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Abstract—One of the main challenges in children’s speaker
verification (C-SV) is the significant change in children’s voices
as they grow. In this paper, we propose two approaches to
improve age-related robustness in C-SV. We first introduce
a Feature Transform Adapter (FTA) module that integrates
local patterns into higher-level global representations, reducing
overfitting to specific local features and improving the inter-
year SV performance of the system. We then employ Synthetic
Audio Augmentation (SAA) to increase data diversity and size,
thereby improving robustness against age-related changes. Since
the lack of longitudinal speech datasets makes it difficult to
measure age-related robustness of C-SV systems, we introduce
a longitudinal dataset to assess inter-year verification robustness
of C-SV systems. By integrating both of our proposed methods,
the average equal error rate was reduced by 19.4%, 13.0%, and
6.1% in the one-year, two-year, and three-year gap inter-year
evaluation sets, respectively, compared to the baseline.

Index Terms—Children Speaker Verification, Inter-Year Child
Speaker Verification, Data augmentation, Domain adaptation

I. INTRODUCTION

With the advent of online learning, the number of children
using online learning applications has increased exponentially.
Speaker verification can enable personalized experiences for
children in educational applications, virtual assistants, and
interactive learning tools by recognizing individual voices.
This can enhance engagement and tailor learning materials
to each child. The current state of the art speaker verification
systems [1]–[4] have achieved significant success on various
benchmark datasets [5]–[8]. While speaker verification for
adults has seen significant improvements in accuracy due
to large datasets and optimized model architectures, speaker
verification for children faces greater difficulties.

The challenges in children speaker verification are more
pronounced compared to adults in the following aspects.
First, the limited availability of children’s speech datasets
makes it difficult for models to reach their full potential,
particularly because insufficient data can lead to overfitting,
which in turn reduces the model’s robustness. Many studies
have addressed this issue in children’s speaker verification by
employing various data augmentation techniques, including
SpecAug [9], Speed Perturbation [10], Noise and RIR [11],
[12], Voice Conversion [13]–[15], and a combination of several
signal processing approaches [16]. Second, the anatomical
changes in children’s vocal tracts during growth lead to more
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pronounced variations in their voices [17]–[19], compared
to the relatively stable vocal characteristics of adults [20].
Due to the scarcity of longitudinal speech datasets, research
on the impact of age-related changes on the performance
of speaker verification systems is limited [21], with a few
studies addressing inter-year C-SV. However, understanding
and improving age robustness in children’s speaker verification
systems is crucial in practical applications because children’s
voices can change significantly over short periods, leading
to potential degradation in verification accuracy over time.
Addressing this issue is essential to ensure consistent and
reliable performance of these systems in real-world scenarios
where a child may use the verification system over several
years.

In this paper, we propose techniques to improve the inter-
age C-SV through two approaches. Drawing inspiration from
recent advancements in feature adapters [22], [23], we first
propose the Feature Transform Adapter (FTA) which aggre-
gates the original local features at different time scales and
resolutions to eliminate disturbances caused by age-related
changes in the speaker’s audio characteristics, thereby forming
more robust features. We then present a data augmentation
method using HiFi-GAN [24] to generate in-domain synthetic
audio from speech spectrograms. Although this approach has
been previously applied in other fields [25], [26], we have
adapted this data augmentation technique for the children SV
task. As a final step, we introduce a longitudinal children’s
speech dataset designed to support the evaluation of age-
related speech changes and to advance the development and
testing of robust speaker processing systems for children. A
comprehensive set of ablation studies is conducted to validate
the efficacy of the proposed methods.

II. METHOD

A. Feature Transform Adapter

Different from inter-year speaker verification for adult
speech [21] (referred to as cross-age in [21]), age significantly
impacts the performance of C-SV systems. In this context,
global features, such as formant distribution [27], refer to
the stable and consistent aspects of a speaker’s voice that
remain relatively unchanged over time, making them crucial
for identifying the speaker’s identity. In contrast, local features,
such as segmental durations [17], exhibit transient, short-term



variations that are sensitive to slight changes in the input
signal, such as age-related shifts. We hypothesize that as a
child ages, local features undergo changes in both the time and
frequency domains, whereas global features remain relatively
stable. To address this, we introduce an innovative structure
referred to as the Feature Transform Adapter (FTA), as de-
picted in Fig 1. This adapter aggregates features in a manner
that obscures age-related local information while preserving
essential global information related to the speaker’s identity.
The primary goal of this adapter is to enhance the robustness
of the children’s speaker verification system, making it more
effective in handling age-related variability and improving
overall verification accuracy.

The details of the FTA are as follows. Initially, the
80-dimensional filterbank features are layer-normalized and
passed through a fully connected layer. The features are then
processed through two 1D convolutional layers to aggregate
local features along the frequency dimension. The aim is to
capture the average variations along the frequency dimension
while maintaining the global speaker identity information.
The ReLU activation function is employed between the two
convolutional layers to introduce non-linearity into the adapter.
Finally, the processed features are integrated with the original
features via a residual connection. These features can be then
used to train the SV system.

B. Synthetic Audio Augmentation

Synthetic Audio Augmentation (SAA) involves using arti-
ficially generated audio samples to diversify training datasets.
We assume that such synthesis methods preserve the speaker’s
identity but may not accurately retain age-related information
due to challenges in capturing age-specific features during
synthesis. In this paper, we introduce an SAA method based
on HiFi-GAN [24]. HiFi-GAN includes one generator and
two discriminators: the generator converts mel spectrograms
into raw waveforms through the convolutional neural network.
Among the discriminators, the Multi-Period Discriminator
(MPD) captures diverse periodic patterns by analyzing various
segments of the audio, while the Multi-Scale Discriminator
(MSD) focuses on both short-term and long-term dependencies
across multiple resolutions. During training, the generator
learns to produce realistic audio waveforms that can deceive
both discriminators, while the discriminators simultaneously
refine their ability to distinguish between real and generated
audio. In this work we directly use the pre-trained open source
HiFi-GAN generator [28] to generate the synthetic audio. For
each child’s speech signal from a specific year, we input
the corresponding spectrogram into the HiFi-GAN generator,
generating synthetic audio to augment the training dataset.

C. Child Longitudinal Test Set

To address the dataset gap in inter-year children speaker
verification, we present a longitudinal evaluation set. Derived
from an existing longitudinal child speech dataset [19], [27],
[29] and referred to as the IU dataset, it includes data from
eight children (four boys, four girls) recorded annually from

Fig. 1: Overview of the proposed Feature Transform Adapter

Grade 1 to Grade 4. The speech utterances were elicited
through tasks commonly used by speech-language pathologists
(Goldman and Fristoe Test of Articulation, 3rd Edition, aka
GFTA-3) and were recorded at Indiana University, Blooming-
ton. We applied Voice Activity Detection (VAD) [30] to extract
child speech segments of at least 2 seconds, creating the IU
evaluation database.

IU inter-year verification pairs were created by pairing
enrollment speech from one grade with test segments from
subsequent grades. For example, Grade 1 (G1) enrollment
speech was paired with Grade 2 (G2), Grade 3 (G3), and
Grade 4 (G4) segments, forming G1-G2, G1-G3, and G1-
G4 target pairs. Negative pairs were sourced from the same
year to increase task complexity. Other sets like G2-G3, G2-
G4, and G3-G4 were constructed similarly. Additionally, IU
intra-year sets, i.e., G1-G1, G2-G2, G3-G3, and G4-G4 were
created. Each IU evaluation set contains 2,000 verification
pairs—1,000 positive and 1,000 negative.

III. EXPERIMENTAL SETTINGS

A. Databases

The CSLU [31] dataset is utilized in all the training and
fine-tuning experiments proposed in this paper. The CSLU
speech corpus, also referred to as the OGI kids’ speech
corpus, includes both spontaneous and scripted speech data
from approximately 1,100 children, ranging from kindergarten
(K00) through grade 10 (K10). Each age group consists of
approximately 100 speakers recorded uttering single words,
sentences, and digit sequences. For our experiments, we uti-
lized only the scripted speech data.

We employ two distinct train-eval splits from the CSLU
database, as detailed in Table 1. To achieve optimal results
through fine-tuning and our proposed methods, we use CSLU-
S, a split with a large training set, providing ample data for
fine-tuning. As a result, the evaluation set in CSLU-S contains
fewer speakers, with 866 speakers in the training set and 255



TABLE I: Train-eval splits used to train/fine-tune the models
discussed in this paper. #Spks refers to number of speakers,
#Hrs represents duration in hours, and #Trials stands for
number of SV trials in the evaluation set.

Train Eval
# Spks # Hrs # Spks # Trials

CSLU-S [32] 866 24.00 255 44000
CSLU-L [16] 120 2.65 993 190972

speakers in the evaluation set, covering 44,000 intra-year SV
trials across all grades. To validate the effectiveness of our
methods with a larger number of speakers in intra-year SV
and to compare our approaches with existing state of the
art C-SV models, we utilize the CSLU-L dataset in some of
the experiments. In this split, the training set contains 120
speakers, and the evaluation set includes 993 speakers with
190,972 SV trials. There is no overlap between the speakers
in the train and evaluation subsets of both splits. Along with
the evaluation sets from CSLU database, we also evaluate the
models on IU dataset discussed in section II-C.

B. Baseline System

An ECAPA-TDNN [1] network was trained for a speaker
identification (SID) task using the CSLU dataset, with the
training process conducted via the SpeechBrain toolkit [33].
The input features consisted of 80-dimensional filter bank
features, extracted every 10 ms using a 25 ms window.
The ECAPA-TDNN architecture includes frame-level convolu-
tional layers with 1024 channels and 128 dimensional attention
channels. The output of the model is the 192 dimensional
speaker vectors. We then compare these vectors to examine
speaker similarity. In terms of the training details, all models
are trained for 15 epochs with a batch size of 16. The Adam
optimizer is utilized with a learning rate of 1e−3. Additionally,
four online data augmentation methods were employed during
training, with detailed parameter configurations provided in
III-C. This model is used as the baseline in our experiments
and is referred to as Baseline in this paper.

C. Augmentation Setup

To construct a strong baseline system, we incorporated four
distinct data augmentation techniques, each with the following
parameter configurations. For Noise Augmentation, the signal-
to-noise ratio (SNR) of the added noise was varied between 0
and 15 dB. Additionally, Room Impulse Response (RIR) aug-
mentation was employed to enhance the system’s robustness in
reverberant environments. The frequency drop augmentation
allowed for the random removal of 1 to 3 frequency bands
at a time, across the full frequency range, with a frequency
band width of 0.05. In time drop augmentation, audio chunks
ranging from 1000 to 2000 samples were randomly removed,
with between 1 and 5 chunks being dropped per audio sample.
The baseline model described in III-B was trained using the
above discussed augmentation techniques on the CSLU train
data. In the Synthetic Audio Augmentation process discussed

in Section II-B, we utilized the open-sourced pretrained HiFi-
GAN vocoder and denoiser [28], where the denoising strength
was set to 0.005.

IV. RESULTS AND DISCUSSION

A. Performance of Feature Transform Adapter

To evaluate the robustness of the proposed C-SV systems,
Table II shows the Equal Error Rates (EER) for different SV
systems trained using CSLU-S and evaluated under intra-year
and inter-year verification (i.e., longitudinal evaluation) on the
CSLU and IU evaluation sets. Fine-tuning significantly reduces
the EER for intra-year verification compared to the baseline
but does not consistently improve inter-year performance,
likely due to insufficient representation of inter-year scenarios
during training, which leads to poor generalization and vari-
able performance. The FTA approach mitigates this limitation
by leveraging convolutional layers to capture generalizable
patterns, resulting in improved results across most CSLU
evaluation sets and all IU evaluation sets compared to the
conventional fine-tuning. In contrast, replacing the convolu-
tional layers with fully connected layers (+RA) shows no
improvement, hence supporting our hypothesis on the ability
of the convolutional layers to aggregate local features as a key
to enhancing robustness.

B. Effect of Synthetic Audio Augmentation

Overall, using SAA to fine-tune along with FTA, referred
to as ++SAA in Table II, further reduces the EER on IU
inter-year evaluation sets compared to +FTA, although SAA
carries the risk of lowering intra-year verification accuracy. In
inter-year verification, as shown in Table II, SAA achieved
the lowest EER in 5 out of 6 IU inter-year evaluation sets,
demonstrating a clear improvement. Specifically, the average
EER were reduced by 19.4%, 13.0%, and 6.1% in the one-
year, two-year, and three-year gap evaluation sets, respectively,
compared to the baseline. In contrast, in intra-year verification,
SAA resulted in a noticeable increase in verification EER in
7 out of 11 age groups on the CSLU dataset, and 2 out of
4 intra-year evaluation sets on the IU dataset also showed
EER degradation compared to using only the FTA method.
We noticed that this trade-off between inter-year and intra-
year verification accuracy aligns with the previous study on
inter-year adult speech verification [21] (inter-year is referred
to as cross-age in [21]).

C. The Impact of Number of Speakers

To evaluate the generalizability of our proposed methods
on a larger intra-year evaluation set, we retrained the models
using the CSLU-L train-eval split, with results summarized
in the first four rows of Table III. Our methods demonstrate
continued effectiveness despite the substantial increase in the
number of speakers in the CSLU intra-year evaluation set.
Specifically, the model fine-tuned with both SAA and FTA
(i.e., ++SAA†) reduced the EER by 28.3% on the CSLU
intra-year set, 29.3% on the IU intra-year set, and 10.8%



TABLE II: Equal Error Rate (EER) results for various techniques across different grades (K00–K10 and G1–G4, representing
different age groups). ’Intra-Year’ refers to enrollment and test segments from the same grade, while ’Inter-Year’ indicates
segments from different grades (e.g., G1-G2). Techniques evaluated include the baseline model, fine-tuning, FTA (Feature
Transform Adapter), RA (Residual Adapter), and SAA (Synthetic Audio Augmentation), all using the ’CSLU-S’ dataset. The
lower EER on the CSLU test set compared to the IU test set for the same age group is likely due to CSLU’s longer average
audio duration, which provides more detailed speaker information.

CSLU Intra-Year
K00 K01 K02 K03 K04 K05 K06 K07 K08 K09 K10

Baseline 13.2 12.85 10.45 9 9.55 7.05 4.7 4.9 4.5 3.45 4.4
Finetune 9.55 10.65 9.05 6.95 7.25 4.1 4.05 2.95 2.75 1.85 3.3
+ RA 9.7 11.5 8.75 7.5 7.1 4.35 3.85 3.2 2.6 1.95 3.45
+ FTA 10.5 10.35 9.05 6.85 5.8 4.2 3.45 2.85 2.55 1.7 3.25
++ SAA 10.6 12.1 9.65 6.8 5.75 4.4 3 2.85 2.6 2.65 3.6

IU Intra-Year IU Inter-Year
G1-G1 G2-G2 G3-G3 G4-G4 G1-G2 G1-G3 G1-G4 G2-G3 G2-G4 G3-G4

Baseline 22.5 15.5 17.5 16.2 29.5 32.8 34.7 39.5 40.3 23.4
Finetune 19 13.9 15.8 11 28.7 36.1 36.7 37.1 39 24.1
+ RA 19.4 16.7 13 13.1 27.9 38 37.1 39.5 38.3 22.3
+ FTA 16.4 12.9 12.2 10.6 26.6 34.2 35.8 34.2 35.2 21
++ SAA 19.9 12.2 8.1 13.1 27.1 31.15 32.6 30.6 32.3 16.8

on the IU inter-year set compared to the Baseline† model.
In the CSLU-L case, fine-tuning with only the FTA adapter
(+FTA†) showed no improvements. One possible explanation
is that the CSLU-L train set has a significantly lower number
of speakers and hence the limited size of the training set
becomes the dominant factor constraining model performance.
This hypothesis is supported by the considerable performance
gains from incorporating the SAA data augmentation method
during fine-tuning (i.e., ++SAA†), which mitigated the impact
of data scarcity.

We also compared the proposed approaches with other
state-of-the-art methods in C-SV. The Proposed 3/11 model
from [16] was trained using 11 different data augmenta-
tion techniques on the out-of-domain dataset VoxCeleb2. We
observe that incorporating in-domain child speech CSLU
data significantly outperforms using only out-of-domain data
augmentation for both intra-year and inter-year verification.
Additionally, to assess our proposed approaches against an in-
domain model, we compared our models with the Baseline
3/5 from [16], which was trained using 315 hours of MyST
child speech data and five data augmentation techniques.
Notably, our model fine-tuned with only 24 hours of CSLU-
S training data with ++SAA* method in row 6 of Table III
achieved an EER of 28.72% on the IU inter-year evaluation
set, outperforming the Baseline 3/5 model, which achieved
an EER of 30.83%. This highlights that conventional training
and augmentation methods alone are insufficient for addressing
robustness issues in inter-year C-SV, whereas larger datasets
of child speech show more pronounced benefits in intra-year
verification. Specifically, we observed that the Baseline 3/5
model performs notably better on the IU intra-year evaluation
set. This is likely because the MyST data (Grades 3 to 5) used
for Baseline 3/5 aligns better with the IU dataset (Grades 1
to 4), while the OGI evaluation sets span a broader age range
(Grades 0 to 10).

TABLE III: Equal Error Rate (EER) comparisons across three
test sets are shown. CSLU is an intra-year test set obtained by
combining K00 to K10 test sets from CSLU-L evalution split.
IU Intra-Year and IU Inter-Year are combined “Intra-Year”
and “Inter-Year” IU test sets from Table II. † indicates train
data from CSLU-L, and * indicates train data from CSLU-S.

CSLU IU Intra-Year IU Inter-Year
Baseline† 12.15 27.02 38.7
Finetune† 11.1 19.53 35.15
+FTA† 11.58 20.30 36.97
++ SAA† 8.71 19.1 34.5
+FTA* - 12.97 31.2
++ SAA* - 13.8 28.72
Proposed 3/11 [16] 16.77 24.03 41.65
Baseline 3/5 [16] 8.15 10.24 30.83

V. CONCLUSIONS

In this paper, we propose two approaches to enhance the
robustness of children speaker verification (C-SV) systems,
focusing on reducing age-related impact. The first approach
introduces a Feature Transform Adapter (FTA) to make input
acoustic features age-invariant. The second approach enhances
data diversity through Synthetic Audio Augmentation (SAA)
using HiFi-GAN. We present a new C-SV evaluation dataset
with both intra-year and inter-year child speech data. We
also evaluate our proposed models against the existing C-SV
systems and show that in the inter-year evaluation scenario,
our best proposed system performs better than the existing C-
SV systems.
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