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ABSTRACT

We address catastrophic forgetting (CF) in automatic speaker ver-
ification (SV) during domain adaptation from Adult English (Vox-
Celeb) to Child English (MyST) and Adult Chinese (CNCeleb), un-
der the assumption of no access to VoxCeleb data. We leverage
embeddings of target-data inputs extracted from the pretrained Vox-
Celeb model, hypothesizing that these embeddings retain source-
domain knowledge without requiring source data. These target-data
embeddings extracted from the pretrained VoxCeleb model are re-
ferred to as pretrained-model embeddings (PMEs). We propose a
cross-attentive (CA) adapter that reduces CF by dynamically balanc-
ing information between learnable target-domain embeddings and
PMEs during adaptation. We design two regularization strategies: (i)
K-means–based elastic weight consolidation (K-EWC), where clus-
tered PMEs provide pseudo labels for parameter-importance estima-
tion, and (ii) a moment-matching (MM) loss that constrains learn-
able target-domain embeddings to remain close to the PME distri-
bution. We evaluate across target data training splits of increasing
duration. Results show that our approaches consistently reduce CF
by not degrading performance (%EER) on the source domain regard-
less of target data size.

Index Terms— Catastrophic Forgetting, Zero-source domain
data, Adapter, Regularization

1. INTRODUCTION

A neural network should be stable enough to preserve the informa-
tion it has learned over time while remaining plastic enough to adapt
to new tasks. An imbalance between stability and plasticity leads
to the problem of Catastrophic forgettting (CF) [1, 2]. Approaches
to strike this balance can be grouped into three categories: (a) Ar-
chitectural based approaches that modify or expand the network
architecture to mitigate interference between tasks include adding a
new classification layer (output head) for each new task [3], using
adapters [4], isolating task-specific parameters, or dynamically ex-
panding network capacity [5, 6, 7]. These approaches allow shared
representation layers to remain stable while dedicating new or iso-
lated parameters to new tasks, effectively preserving prior knowl-
edge. (b) Rehearsal Based Approaches involve retraining the net-
work using a subset of samples from previous tasks alongside data
from the new task [8, 9]. However, access to prior (or source) task
data can be limited due to storage, privacy, or legal constraints. To
address lack of source task data, “rehearsal-free” approaches [10, 11]
and “pseudo-rehearsal” mechanisms are used where representative
samples that approximate past data are generated synthetically [8,
12]. A related approach, “generative replay”, leverages generative
models such as Variational Autoencoders (VAEs) or Generative Ad-
versarial Networks (GANs) to produce artificial samples that mimic

the distribution of previous tasks [13, 14, 15]. These generated sam-
ples are then replayed during training, allowing the network to re-
tain prior knowledge without storing real data. (c) Regularization
Based Approaches introduce constraints on network parameters or
outputs to prevent significant interference with previously learned
tasks. Regularization methods include Elastic Weight Consolidation
(EWC) [16], Synaptic Intelligence (SI) [17], and L2 regularization
[18]. Knowledge distillation techniques also fit in this context. Here
the outputs of a pre-trained network (teacher) are used to regularize
the training of the current network (student), ensuring that prior task
knowledge is preserved while learning new tasks [12, 19, 20].

In this work, we tackle catastrophic forgetting in speaker verifi-
cation under the challenging zero-source-data constraint. Our pri-
mary focus lies in two application settings: cross-age adaptation
(Adult → Child) and cross-lingual adaptation (English → Chinese).
We propose approaches to operate effectively under zero-source-
data constraint. We leverage embeddings of target-domain inputs
extracted from the pretrained model, which we refer to as pretrained-
model embeddings (PMEs), to approximate source-domain knowl-
edge, without requiring actual source data. We propose three strate-
gies: (i) Cross-Attentive (CA) Adapter, a hybrid of knowledge dis-
tillation and adapter methods; (ii) K-means-based modified Elastic
Weight Consolidation (K-EWC), for parameter regularization, and
(iii) a Moment-Matching Regularization Loss, which constrains
fine-tuning by aligning learnable target-domain embeddings distri-
bution with PME distributions.

The most closely related approaches to our proposed techniques
include [12, 21, 22, 23, 24, 25]. These works similarly exploit rep-
resentations from a pre-trained model to guide adaptation without
full source-data access. However, [21] requires access to source data
to initially estimate the Fisher matrix for EWC. While [23, 24] rely
on target test data for estimating Fisher matrix, but this might not
work well in highly mismatched domains such as Adult-to-Child.
In Adult-to-Child SV adaptation, [25] proposed an age-agnostic SV
system, but their approach depended on both source and target data.
Our proposed approach removes the dependency on source data by
using PMEs. The K-EWC method circumvents the need for labeled
source data by leveraging PMEs and their corresponding K-Means
labels. CA adapter extends knowledge distillation strategies [12, 22]
by dynamically balancing information between PMEs and the learn-
able target-domain representations during adaptation.

2. METHOD
2.1. Cross-Attentive (CA) Adapter
The proposed Cross-Attentive (CA) adapter (CA Block in Fig 1)
is integrated into a Siamese-style network architecture as shown in
Fig. 1 (a). It modifies the Attentive Statistics Pooling (ASP) layer
of the ECAPA-TDNN [26] model, enabling more effective retention



Fig. 1. An overview of the proposed approaches. The CA adapter framework is shown in (a). Hidden representations ht and hs have dimension C×T . In the
CA Block, “Concat-C” and “Concat-T” refer to concatenation operation on the hidden representations along the C (channel) and T (time) axes, respectively.
Estimation of Fisher Information Matrix (FIM) for K-EWC using pseudo-labels / Estimation of pseudo µT and ΣT for MM regularization is shown in (b).
DTar refers to the target domain data.

of source-domain information while adapting to the target domain.
The teacher and student embedding networks in Fig 1 (a), consist of
the layers up to the Multi-layer Feature Aggregation (MFA) mod-
ule of the ECAPA-TDNN architecture, and are initialized with the
corresponding weights from the pre-trained model. The ASP layer
is then modified to incorporate the proposed CA adapter, enabling
cross-attentive integration of teacher outputs (i.e., fixed PMEs) and
student outputs (i.e., learnable target-domain representations).

The teacher branch, is kept frozen throughout. Given the data
from the target domain DTar , the output of the MFA layer, i.e., the
hidden representations from the teacher and student branches - ht,
hs, each ∈ R1536×T , are stacked channel-wise (“Concat-C” within
CA Block in Fig. 1), followed by a linear transformation with pa-
rameters W ∈ Rl×3072 and b ∈ Rl×1 to down-project into a smaller
latent space with dimension l, using a non-linearity f(.). After the
non-linearity f(.), the self-attention scores M across both hidden
representations are calculated through a second linear transforma-
tion with parameters V ∈ R3072×l and k ∈ R3072.

M = V

[
f

(
W

[
ht

hs

]
+ b

)]
+ k; ∈ R3072×T (1)

The “Split+concat” (shown within CA Block in Fig. 1), reshapes the
self-attention scores M into M̃ to ensure that channel information
across the two hidden representations is aligned along the channel
dimension. A softmax is then applied channel-wise across time to
obtain normalized scores C.

M̃ =
[
M1:1536,1:T M1537:3072,1:T

]
; ∈ R1536×2T (2)

C = softmax(M̃); ∈ R1536×2T (3)

The original hidden representations ht and hs, are stacked time-
wise (“Concat-T” within CA Block in Fig. 1) and the normalized
attention scores C, which represent the importance of each frame
given the channel, are used to compute mean (µ̃) and standard devi-
ation (σ̃).

h̃ =
[
ht hs

]
; ∈ R1536×2T (4)

µ̃ =

2T∑
t=1

C ⊙ h̃; ∈ R1536 (5)

σ̃ =

√√√√ 2T∑
t=1

C ⊙ h̃2 − µ̃2; ∈ R1536 (6)

The estimated µ̃ and σ̃ are concatenated and passed on to the linear
layer to produce 192-dimensional speaker embeddings, which are
then used to perform speaker identification. The CA block increases
ECAPA-TDNN parameters by ∼1.5M (i.e., 20.8M → 22.3M).

2.2. K-means-based Modified Elastic Weight Consolidation (K-
EWC)
In EWC [16], the importance of each model parameter for the source
task is estimated using the Fisher Information Matrix (FIM). During
adaptation, a regularization term that penalizes changes to parame-
ters that are deemed important is added to the loss function, thereby
preserving performance on the source task. Formally, if θ represents
the model parameters and θ∗ the optimal parameters for the source
task, the EWC loss for a target task is given by:

LEWC =
∑
i

Fi(θi − θ∗i )
2 (7)

where, Fi is the diagonal element of the FIM corresponding to the
parameter θi.

In zero-source data scenario, direct computation of FIM is in-
feasible. Intuitively, the parameters of the pretrained-model define
a probability distribution over the source-domain embedding space,
and any representation extracted from this set of unadapted param-
eters will lie within this distribution. Consequently, embeddings for
target-data produced by the pretrained-model, i.e., PMEs, provide
an approximate view of this source-domain distribution, which we
leverage to estimate parameter importance during adaptation. Moti-
vated by this hypothesis, we propose K-means-based modified EWC
(K-EWC). Let DTar denote the target-data. As shown in Fig. 1 (b)
we extract PMEs (output of the “Source Task Model”) for DTar .
Since EWC requires class labels to estimate FIM, we perform K-
means clustering on PMEs to generate pseudo-class labels. These
pseudo-labels allow us to approximate the FIM element Fi for each
parameter θi. Once the FIM is estimated, we incorporate it into the
EWC loss as in Eq. 7. Thus, the proposed approach circumvents the
need for source-data in the estimation of FIM.



2.3. Moment-Matching (MM) Regularization
To further mitigate catastrophic forgetting during adaptation, we
add a moment-matching (MM) regularization term to the training
loss. The central intuition behind MM regularization is that, during
adaptation, the evolving target-domain embeddings should remain
anchored within source-domain distribution, while still adapting to
capture target-domain specific speaker-discriminative characteris-
tics. If the evolving target-domain embeddings shift to an entirely
different space, the model risks forgetting source-domain knowl-
edge. Following our hypothesis from K-EWC, we use PMEs (output
of the “Source Task Model” in Fig. 1 (b)) to obtain an approximate
(pseudo) representation of the source-domain distribution. These
PMEs are used to fit a Gaussian Mixture Model (GMM), where the
number of components is selected based on the Akaike Informa-
tion Criterion (AIC). The GMM provides an estimate of the mean
vector µT and covariance matrix ΣT for the pseudo source-domain
(teacher) distribution. During fine-tuning, the learned target-data
embedding distribution produced by the model are regularized
to match the pseudo source-domain distribution statistics. The
moment-matching regularization term is defined as:

LMM = ∥µT − µS∥22 + ∥ΣT − ΣS∥2F (8)

where µS and ΣS are the mean vector and covariance matrix of the
learned target-data (student) embeddings in a given batch, ∥ · ∥2,
∥ · ∥F denote the L2 and Frobenius norms, respectively.

2.4. Overall training objective
The overall training objective is given in Eq. 9, where LSID is the
speaker identification loss, λEWC, and λMM control the weights of
the LEWC and LMM regularization losses, respectively.

L = LSID + λEWC · LEWC + λMM · LMM (9)

3. EXPERIMENTAL DETAILS
3.1. Databases
We perform adaptation experiments on two target domain databases:
MyST [27], and CNCeleb [28]. In MyST, we use only the anno-
tated portion, totaling approximately 268 hours. We adopt the train-
ing splits MyST-1 through MyST-4, and employ the same evalua-
tion set used in [29] for consistency. The CNCeleb dataset con-
tains 273 hours of speech from 997 speakers across diverse Chi-
nese open-media sources. Similar to the MyST setup, we parti-
tion the CNCeleb training data into four subsets (CNCeleb-1 through
CNCeleb-4), where CNCeleb-1 is the smallest and CNCeleb-4 cor-
responds to the biggest training set. In both databases, we use only
the 3 sec long audio segments in the train set, while discarding au-
dio files less than 3 seconds long as done in [30]. Hence, CNCeleb-4
has only 162 hours of data from 781 speakers. For evaluation, we use
the standard CNCeleb evaluation set. The train set statistics for both
MyST and CNCeleb are given in Table 1. For reporting VoxCeleb
results we use the standard VoxCeleb-O evaluation set.

Table 1. The train set splits of MyST and CNCeleb databases used for
training/fine-tuning the models are presented. #Spks refers to the number of
speakers, #Hrs is the duration in hours

Split MyST CNCeleb
# Spks # Hrs # Spks # Hrs

1 1210 2.00 781 1.94
2 1210 8.00 781 10.00
3 1210 85.00 781 98.55
4 1210 268.00 781 162.20

3.2. System Configurations
We use ECAPA-TDNN [26] as the underlying neural network ar-
chitecture and the Speechbrain [30] toolkit. We refer to the models
trained from scratch on the target domain datasets: MyST and CN-
Celeb datasets as Baseline in this paper. ECAPA-TDNN model pre-
trained on VoxCeleb 1 and 2 [32, 33] is used as the pretrained model
in all adaptation experiments. Fine-tuning the pretrained model with
the target data for a fixed number of epochs is referred to as Fine-
tune. The input features for all the models were 80-dimensional fil-
ter bank features extracted with a frame length of 25 ms and a hop
size of 10 ms. All experiments use five-fold data augmentation from
[30]. Scoring uses cosine similarity; performance is measured by
Equal Error Rate (EER).

Optimization was performed using the Adam optimizer with a
learning rate of 10−3 and a weight decay of 2 × 10−6, along with
a cyclic learning rate scheduler to balance exploration and exploita-
tion, with a base learning rate of 10−8, a maximum learning rate of
10−3, and a batch size of 8. Experiments were conducted on a single
NVIDIA GeForce RTX 2080 Ti GPU. Training epochs for the four
MyST splits (MyST-1 to MyST-4) were 15,15,2, and 1, respectively,
while those for the CNCeleb splits (CNCeleb-1 to CNCeleb-4) were
10,10,2, and 2. For larger splits, the number of epochs was reduced
due to computational resource constraints.

The K-EWC regularization loss weight λEWC was empirically
fixed at 100 in all experiments. For K-means clustering, we used
embeddings of the target-domain data extracted from the pretrained
model, i.e., PMEs, with only 320 randomly selected target samples
and 50 clusters. This choice provided a good trade-off between ef-
ficiency and minimal computational overhead across experiments.
For the MM regularization loss, the pseudo source-domain distribu-
tion was approximated by fitting a Gaussian Mixture Model (GMM)
to the PMEs extracted using the MyST-2 and CNCeleb-2 subsets
for all MyST and CNCeleb experiments, respectively. The optimal
number of components of the GMM was determined by the Akaike
Information Criterion (AIC). These subsets (about 10h of data each)
were chosen because larger subsets would incur significant compu-
tational cost, while smaller ones yielded poor approximations. The
MM regularization loss weight λMM was scheduled to increase lin-
early from 0.2 to 2.0 over training epochs, ensuring stronger regular-
ization as the model became more adapted to the downstream task.
This schedule helps prevent the adapted embeddings from drifting
too far from the pseudo source-domain representations. MM losses
were accumulated over four batches prior to backpropagation. In
experiments combining CA with K-EWC and/or MM, the teacher
branch of the Siamese network was always frozen, while the MM
and K-EWC regularizations were applied only to the student branch.

4. RESULTS AND DISCUSSION
For reference, no-adaptation (VoxCeleb pretrained) model EERs are:
Vox-O 0.89%, MyST 17.48%, CNCeleb 15.26%. Experimental re-
sults from our experiments are given in Table 2. Baseline corre-
sponds to training exclusively on target-domain data, while Fine-
tune initializes the model with pretrained VoxCeleb weights and op-
timizes using only the speaker identification loss on target-domain
data. In Table 2, rows 5 (+MM) and 6 (+K-EWC) denote adding the
respective regularization term to Finetune. CA refers to the proposed
Cross-Attentive adapter, and the addition of regularization terms to
CA is similarly indicated with a “+” in rows 8, 9, and 10. For com-
parison with prior work, we also include G-IFT [29], an adapter-
based approach, and Sparse Filterbank [31]. For MyST, the G-IFT
approach is directly comparable to our methods, as it also employs
an adapter-based architecture and uses a MyST training setup com-
parable to ours In contrast, for CNCeleb, the Sparse Filterbank sys-



Table 2. Model performance across the proposed approaches in terms of Equal Error Rate (%EER). Results are reported as Target/Source %EER. The
target training set duration increases progressively from Split-1 to Split-4. For each domain, the evaluation set is fixed across all splits (i.e., the same MyST
evaluation set and the same CNCeleb evaluation set). The best %EERs from our models (rows 4–10) are boldfaced, with “*” denoting statistically significant
improvements over Finetune (row 4) based on a paired t-test at p = 0.05.

MyST/VoxCeleb-O CNCeleb/VoxCeleb-O

Method MyST-1 MyST-2 MyST-3 MyST-4 CNCeleb-1 CNCeleb-2 CNCeleb-3 CNCeleb-4

1 Baseline 21.84/28.97 12.72/18.08 10.07/21.10 8.64/21.18 32.06/25.16 19.51/15.77 17.13/13.23 16.17/11.76
2 G-IFT [29] 14.22/8.00 7.03/8.94 5.49/12.51 5.42/11.23 - - - -
3 Sparse FilterBank [31] - - - - - - - 12.25/10.81
4 Finetune 20.3/7.73 7.22/7.60 5.67/8.39 5.57/14.91 17.96/6.05 10.00/3.52 10.57/4.63 10.98/6.52
5 + MM 22.58/6.92 7.64/7.06 5.54*/11.14 5.59/15.57 18.6/5.33 10.19/3.56 10.89/5.23 10.94/6.16
6 + K-EWC 21.00/5.49 8.86/6.00 7.41/7.18 7.26/7.76 14.61*/2.04* 10.40/1.90 10.20/2.63 10.26/2.85
7 CA 16.53*/4.16 6.93*/5.24 5.56/6.55 5.78/11.15 16.99/4.01 10.14/3.22 10.36/3.96 10.56/3.97
8 + MM 16.79/4.42 7.04/5.51 5.75/6.56 5.70/10.05 16.96/4.17 10.16/3.24 10.50/4.14 10.44/3.94
9 + K-EWC 17.29/3.89 7.64/3.11 6.54/3.83 6.28/4.39* 15.47/3.02 9.96/1.80* 10.14*/2.45* 10.27/2.73
10 + K-EWC + MM 17.29/3.88* 7.58/3.01* 6.57/3.74* 6.37/4.40 15.46/3.03 9.95*/1.81 10.19/2.52 10.17*/2.72*

tem is based on ECAPA-TDNN and trained on the same CNCeleb
corpus (approximately 800 speakers), but its primary objective was
not to address catastrophic forgetting. We report its results not as a
direct benchmark, but to provide context on performance range of
CNCeleb-based systems. Results on MyST versus VoxCeleb are re-
ported in [34], but direct comparison is avoided due to different splits
and speaker overlap.
4.1. Baseline Experiments
As expected, our results demonstrate that Finetune improves per-
formance over Baseline approach. We also observe a direct cor-
relation between target domain training data size and source do-
main performance degradation. This behavior is consistent with
CF theory, where exposure to larger amounts of target data during
adaptation leads to greater interference with previously learned rep-
resentations. A comparative analysis between corresponding data
splits (i.e., MyST-1 vs CNCeleb-1, MyST-2 vs CNCeleb-2, etc) re-
veals domain-dependent degradation patterns. Specifically, MyST
experiments exhibit higher VoxCeleb EER degradation compared
to CNCeleb counterparts. This disparity can be attributed to the
substantial domain mismatch between MyST (child speech) and the
source VoxCeleb model (adult speech), whereas CNCeleb maintains
adult speech characteristics, resulting in reduced domain shift and
consequently lower source domain performance degradation. We
establish Finetune as our primary baseline for our experiments.
4.2. MM and K-EWC Regularization
Adding the MM regularization to Finetune yields mixed outcomes.
For MyST, MM helps preserve VoxCeleb performance in the low-
resource case (MyST-1 and MyST-2) but significantly degrades Vox-
Celeb %EER in MyST-3 and MyST-4, likely because these larger
subsets were trained for fewer epochs, preventing the MM regu-
larization from adequately pulling embeddings toward the pseudo-
source distribution. In CNCeleb, MM improves in some cases (splits
1 and 4), is neutral in others, and slightly harmful in split 3, suggest-
ing its effect depends on both domain mismatch and training dynam-
ics. By contrast, K-EWC consistently improves VoxCeleb %EER
across all splits in both datasets. This uniform effectiveness high-
lights the K-EWC method’s robustness to varying training data sizes
and domain characteristics. However, both regularization methods
generally come at the cost of reduced target-domain accuracy.
4.3. CA Adapter Analysis
The CA approach demonstrates superior target domain performance
compared to Finetune and its regularized variants (+MM and +K-
EWC) for MyST-1 through MyST-3 configurations. Additionally,
CA mitigates source domain performance degradation in these sce-
narios. However, this advantage diminishes in high-resource condi-

tions (MyST-4), where source domain EER deteriorates to 11.15%,
contrasting with Finetune+K-EWC’s ability to maintain 7.76%
EER, albeit at the cost of target domain performance (7.26% vs
5.78%) - refer rows 6 and 7 of MyST-4. For CNCeleb experiments,
CA outperforms standard Finetune in target domain performance
across three of four training splits while consistently reducing source
domain degradation. Yet, because CNCeleb and VoxCeleb are both
adult speech datasets, Fintune+K-EWC (row 6) proves particu-
larly effective, i.e., finetuning with K-EWC often surpasses CA in
preserving both source and target performance.

Adding K-EWC to CA further mitigates source-domain for-
getting, particularly in MyST, though with minor reductions in
target-domain performance compared to CA alone. In CNCeleb,
where the domain mismatch is minimal, CA+K-EWC improves
both target- and source-domain performance across all splits, clearly
outperforming CA alone. Incorporating MM alongside K-EWC (row
10) yields modest additional gains in a few cases (e.g., MyST-2,
MyST-3, CNCeleb-4) but otherwise maintains similar performance.
This indicates that while MM holds promise, it may require further
tuning and more careful integration to deliver consistent benefits.

In general, for a given CNCeleb train split, the same approach
often achieves the best performance on both source and target test
sets, showing that target gains need not come at the expense of the
source domain. In contrast, for a given MyST train split, the method
that best improves target performance is not always the one that
minimizes source degradation, highlighting a stronger trade-off in
the challenging cross-age adaptation scenario. In comparison to G-
IFT [29], which is another adapter-based approach, our experiments
show that while G-IFT achieves stronger performance on the target-
domain task, it suffers from a degradation in source-domain accu-
racy. We included Sparse Filter bank [31] to provide a sense of the
performance range for CNCeleb based system.

5. CONCLUSION
We propose a CA adapter along with K-EWC and MM regularization
strategies to address catastrophic forgetting in speaker verification
domain adaptation under zero source-data access. Our approaches
consistently succeed in reducing source-domain performance degra-
dation across different target-domain train data sizes (in hours). This
demonstrates that our methods effectively mitigate catastrophic for-
getting, by providing a more stable balance between learning from
target data and retaining pretrained model knowledge. As a direc-
tion for future work, we aim to extend these approaches beyond
ECAPA-TDNN to assess their generalizability across a wider range
of speaker verification frameworks.
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