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Abstract
Speech foundation models (SFMs) have achieved state-of-

the-art results for various speech tasks in supervised (e.g. Whis-
per) or self-supervised systems (e.g. WavLM). However, the
performance of SFMs for child ASR has not been systemati-
cally studied. In addition, there is no benchmark for child ASR
with standard evaluations, making the comparisons of novel
ideas difficult. In this paper, we initiate and present a compre-
hensive benchmark on several child speech databases based on
various SFMs (Whisper, Wav2vec2.0, HuBERT, and WavLM).
Moreover, we investigate finetuning strategies by comparing
various data augmentation and parameter-efficient finetuning
(PEFT) methods. We observe that the behaviors of these meth-
ods are different when the model size increases. For example,
PEFT matches the performance of full finetuning for large mod-
els but worse for small models. To stabilize finetuning using
augmented data, we propose a perturbation invariant finetuning
(PIF) loss as a regularization.1.
Index Terms: Children’s Speech Recognition, Speech Founda-
tion Model, Whisper, Data Augmentation, PEFT

1. Introduction
Large foundation models have increasingly gained attention
in the research community because of their impressive zero-
shot and in-context learning ability [1, 2, 3]. Specifically
in the speech area, the Whisper-large model [4] has shown
great robustness to diverse domains of speech data by learn-
ing from large-scale supervised data in a multi-task training set-
ting. In addition to Whisper, another type of speech founda-
tion models (SFM) is obtained through self-supervised learn-
ing, e.g. Wav2vec2.0 [5], HuBERT [6], WavLM [7], and
W2VBERT2.0 [8]. Such models do not require annotations and
learn to extract contextual representations based on data pat-
terns in the speech signals [9]. State-of-the-art results of various
speech recognition tasks can be achieved by finetuning these
models or using them as feature extractors.

With the increasing use of voice-based educational tech-
nology, better child ASR systems are needed because speech
is one of the mechanisms young children use to interact with
devices due to their limited reading and writing abilities. How-
ever, child ASR is difficult due to, in part, the lack of large
child speech databases. To address this issue, researchers have
developed a variety of data augmentation methods by pertur-
bation [10, 11, 11, 12] or voice conversion [13, 14]. An-
other direction is to adopt the pretraining finetuning paradigm,
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which utilizes the un-annotated data with self-supervised learn-
ing [15, 16] or the annotated adult data with transfer learn-
ing [17] in the pretraining stage. The knowledge learned in
the pretrained models can greatly improve the performance for
child ASR. With the recent advances of SFMs, several studies
have compared the performance of widely used SFMs on child
speech [18, 19, 20]. However, these studies provide only full
finetuning experiments on SFMs. In addition, the speech cor-
pora used in these studies are partitioned differently in each one,
making direct performance comparisons difficult.

In this paper, we initiate and present a comprehensive
benchmark on the OGI [21] read and MyST spontaneous [22]
child speech corpora, studying the performance of various
SFMs. More importantly, we investigate finetuning strategies
for child speech by comparing various data augmentation and
parameter-efficient finetuning (PEFT) methods, which are not
discussed in previous works. We observe many interesting be-
haviors of finetuning different speech foundation models. For
example, adapter finetuning [23] is better than full finetuning for
large models but vice versa for small models. Our benchmark-
ing study may offer guidance in selecting appropriate models,
data augmentation and PEFT strategies to develop robust and
accurate child ASR systems. We hope the standard evaluation
can lead to fairer comparisons for child ASR research. We also
welcome new evaluation sets and new algorithms to include in
the benchmark.

2. Methods in the Benchmark

In this section, we briefly introduce the methods that are com-
pared in the benchmark, including SFMs, data augmentation
and parameter-efficient finetuning (PEFT) techniques.

2.1. Speech Foundation Models

Large models trained with large amounts of data have shown
great potential to improve the performance of speech recogni-
tion tasks. There are two types of SFMs that are: 1) trained
with supervised speech-text pairs, such as Whisper [4] and Para-
keet [24], and 2) trained with unannotated speech data using
self-supervised learning, e.g. Wav2vec2.0 [5], HuBERT [6],
and WavLM [7]. For supervised SFMs, the zero-shot ability of
these models is compared as they can directly perform speech
recognition tasks. We then conduct in-depth finetuning experi-
ments on the Whisper series (tiny, base, small, medium, large
and largeV3). For self-supervised SFMs, finetuning experi-
ments are conducted. The models used in the benchmark are
listed in Table 1 along with details including model architecture,
input features, model size and training data. The open-sourced



Table 1: Details of the speech foundation models used in the benchmark.

Model Model Architecture Input Features Model Size Sup./Self-sup. Training Data (hours)

Whisper-{tiny-large} Encoder-Decoder Fbank 39M-1550M Supervised 680K
Whisper-largeV3 [4] Encoder-Decoder Fbank 1550M Supervised 1M
Canary [24] Encoder-Decoder Fbank 1B Supervised 85K
Parakeet-TDT [24] Transducer Fbank 1.1B Supervised 64K
Wav2vec2-Large [5] Encoder Waveform 311M Self-supervised 60k
HuBERT-Large [6] Encoder Waveform 311M Self-supervised 60k
WavLM-Large [7] Encoder Waveform 311M Self-supervised 94k

models can be accessed in the OpenASR leaderboard2.

2.2. Data Augmentation

Data augmentation methods are commonly used in child ASR
systems for alleviating the data scarcity problem, but no sys-
tematic comparison between them has been conducted before
with all SFM models. Based on the Whisper-small model, we
compare several widely-used methods including pitch perturba-
tion (PP) [25], speed perturbation (SP) [10], vocal tract length
perturbation (VTLP) [26], and SpecAugment (SA) [27]. Two
augmented utterances were created for each utterance as has
commonly been done in the literature.

• Pitch perturbation (PP) involves altering the fundamental
frequency of speech signals while preserving other temporal
/spectral features. The pitch is shifted to n/12 octave higher
or lower for each utterance, where n is randomly sampled
from 1 to 12 twice.

• Speed perturbation (SP) modifies the speed of speech sig-
nals. Two copies of each utterance are created with the per-
turbation rate of 0.9 and 1.1.

• Vocal tract length perturbation (VTLP) involves simulat-
ing the effects of variations in vocal tract length by applying
frequency warping. The perturbation rate used (0.9 and 1.1)
is the same as that used in speed perturbation.

• SpecAugment (SA) randomly masks consecutive frequency
bands and time frames, which effectively increases the ro-
bustness of the model to time-frequency variations. We use
the default SpecAug settings in the Whisper model.

We look forward to incorporating new augmentation methods
in the benchmark in the future.

2.3. Parameter Efficient Finetuning (PEFT)

Parameter-efficient finetuning techniques have become increas-
ingly important when large foundation models are used as
model initialization for various tasks [28]. These techniques
aim to adapt pretrained models to new tasks or domains while
minimizing the computational resources required for training.
We compare four widely-used PEFT techniques, which are Low
Rank Adaptation (LoRA) [29], adapter tuning [30, 23], prompt
tuning [31], and prefix tuning [32].

• LoRA leverages the observation that the matrices of model
layers often exhibit low-rank structures. By decomposing
weight matrices into low-rank factors and updating only the
low-rank factors during fine-tuning, LoRA reduces compu-
tational overhead while preserving model performance. We

2https://huggingface.co/spaces/hf-audio/open_
asr_leaderboard

apply LoRA weights to both the query and value-related pa-
rameters in each attention layer, with a rank of eight [29].

• Adapter tuning introduces lightweight adapter modules,
which are small neural network components inserted between
layers of the foundation models. By finetuning only the pa-
rameters within the adapters, efficient adaptation is achieved.
We used the residual adapters with the bottleneck dimension
of 32, which is similar to [30]. The residual adapters are in-
serted after each block in both the encoder and decoder.

• Prompt Tuning prepends randomly initialized prompt vectors
to the input sequence and the prompts are optimized through
gradient-based methods, allowing the model to directly learn
task-specific input representations during fine-tuning. 100
and 20 prompts are inserted in the encoder and decoder in-
puts, respectively, in our experiments.

• Prefix tuning is similar to prompt tuning but prepends the
prompts at each layer instead of at the input, bringing more
flexibility during finetuning. In our experiments, 50 and 10
prompts are inserted at the beginning of each layer input to
both the encoder and decoder modules, respectively.

The number of prompts used in prompt tuning and prefix tuning
are chosen empirically. By comparing various PEFT methods
to full finetuning, we will discover the best finetuning strategy
for child ASR when using speech foundation models.

3. Experiments
In this section, we present the speech datasets used, experimen-
tal setup and results..

3.1. Child Speech Datasets

The experiments are conducted on two child speech databases:
My Science Tutor (MyST) spontaneous speech corpus [22], and
CSLU OGI scripted read speech corpus [21].

The MyST corpus consists of around 240 hours of tran-
scribed conversational children’s speech (from grade 3 to grade
5), recorded from virtual tutoring sessions in physics, geog-
raphy, biology, and other topics. Similar to [19], we identify
and filter low quality audio samples by passing the transcribed
dataset through the Whisper-largeV2 model. Utterances with
WER larger than 50% or with less than 3 words are removed,
resulting in a 133 hours training set. When evaluating the Whis-
per model, we find that the results are unstable for the test sam-
ples that are longer than 30s (the maximum length for training
Whisper). Hence, utterances longer than 30s are also removed
in both the training and test sets. As a result, the original data
splits in MyST corpus are as follows: train (133h), dev (21h),
and test (25h).

The CSLU OGI Kids corpus contains around 50 hours of
speech by 1100 children (from kindergarten to grade 10) read-



Table 2: Zero-shot performance of the supervised speech foun-
dation models in terms of WER. Bold numbers are the best per-
formance among the supervised SFMs.

Model Model
Size

MyST OGI
dev test dev test

Whisper-tiny 39M 18.5 20.6 40.1 53.8
Whisper-base 74M 15.6 16.8 36.8 38.0
Whisper-small 242M 14.4 13.4 21.2 25.4
Whisper-medium 769M 13.3 13.1 18.8 20.8
Whisper-large 1.55B 14.4 12.5 21.2 22.9
Whisper-largeV3 1.55B 12.3 12.6 14.9 19.9
Canary 1.0B 9.3 9.5 14.8 18.2
Parakeet-rnnt 1.1B 10.7 11.1 14.3 16.7

ing from a list that contains either simple words, sentences, or
digit strings. The utterances are randomly split into train (70%),
development (15%) and test (15%) sets without speaker over-
lap, which is the same as [23, 33].

The utterance ID list for the two corpora are released as
standard evaluations with the training code.

3.2. Finetuning and Evaluation Setup

When finetuning the supervised SFMs, we use the same vo-
cabulary and objective function as those used in the pretrain-
ing stage. When finetuning self-supervised SFMs, we use all
characters in the transcriptions to create a vocabulary and ap-
ply a CTC loss to perform ASR. All results are reported by
greedy search decoding without any external language model.
The PEFT and DA experiments are not investigated for the OGI
corpus because of the page limitation.

3.3. Zero-shot Performance for the Supervised SFMs

Since supervised speech foundation models are trained with
ASR loss, we first compare their zero-shot abilities on child
speech. Top performing models from the OpenASR benchmark
for adult speech are selected for comparisons. The results are
presented in Table 2. The Canary and Parakeet models have
been shown to perform better than Whisper, on average, on the
adult speech benchmark [34]. The same conclusions can be
drawn here for child speech, which is surprising because the
Whisper models are trained with more data than Canary and
Parakeet (training data sizes are shown in Table 1). Considering
that many of the data for Whisper training is weakly-supervised,
we conclude that data quality is sometimes more important than
the size of data for obtaining a robust supervised speech foun-
dation model, which has also been observed for large language
models [35].

3.4. Foundation Models with Finetuning

In addition to the supervised foundation models, self-supervised
foundation models are also widely used for child ASR. We com-
pare the full-finetuning performance between the two types of
foundation models and present the results in Table 3. The results
show that supervised SFMs can achieve better performance than
the self-supervised SFMs after finetuning with similar model
parameters (e.g. Whisper-small with 242M and WavLM with
311M parameters). Among the most widely used SSL mod-
els, WavLM achieves the best performance because it used
more data and included a masked reconstruction from noisy and

Table 3: WER comparisons of finetuning supervised and self-
supervised speech foundation models. Note finetuning on each
corpus separately. Supervised and self-supervised SFMs are
finetuned with 2GPUs for 4k and 12k steps, respectively.

Model MyST OGI
Dev Test Time Dev Test

Supervised SFM
Whisper-tiny 11.6 11.6 2.0h 2.7 3.0
Whisper-base 9.1 10.4 2.5h 2.0 2.3
Whisper-small 8.4 9.3 6.0h 5.0 1.8
Whisper-medium 8.4 8.9 8.0h 1.6 1.5
Whisper-large 8.2 13.0 9.2h 1.8 1.7
Whisper-largeV3 8.5 9.1 13.0h 1.6 1.4

Self-supervised SFM
Wav2vec2.0 10.6 11.1 10.5h 2.1 2.5
HuBERT 10.5 11.3 10.5h 2.2 2.5
WavLM 9.6 10.4 13.5h 1.7 1.8

multi-talker speech data during pretraining. Note that an advan-
tage of the SSL models are that they might also be robust to
other speech tasks because the SSL loss is not specifically de-
signed for ASR. We don’t compare this ability of SSL models
since we are mainly focusing on the ASR task. The full finetun-
ing results for the Canary and Parakeet models are as follows:
Canary (MyST dev: 8.6, MyST test: 9.2, OGI dev: 1.4, OGI
test: 1.5); Parakeet (MyST dev: 7.9, MyST test: 8.5, OGI dev:
1.8, OGI test: 1.8). Due to the recent release of these models,
PEFT and DA experiments were not explored in detail.

3.5. Comparisons of Data Augmentation Methods

Table 4: WER comparisons of different data augmentation
methods on MyST dataset using the Whisper-small model. PIF
stands for perturbation invariant training. x3 indicates three
copies of the original data for augmentation.

Whisper-small Augmentation MyST-dev MyST-test

Baseline no 14.4 13.4

Finetuning

no 8.4 9.3
PP (x3) 8.6 8.8

VTLP (x3) 8.6 9.0
SP (x3) 8.1 8.9

SA 8.2 9.0
SA + PP 8.2 8.9

SA + VTLP 8.1 9.0
SA + SP 8.3 8.9

PIF VTLP (x3) 8.3 9.0
PP (x3) 8.3 8.9

Data augmentation (DA) is an important technique to deal
with low-resource tasks, such as child ASR. However, previous
works either used private data or conducted experiments with
their own settings, making the comparisons of different meth-
ods difficult. In addition, previous DA methods are proposed
based on training from scratch. It is unknown whether these
methods improve the performance when using SFMs. To ad-
dress this issue, we made a comparison of different DA meth-
ods and explored their role in finetuning SFMs. The experi-
mental results on MyST dataset using Whisper-small model are
shown in Table 4. The reason we use the Whisper-small model
is that it is computationally efficient given our limited number



Table 5: WER comparisons of different parameter efficient fine-
tuning (PEFT) methods on MyST dataset using the Whisper-
small model. Params indicates the number of updated param-
eters during finetuning. Enc. and Dec. represents finetuning
encoder and decoder only, respectively.

Model PEFT MyST-dev MyST-test Params

Baseline no 14.4 13.4 0
Full-FT no 8.4 9.3 242M

Whisper
-small

Enc. 9.0 9.2 88M
Dec. 8.9 9.5 154M

Prompt [2] 10.4 10.4 92k
Prefix [32] 8.9 10.2 541k
LoRA [29] 9.1 9.6 917k

Adapter [23] 8.4 9.3 1.29M

of GPUs, and achieves a reasonable WER on child speech. We
can observe from the table that different augmentation methods
achieve similar WER improvements compared to the finetun-
ing baseline. Interestingly, the combination of two DA meth-
ods does not provide further gains compared to using only one
method. This is slightly different from the conclusion in [36]
when the model is trained from scratch. This might be because
the SFM itself is already robust to some variations created by
the DA methods. Note that F0-based data augmentation in [36]
achieves similar performance to pitch perturbation.

The improvements of PP and VTLP are not stable, and we
propose a perturbation invariant finetuning (PIF) technique to
stabilize the VTLP and PP. Specifically, an additional distance
loss between the encoder outputs of original and perturbed ut-
terance is added as a regularization for finetuning. The results
in Table 4 show that PIF can lead to more consistent improve-
ments of perturbation methods on the MyST-dev and MyST-test
sets. PIF is only used for VTLP and PP as they are not stable
when FT on kids speech while other DAs are stable.

3.6. Comparisons of Parameter Efficient Finetuning

When speech foundation models are large, full finetuning with
the entire model parameters would be difficult because of the
high GPU memory costs. Parameter efficient finetuning (PEFT)
can retain the performance of full tuning but update less param-
eters during the finetuning stage. We compare several widely
used PEFT methods in the NLP area on Whisper-small model
on the MyST dataset and present the results in Table 5. It
can be seen from the table that adapter tuning achieves simi-
lar performance compared to the full finetuning while having
only 1.29M parameters for updates. Note that the initialization
of the adapters are important for good performance of adapter
tuning. For example, the inserted adapter module should be
equivalent to the identity function at the start of the finetun-
ing. However, LoRA, the most popular PEFT method in the
area of NLP, achieves worse performance than the full finetun-
ing. Prompt and prefix tuning behave not as good as LoRA and
adapter FT might be because they alter the positional informa-
tion of the speech sequence and restrict the model capacity for
learning from finetuning data.

3.7. Impact of Model size on PEFT performance

As shown in Table 3, the WER of the Whisper model decreases
when the model size increases. We further explore whether the
model size would affect the performance of PEFT, specifically
adapter tuning because it behaves better than other PEFTs as
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Figure 1: The impact of the Whisper model size for full and
adapter finetuning (Adap-FT in the figure) on WER. The model
size of each whisper model can be found in Table 1.

shown in Table 5. The results of both full finetuning and adapter
finetuning on MyST and OGI test data are plotted in Figure 1.
We can observe from the figure that the adapter tuning does
not work as well as the full finetuning for small models. How-
ever, when the model size increases, the gap between adapter
tuning and full finetuning decreases. For example, the adapter
tuning matches the performance of the full finetuning for the
Whisper-largeV3 on the MyST-test data. This interesting be-
havior provides us with guidance on how to select the appro-
priate finetuning strategy. That is, performing full finetuning
for small models and PEFT for large models. It would also be
interesting to investigate the impact of the model size for data
augmentation methods, which will be included in future work.

4. Conclusions and Future Work

In this paper, we presented the first benchmark for child ASR
with a comparison of various speech foundation models, such
as Whisper, Canary, Parakeet, Wav2vec2.0, HuBERT, and
WavLM. We found that the Canary and Parakeet models are
better than Whisper models on child speech with much less
training data, indicating the data quality is sometimes more im-
portant than the data quantity. As expected, supervised SFMs
performed better than the self-supervised SFMs after finetun-
ing. Moreover, we investigated finetuning strategies by compar-
ing various data augmentation (pitch perturbation, speed pertur-
bation, VTLP and SpecAugment) and parameter-efficient fine-
tuning (PEFT) methods (prompt tuning, prefix tuning, adapter
tuning, and LoRA). To stabilize the finetuning using the aug-
mented data, we propose a perturbation invariant finetuning
(PIF) loss as a regularization. Various parameter-efficient fine-
tuning (PEFT) strategies were compared, and we observed that
the behaviors of PEFT are different when the model size in-
creases. For example, PEFT performed better than full finetun-
ing for large models but worse for small models. This study may
offer guidance in selecting appropriate models, data augmenta-
tion and PEFT strategies to develop robust child ASR systems.

Future work will include: 1) Evaluations on other child
speech datasets; 2) Comparisons with new data augmentation
methods; 3) Evaluations of other open-sourced speech foun-
dation models, such as SeamlessM4T [37], OWSM [3] and
W2VBERT2.0 [8]; 4) Migration of models not supported in
Huggingface, e.g. the Canary and Parakeet models developed
using the NeMo [38] framework, since our finetuning code is
implemented based on Huggingface.
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