wave undulator. Finally, we note that a fluid theory 
analysis of the ac FEL has also been reported [23], and further 
work on enhancing the output power of an ac Raman FEL has 
been reported [24]. 

In the next section we describe the plasma wave equations 
and simulation model. Then we obtain expressions for the 
electron trajectories, spontaneous radiation, and stimulated 
radiation gain and compare these to simulation results. Many 
of the techniques followed herein for analyzing the plasma 
wave undulator, and much of the notation, are based on the 
free electron laser theory developed for magnetic undulators 
by Colson [25], [26]. 

11. THE PLASMA WAVE EQUATIONS 
AND THE SIMULATION MODEL 

The relativistic electrostatic plasma wave is assumed to 
be infinite in length, finite in width, and moving in the +y 
direction in this model. The relativistic electrons are injected in 
the +z direction perpendicularly through the plasma wave as 
shown in Fig. 1. The equation for the longitudinal electrostatic 
plasma wave field used in the simulations for the beat wave 
excited plasma wave is [27] 

m o C W p Q e m  ,(-2.’/R2) E&, I/, 2, t )  = + e 

1 1 cos ( k p y  - w p t )  - cos k,y sin wPt 

(4) 

where r2 = x2 + z 2 ,  aem = (eE, , /2m,~, ,c)~,  E,, is the 
amplitude of the laser pump field and we, is the laser pump 
frequency. The transverse electrostatic fields given in [15] and 
[28] were also used in the simulation. The electron beam model 
assumes point charges which interact with the electrostatic 
fields of the plasma wave, but which do not interact with 
each other through space charge forces. Radiation damping 
is considered negligible. 

111. ELECTRON TRAJECTORIES 
Electron trajectories in the plasma wave undulator can be 

calculated analytically and numerically. Approximate equa- 
tions for the trajectories are obtained by substituting a simpli- 
fied expression for the plasma wave field into the relativistic 
equation of motion and solving it by perturbation. The lowest 
order approximation of the electron trajectory in the plasma 
wave undulator is also the approximate electron trajectory 
in an ac FEL undulator; to next higher order, additional 
harmonics develop due to the nonzero k of the plasma wave 
as well as the harmonic content of a nonlinear plasma wave. 
The ac FEL undulator is spatially uniform, has plasma wave 
wavenumber ICp = 0, and oscillates at frequency wp. 

The plasma wave field (4) was simplified by assuming that 
the laser pump field or electron quiver velocity is small (a,, 
is small) and that the plasma wave is wide ( R  is large). Then 
the predominant plasma wave field component acting on the 
electron in the laboratory frame is 

The trajectory is found by solving the equation of motion 

where E = E, and the velocity is expanded in terms of the 
small parameter E 

(7) 
- 
U = lo + E l 1  + + . . . . 

First, (5) is approximated by E, = E o c o s w p t ,  and the 
equation of motion is solved to obtain the following electron 
trajectory: 

T ( t )  = w , t i  + ~ aWc (1 - cos Wpt)y  + - a& sin 2wpt i  + . . . . 
r o u p  473% 

(8) 
Note that the first term is the zeroth-order drift, the second 
term is the first-order transverse oscillation at frequency wp,  
and the third term is a second-order longitudinal oscillation 
at 2wp (the second harmonic term). The velocity p is found 
by differentiating T ( t )  and dividing by c. Equation (8) is the 
approximate equation for the electron trajectory in an ac FEL 
undulator. 
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z 

Fig. 3. Analytically calculated electron trajectory in a plasma wave undu- 
lator. The radial displacement is normalized to the length of the wiggler, 
N,X,, and r = t ($ ,c /N,A,) .  

Next, in order to obtain the approximate electron trajectory 
in a plasma wave undulator ( k ,  # 0), the y component of (8) 
is substituted into (5) to obtain 

The trig terms are expanded as a series in Jn(v), keeping 
only the lowest order terms, where J ,  is the nth-order Bessel 
function of the first kind. Equation (9) is then substituted into 
the equation of motion which is again solved by perturbation. 
The resulting approximate equation for the electron trajectory 
in a plasma wave undulator is 

~ ( t )  = vat; + %(cos v + w,tsinv - cos (U - w p t ) ) c  

(10) 
where v = k p a w c / ~ o w p .  In this approximation, the plasma 
wave field was assumed to be linear and thus was not ex- 
panded in terms of its harmonics. Using fields expanded in 
higher harmonics would produce additional terms in the above 
expressions at the respective harmonics [29]. The expressions 
for the trajectory and velocity obtained in this section will be 
used in the next section to calculate the radiation analytically. 

The electron trajectory in a plasma wave undulator (10) 
is plotted in Fig. 3. Electrons enter the undulator at T = 0 
and exit at T = 1. However, in order to spatially resolve the 
electron undulations, only the first 30% of the undulator is 
plotted. The undulating electrons drift in the direction that the 
plasma wave moves and the amount of drift increases with a ,  
and decreases with yo. The analytic trajectory of an electron 
through the ac FEL looks similar to Fig. 3 except that there 
is no transverse drift. 

In the numerical treatment, the original unsimplified expres- 
sions for the plasma wave fields were used, and the equation 
of motion was numerically integrated to obtain the electron lab 
frame trajectory. The 2-D lab frame trajectory calculated by 
simulation is shown in Fig. 4(b), which also shows a drift in the 
direction of the plasma wave motion, in qualitative agreement 
with the analytic result (Fig. 3). The Gaussian profile of the 
plasma wave field used in the simulation causes the drift to be 

a C J  (v) 
70 wp 

t . . .  1 . .  . I . .  . l . . . l . . . l . . . I . . . I . . . i  

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
radius (cm) 

(a) 

. . . 1 . . . 1 . . . , . . . 1 . . . 1 . . . 1 . . . 1 . . .  
direction of electron motion + 

4.0 

2.0 
h 

8 
v 

N 0.0 

-2.0 

,111.. 

-4.0 '' ' '  I " ' '  I ' '  ' ' I ' ' '  ' '  '' 
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

radius (cm) 
(b) 

Fig. 4. (a) The longitudinal electric field seen by the electron as it traverses 
the plasma wave, and (b) the electron trajectory through the plasma wave; 
obtained by numerical simulation. The plasma wave moves upward and the 
electron moves to the right. Emittance = 0, yo = 4, a, = 1%, and 7,  = 9.7. 

more gradual at the edges of the plasma wave. The simulation 
also shows that there is a deflection of the electron from its 
initial direction of motion that results as the electron exits the 
plasma wave [28]. 

In the 2-D numerical solution, a single electron is injected 
into the plasma wave from a position far from the centerline 
of the wave ( z  M -3R, where R is the Gaussian width of 
the plasma wave). The electron's position (z, y, z ) ,  normaleed 
velocity (a , pv , pz), and normalized acceleration (,& , Py , ,&) 
are calculated along the trajectory until the electron reaches the 
opposite side of the wave ( z  M f 3 R ) .  The electron is injected 
at time equal to zero and with phase equal to zero with respect 
to the plasma wave (i.e., y(0) = 0). The trajectory of the 
electron and the electrostatic field it sees are shown in Fig. 4. 

In the 3-D simulation, a micropulse of thousands of elec- 
trons is injected into the plasma wave so that the front of 
the micropulse starts at z = -322. The spatial distribution of 
electrons in the micropulse is determined by a uniform random 
number generator for the direction of beam propagation z ,  and 
is determined by a Gaussian random number generator for 
the perpendicular directions z and y. The electron micropulse 
has a Gaussian halfwidth of 5X, in the z and y directions. 
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Each electron's position, velocity, and acceleration are calcu- 
lated along the trajectory until the rear of the bunch reaches 
the opposite side of the wave ( z  = +3R). Electron beam 
emittance can be included and is used to determine an initial 
perpendicular deflection for each electron using a Gaussian 
random number generator as described in [28]. 

IV. SPONTANEOUS RADIATION 
The approximate equations for the frequency spectrum and 

angular distribution of radiation emitted by an electron in a 
plasma wave undulator are found by substituting the equations 
for V and p into the well-known expression for the intensity 
I of the radiation emitted per unit solid angle d R  and unit 
frequency interval dw, [30] 

(11) 
where fi = sin 6 cos 42 + sin 0 sin + cos 02,  and Q , $ ,  and 
fi are defined in Fig. 1. We integrate analytically over the 
finite interval It1 < N,T//~,w, because the radiation emitted 
during the time the electron is outside the undulator is zero. 
The radiation of harmonic number f; (i = 1 ,2 ,3 ,  . . .) from an 
eiectron in the plasma wave undulator is then 

I' d 2 1  - p , c o s ~ )  + A  - fi)F 
Po COS Q )  + A - f i ) w p  

j = a, * signifies complex conjugate, and S is the 
Kronecker delta. Here we have neglected the harmonic content 
of the plasma wave undulator itself. The radiation of harmonic 
number fi emitted by an electron in the ac FEL undulator can 
be obtained also and it is 

2 .( fi ) x ( s i n 2 Q P P * + j s i n  28sin4(P*Q - PQ*) 
1 - ~ o c o s Q  2 

n=+w m=+w 

n=l  m=--03 

= *sinosin4 
x (  1 - p , c O s Q  '2 )2~(s in2QPP*+-? . in2Qsin~(P*Q 2 - PQ*)  WP 

cos f3 .:Pow, +(I - sin2 0 )  sin2 4QQ* (12) 6 = - 
8WP 

where k , = O  A = O .  

n= l  m=-w 

The single electron radiation intensity as a function of ob- 
servation angle 0 and frequency ratio wT/wp  up to the third 
harmonic component is shown in Fig. 5 for the plasma wave 
undulator and, for comparison, in Fig. 7 for the ac FEL 
undulator. The angle is plotted in the range 101 < 117, the 
harmonics correspond to the fundamental or first harmonic 
f l  = 2y2, second harmonic, f2  = 4y2, and third harmonic 
f3 = 6y2; and also 4 = 7r/2. The radiation intensity is plotted 
in units of (e2/47r2c). The figures show that the radiation is 
centered about 19 = 0 in the ac FEL undulator but it is skewed 
in the f3 direction in the plasma wave undulator. This is due to 
the drift of the electrons in the direction of the phase velocity 
of the plasma wave. There is also a reduction in the magnitude 
of the radiation as the harmonic number increases for both un- 
dulators. Expressions similar to (12) were obtained by Colson 
for the linearly polarized and circularly polarized magnetic 
undulators [25], [31]. These different undulator configurations 
have very similar radiation characteristics due to the similarity 
of their line shape functions. They are all characterized by 
regularly spaced radiation peaks, which decrease in frequency 
and amplitude as the angle of observation varies away from 
the forward direction, 6' = 0. The skewing of the plasma 
undulator's radiation is due to the A term in the line shape 
function which depends on k p  through the Q term. By rotating 
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Fig. 5. Spontaneous radiation intensity emitted in the plasma wave undulator 
versus frequency and angle for the (a) fundamental, @) second harmonic, 
and (c) third harmonic. yo = 4,aw = O.l,(-l/y < 0 < I/?), 
(y2 < w,/w, < 6y2), and 9 = n/2. 

the d 1 2 / d R  dw, figures, one obtains the angular distribution 
d I l d 0 ,  or the frequency spectrum d I / d w T ,  which are shown 
in Figs. 6 and 8 for the fundamental harmonic of the plasma 
wave undulator and ac FEL, respectively. Fig. 7 shows that 
the ac FEL radiates the fundamental and third harmonics on 
axis ( e  = 0), but the second harmonic is radiated off axis. 
In general, the odd harmonics are radiated on axis and the 
even harmonics are radiated off axis for ac FEL as well as the 
linear magnetic undulator. The circularly polarized undulator 
radiates only the fundamental on axis and all higher harmonics 
are radiated off axis [25], [32]. 

In the simulation, the radiation intensity for the plasma wave 
undulator can be obtained by substituting F ,  p, and p for each 
electron trajectory point into the well-known expression for 
the radiation emitted per solid angle and frequency interval 
given by [30] 

- d 2 1  
dRdw, 
-- 

(31) 

To obtain dlldw, ,  we numerically integrated (31) over the 
trajectory, squared it, and integrated over the solid angle 

I I 1x108 

Angle (radians) -0.25 

Fig. 6. Spontaneous radiation intensity spectrum and angular distribution in 
the plasma wave undulator for the fundamental frequency (same conditions 
as in Fig. 5). 

(with 4 = ~ 1 2 ) .  The single electron d l l d w ,  is shown in 
Fig. 9 for the fundamental frequency and zero beam emittance 
case, which qualitatively compares well to the approximate 
theoretical result for d I / d w ,  shown in Fig. 6(a). It was found 
in the simulations that as the number of electrons increased 
by N ,  the radiation in the peak at 13 = 0 increased as 
N 2 .  It was also found that as the emittance was increased 
to values above 1 mm-mrad, the radiation peak at 6 = 0 
decreased in magnitude, and the discrete spectral pattern 
became indistinguishable. This is in agreement with the beam 
spreading results discussed in [18]. 

The narrow spikes in the frequency spectrum, found ana- 
lytically and by simulation, can be explained in analogy to 
a linear array of antennas phased so that the radiation peaks 
along the array axis, also called the end-fire array [33]. The 
electrons along the undulator radiate like antennas in line, and 
the radiation adds in phase along the direction of propagation. 
Since the length of the undulator is long compared to the 
radiated wavelength, the summed radiation changes rapidly as 
the angle of observation is changed from the forward direction. 
The angular width between peaks was found to be proportional 

The peak of the frequency spectrum ( e  = 0 value of 
the fundamental) changes in accordance with the resonance 
re 1 at i o n 

to V-dK. 

(32) 2 
WT = 2yiwp = 2 y 2 w p / ( l  + a,) 

as y and a, are varied. The peaks of the frequency spectra 
obtained from several simulations are plotted along with the 
theoretical resonance relation in Figs. lO(a) and (b) versus y 
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Fig. 7. Spontaneous radiation intensity emitted in the  ac FEL versus fre- 
quency and angle for the  (a) fundamental, @) second harmonic, and (c) third 
harmonic. yo = 4, Q, = 0.1, (-1/y < 0 < 1 / ~ ) ,  (rZ <  up < 6y2), 
and 9 = */2. 

and uw, respectively. In these figures, the solid line gives the 
theoretical values. The measured frequency values are given 
by x ’s when the absolute peak of the spectrum was used, and 
by 0’s when the frequency was measured at half way up the 
high-frequency slope of the spectral peak. The deviation of 
the x’s in Fig. lO(a) is due to the widening of the spectral 
peaks at y increases. 

V. STIMULATED RADIATION, RADIATION 
GAIN, AND ELECTRON BUNCHING 

Approximate equations for the radiation gain are obtained 
by summing the fields of an injected plane electromagnetic 
(EM) wave with the plasma wave field, solving the electron 
equation of motion by perturbation to obtain its velocity, 
relating the average energy change of the electron to its 
average change in velocity along the undulator, and relating 
the change in radiation energy to the electron average energy 
change. 

The radiation and plasma wave electric fields are oriented 
along the same direction so that the total fields are 
- 
E = (E ,  COS ( k P y  - W p t )  + E, COS ( k T z  - w,t + $T))ij 

(33) 

(34) 
- 
B = E, COS ( k , ~  - w,t + $,.)2 

lXlO* 

8 x 1 0 ~  

Frequency, mlcp 

8x1 07 

.- 0 
U) 

5x10’ 5 
C 
c. - 

3x1 07 

-025 Angle (radians) 0.25 

Fig. 8. Spontaneous radiation intensity spectrum and angular distribution in 
the ac FEL for the fundamental frequency (same conditions as in Fig. 7). 

0 2.0 1d4 4.0 1014 6.0 8.0 1.0 
frequency, w 

Fig. 9. Spontaneous radiation spectrum obtained by numerical simulation 
for the plasma wave undulator. yo = 4, a ,  = I%, and4 = a/2. 

where the EM radiation has electric field strength E,, fre- 
quency U,, wave vector k,., phase q5,, and magnetic field 
B, = E,. In this low gain approximation, E, is approximately 
constant. The frequency of the injected EM radiation field is 
related to the frequency of the plasma wave undulator by the 
resonance condition (32). An electron that is injected with 
energy y is at resonance with the radiation and does not lose 
or gain energy. To get radiation gain, the electrons are injected 
with energy slightly greater than the resonance energy, and 
the decrease of the average electron beam energy as it travels 
down the undulator results in a gain of radiation energy. 

Following Colson [25], we solve the equation of motion, 
(6) by separating it into transverse and longitudinal compo- 
nents and solving for the perpendicular and parallel velocity 
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and 

This equation can be solved by perturbation to obtain the 
velocity, using E = R ; / A w 2  as the small expansion parameter. 
From the change in velocity over the length of the undulator, 
we obtain the change in electron energy. The average final 
electron energy, ( y ( t ) ) ,  is found by averaging over the initial 
phase Q. The negative of the average change in electron 
energy gives the change in radiation energy, which is 

70 - (r(t)) - - 
Yo 
2 4  

~ z J ~ ( a ) c o s 2  a (1 -  cos A w t  - s i n A w t )  

(41) 

The gain, G(t) ,  is obtained by multiplying the change in 
radiation energy by the number of electrons, nbV, and dividing 
by the EM wave energy, 2E:V/8x ,  where nb is the beam's 
electron density and V is the volume that contains the electron 
beam and EM radiation [25]. The resulting gain for the plasma 
wave undulator is 

+ &.lo(@) cos(2a - 2wpt) .  
2 

G ( r )  = 

2 

Jo(a)  C O S ( ~ C X  - 2GP7) (42) 1 Aw3y4 ( Eo/ Er)' 
4 a $ ~ $  

+ 
Fig. 10. Comparison of theoretical resonance condition with simulation where we have used the following dimensionless variables in 

the time varying terms: results for the plasma wave undulator versus (a) yo and @) a,. 

components, d P l / d t  and dPll/dt, which are functions of the 
longitudinal position z.  The position, or phase, of the electron 
within a radiation wavelength is defined as 

c(t) = + A w t  + I C ,  d z ( t )  (35) 
where CO is the initial phase, A w  is the detuning factor, and 
dz  is the relative position of the electron in the wave. The 
detuning factor describes the amount that the electron's initial 
energy is different from the resonant energy and is 

AW = powp - w r ( l  - P o ) .  (36) 

Using 

(37) 

a pendulum equation is obtained which describes the motion 
of the electron relative to the wave 

where 

(39) 

NW A, Nul X p  

(43) 

AiJ = Aw- , and W ,  = wp-. P o c  
Doc 

NwXp 
r=t -  

We note that kPc M wp for the relativistic plasma wave and, in 
general, a, is small and y is large. Then the arguments of the 
cosine and Bessel function terms are small, thus these terms 
are approximately equal to one. 

The pendulum and gain equations for the ac FEL undulator 
are obtained from (38), (41), and (42) by setting ICp = 
0. The gain equations for the plasma wave and ac FEL 
undulator have terms which depend on gPr and are due to the 
electrostatic field. The electrostatic field term also depends on 
the square of the ratio of the electrostatic to electromagnetic 
field magnitudes; and as the electromagnetic field becomes 
larger, the electrostatic term becomes less significant. 

For comparison, we write the pendulum and gain equations 
for the linearly polarized magnetic wiggler [25] 

and 

4e4B:nbXo 
G( t )  = 

( A w y B  
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0 . 0 7 C .  I .  I - I - I - I - I - I I - I - 4 where 

Bo is the magnet field strength, A, = 27r/k, is the magnetic 
wiggler wavelength, and w, = koc. 

In Fig. 11 we plot the gain versus T (42) in units of 

( 8 7 r e 4 ~ 3 w / w , )  ( N ,  ~ p / ~ 0 ~ 0 m 0 c 2 ) 3  (48) 

for several values of dimensionless detuning (A= from 1 to 5) 
for the plasma wave undulator. At T = 0, the electron enters 
the undulator, and exits it at T = 1. For positive detuning 
values close to resonance (AG small), there is positive gain 
which increases as the electron travels down the undulator, as 
shown in the figure. As the detuning increases, the gain reaches 
a maximum and begins to drop near the end of the undulator. 
For detuning values far from resonance (i.e., AZ > lo), the 
gain will oscillate rapidly between positive and negative values 
as the electron travels along the undulator. 

The case shown in Fig. l l ( a )  is for an electron of yo = 4 
in an undulator of a ,  = 0.1, and undulator-to-wave field ratio 
E,/E, of 0.1. The gain plots for an ac FEL undulator and a 
linearly polarized magnetic undulator also resemble Fig. 1 l(a). 
However, for smaller values of a, or larger field ratios, the 
electrostatic term in the gain equation becomes significant and 
the gain curves become as shown in Fig. l l (b)  for the plasma 
wave and ac FEL undulators. There is a rapid oscillation 
superimposed upon the gain curves which is due to the 
electrostatic field term in the gain equation. By adjusting the 
terms multiplying the electrostatic term of the gain equation, 
this oscillation can be eliminated or increased. The physical 
reason we give for this oscillation is as follows. As the electron 
oscillates, a component of its velocity is alternately parallel 
and antiparallel to the electric field. The electric field can do 
work on the electron at a rate given by ee . E and thus can 
change its energy. In the magnetic undulator, the magnetic 
field cannot change the energy of the electrons, and therefore 
the gain curves are smooth. 

Fig. 12 plots the gain (and absorption) versus detuning for 
four values of time, which represent plasma wave undulators 
that are shorter or longer than T = 1. Positive gain occurs 
for small positive values of detuning, and negative gain (or 
absorption) occurs for small negative values of detuning. For 
larger values of detuning (either positive or negative), the gain 
is small and oscillates about zero. 

The case shown in Fig. 12(a) is for an electron of yo = 4 
in an undulator of a, = 0.1, and undulator-to-wave field ratio 
of 0.1. The gain plots for an ac FEL undulator and linearly 
polarized magnetic undulator also resemble Fig. 12(a). The 
parameters of the plasma wave undulator can be chosen so that 
the electrostatic term becomes significant, and this is shown 
in Fig. 12(b) for a,  = 0.01, field ratio = 3.0, and yo = 4. 
Fig. 12(b) shows that two of the curves oscillate about a mean 
value greater than zero, and two oscillate about a value less 
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next to ewh curve. 
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? 

(b) 

Fig. 11. Normalized stimulated radiation gain versus normalized time in 
the plasma wave undulator for five values of detuning, A w ,  for (a) E,/E, 
small and a ,  large, and (b) E,/E, large, a ,  small and showing rapid gain 
oscillations. 

than zero. If the field ratio were increased more, the separation 
between the two sets of curves would also increase. The 
parameters for Fig. 12(b) approximately correspond to those 
for Fig. l l (b)  which has high-frequency oscillations on the 
gain curves. A possible explanation for the shift in the curves 
is that the final electron energy at the end of the undulator can 
be shifted higher or lower depending on whether the simulation 
stopped at the peak or minimum of the rapid oscillations shown 
in Fig. l l(b).  This may explain the simulation result, however, 
we are not certain that this effect would occur in a physical 
undulator. 

In the numerical simulations, a resonant EM wave was 
injected into the plasma wave co-parallel with a micropulse 
containing several thousand electrons having the same energy. 
Fig. 13(a) shows the spatial distribution of the electrons after 
emerging from the plasma wave undulator, for the case when 
no EM wave is present. The electron bunch is moving upward 
and the plasma wave is moving to the left in the figure. The 
perspective is looking down (in the positive z direction) on the 
electron bunch shown in the sketch in Fig. 1. In Fig. 13(b), 
the EM wave is added which results in electron bunching. 
The separation between the large bunches in Fig. 13(b) is 
equal to the radiation wavelength A,. There are closer spaced 
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Fig. 12. Radiation gain versus detuning in the plasma wave undulator for 
four values of normalized time 7, for (a) Eo/ET small and a ,  large, and 
(b) E,/E, large and a, small, showing gain curves offset above and below 
the zero gain level. 

bunches within the larger electron bunches with separation 
approximately equal to the higher harmonic wavelengths. 

In another simulation, a smaller monoenergetic group of 50 
test electrons was injected along with an EM wave into the 
plasma wave undulator and allowed to drift to the end of the 
undulator. The final energies of the electrons were recorded 
and then averaged over the group of 50. In order to simulate 
injection at different detuning values, each simulation run 
started with a different electron energy. In succesive simulation 
runs, the initial electron energy was swept in small increments 
over the range from yo = 3.9 to 4.1. The EM wave frequency 
was resonant with the yo = 4.0 electron in each simulation run. 
The negative of the average energy change of the emerging 
electrons was plotted versus the initial energies in Fig. 14. 
This is the gaidabsorption curve obtained by simulation that 
was approximated by (42) and plotted in Fig. 12. Note that the 
baseline of the curve is shifted above the zero gain level, and 
that the curve is not symmetric about the resonant energy, 
yo = 4. If several thousand electrons had been used in 
the simulation (very expensive), the curve would probably 
have been much smoother. However, again we see that the 
simulation is in qualitative agreement with the results of the 
approximate analytic theory. 
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Fig. 13. Distribution of electrons emerging from the plasma wave undulator 
for the cases of copropagating electromagnetic wave (a) not present and @) 
present, showing bunching at the fundamental and harmonic wavelengths; 
obtained by numerical simulation. 
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electron energy, y (or detuning, Am) 
0 

Fig. 14. Radiation gain and absorption obtained by numerical simulation 
versus electron injection energy (yo), or detuning (nu). This gain curve 
results from combining the radiation of 50 electrons. 

VI. SUMMARY 

The relativistic plasma wave undulator has the potential to 
be a compact and less expensive source of short wavelength 
radiation down to the X-ray regime because it can be used 
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with a modest energy relativistic electron beam. Approximate [17] T. Katsouleas, S. Wilks, P. Chen, J. M. Dawson, and J. J. SU, “Beam 
expressions for the electron trajectories, spontaneous radiation, 
and stimulated radiation gain have been obtained for the 
plasma wave undulator as well as for the ac FEL. The electron 
trajectory has a very small transverse drift in the plasma 
wave undulator which causes the angular distribution of the 
spontaneous radiation to be directed at a small angle away 
from the undulator centerline. The ac FEL and conventional 
magnetic FEL do not have this drift. The 3-D simulation 
results confirm our approximate analytical expressions for 
the trajectory, spontaneous radiation, and stimulated radiation 
gain. The plasma undulator also offers different harmonic 
content. The simulations also show that radiation gain occurs 
when an EM wave copropagates with the electron beam; 
however, a rapid modulation of the gain can also occur. 
Electron bunching occurs at the radiation wavelength and at 
harmonics when the EM wave is copropagating with the beam. 
The stimulated radiation gain/absorption curves resemble those 
of magnetic undulators, except that a shift in the gain curves 
above or below zero gain was observed in the simulations. 
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