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ABSTRACT

The current method for estimating frequency warping (FW) func-
tions for vocal tract length normalization (VTLN) is by maximizing
the ASR likelihood score by an exhaustive search over a grid of FW
parameters. Exhaustive search is inefficient when estimating multi-
parameter FWs, which have been shown to give improvements in
recognition accuracy over single parameter FWs [8]. Here we de-
velop a gradient search algorithm to obtain the optimal FW parame-
ters for MFCC features, since previous work focussed on PLP cep-
stral features [8]. The novel calculation involved was that of the gra-
dient of the Mel filterbank with respect to the FW parameters. Even
for a single parameter, the gradient search method was more efficient
than grid search by a factor of around 1.6 on the average for male
children speakers tested on models trained from adult males. When
used to estimate multi-parameter sine-log allpass transform (SLAPT,
[8]) FWs for VTLN, more than 50% reduction in word error rate was
obtained with five parameter SLAPT compared to single-parameter
piecewise linear FW.

1. INTRODUCTION

Vocal tract length normalization (VTLN) is one of the most widely
used techniques for speaker adaptation, where the spectral variation
caused by inter-speaker differences in vocal tract length is reduced
by spectral frequency warping (FW) or its equivalent during feature
extraction. The estimation and implementation of FW functions for
VTLN have been studied extensively ([1] - [9]).
One method of estimating the FW is by comparing formant frequen-
cies of the test speaker with those from a reference speaker in the
training set [1, 4, 16]. A second method is to train Gaussian mixture
models (GMMs) to estimate a FW parameter [2, 3]. The currently
preferred method in speaker adaptation is to perform a search over
a grid of warping factors to determine the one that maximizes the
likelihood score over adaptation data [5, 6, 13]. This avoids the am-
biguities of a formant based approach and has also been shown to
give better results [7].
For standard filterbank based Mel frequency cepstral coefficient
(MFCC) features commonly used in speech recognition, a simple
and efficient implementation of FW is by modifying the center fre-
quencies of the filterbank via the inverse FW function [3]. This is
equivalent to a speaker dependent normalization of the Mel curve by
FW, and has been shown to give better results than direct warping of
the spectrum [6].
Examples of FW functions include linear, piecewise linear (PL) and
the Bilinear Transform (BLT), which are controlled by a single pa-
rameter (SPFWs), and multiple-parameter (MP) FWs like the all-
pass transforms (APT) [2, 3, 8]. In [8], it was demonstrated that
MPFWs are more effective than SPFWs for front end speaker nor-
malization. The results of studies on estimating optimal Mel curves
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Fig. 1. MFCC feature computation with CMS.

both speaker dependent and independent, showed similar indications
[10, 11]. However, the latter studies used computationally intensive
exhaustive recognition experiments to estimate the FW.
In this context, when there are multiple FW parameters to be es-
timated, the current grid search VTLN estimation scheme is also
inefficient. This is also especially true when it is desired to per-
form combined optimization of VTLN with other front end parame-
ters for speaker and channel normalization [13]. Though the advan-
tage of using gradient based techniques to estimate FW functions for
speaker adaptation was demonstrated in [8], the features were PLP
cepstra and not MFCCs.
In this paper, we develop a method for estimating MPFWs for
MFCC features by gradient based optimization of the ASR likeli-
hood score. The estimated MPFWs are used to obtain speaker spe-
cific Mel curves for improved recognition performance. The novel
part of the calculation is that of the gradient of the Mel filterbank
with respect to the FW parameters. The efficiency of gradient search
over grid search is quantified for single-parameter VTLN.
In Sec. 2, we discuss the objective function used for VTLN esti-
mation. The steps involved in the calculation of the gradient of the
objective function are given in Sec. 3. In Sec. 4, the computation
of the gradient of the filterbank with respect to the FW parameter
is described, and the computational requirements for the gradient of
the objective function are discussed in Sec. 5. Experimental results
are presented and discussed in Sec. 6.

2. THE VTLN OBJECTIVE FUNCTION

Fig. 1 shows the extraction scheme for standard MFCC based fea-
tures, using a filterbank (Fig. 2 (a)). Note that the order of the (op-
tional) cepstral mean subtraction (CMS) and time derivative compu-
tation blocks can be interchanged
In [3, 7, 15], the optimal warp factor(s) is(are) chosen by maximizing
the likelihood score of the recognizer over the adaptation data:

�� � argmax
�

�log P �X�

���jW���� (1)

where � is(are) the FW parameter(s), X� is the normalized adap-
tation data, W is the word (or other unit) transcription, � are the
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corresponding HMMs, and �� are the HMM states with whichX�

are aligned by the Viterbi algorithm during ASR decoding.
As noted in [8, 9], this is not strictly a ML scheme since the Jacobian
determinant factor for the normalization function is not included in
the likelihood. In fact, since MFCC features are obtained from the
spectrum after non-invertible operations such as filterbank integra-
tion and dimensionality reduction after DCT, the final normalized
features are not invertible functions of the unnormalized features and
the Jacobian determinant cannot be computed.
However, we will continue to use it as the objective function because
of its simplicity and effectiveness in improving recognition accu-
racy, as evidenced by the experimental results and also its popularity
in practice. The extension of the calculations to more rigorous but
also more computationally intensive objective functions like MMI is
straightforward.
For simplicity of the equations, let there be only one adaptation utter-
rance, X� � fx�� �x

�

� � � � � �x
�

T g where T is the number of feature
vectors, and let� � fs�� s�� � � � � sT g be the Viterbi state sequence.
An approximation made for fast VTLN estimation is to obtain the
best frame-state alignment of the adaptation data with the HMMs
just once with the un-normalized features, and keep the alignment
fixed in the optimization [6]. Then, since the state sequence proba-
bility does not depend on �, the objective function of Eq. 1 may be
simplified to:

F��� �

TX
t��

log

MX
m��

ctmN �x�t ��tm��tm� (2)

where
PM

m�� ctm � � for the Gaussian mixture state output distri-
bution.

3. GRADIENT OF THE OBJECTIVE FUNCTION

The gradient of the objective function in Eq. 2 is

r�F��� �

TX
t��

Jx�t ���
T

�
MX
m��

�tm���
tm��tm � x

�
t �

�
(3)

where for two vector variables y and z, Jz�y� denotes the Jaco-

bian matrix of partial derivatives
h
�zi
�yj

i
, and �tm is the posterior

probability of mixture m of state st given that the feature vector
x�t was generated by state st. Here we have used the fact that
rxN �x����� � N �x����� �

�
������ x�

�
.

Recall the extraction scheme in Fig. 1, and let the intermediate vari-
ables during feature extraction be denoted as in the figure. To com-
pute Jx�

t
���, we work backwards computing the Jacobian of each

block. The calculations for the time derivative, CMS, DCT and Log
blocks are quite simple and are similar to those in [12].

� Time derivative computation and concatenation:
Since differentiation with respect to time (�) is a linear oper-
ation the order of differentiations with respect to time and �
are interchangeable.
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Jc� ���

� DCT: ct � C � Lt

� Jct��� � C � JLt���

� LOG: Lt � logYt

� JLt ��� � diag



�

Yt���
� � � � �

�

Yt�Nf �

�
� JYt ���

where Nf is the number of filters in the Mel filterbank.

� Mel Filterbank:
The computation of JYt��� �

�
�Yt

��



, is novel and more

involved, and is outlined next.

4. COMPUTATION OF JY���

We consider the Mel filterbank output from a single speech frame
and ignore the time-dependence since it is not essential to the calcu-
lations. The output of the ith Mel bin is given by

Y�i� �

Z fs��

�

Hi�f ���Sx�f�df (4)

where Sx�f� � jX�f�j or jX�f�j� is the magnitude or power spec-
trum of a speech frame, fs is the sampling frequency, and Hi�f ���
is the ith filter in the Mel filterbank which depends on the FW pa-
rameter through the center frequencies. Algorithmically, the integral
is computed using a summation approximation and the FFT. In the
analysis, we use the integral form for Y�i�.
To obtain the Jacobian JY���, notice that in the expression in Eq. 4,
only the filter Hi�f ��� depends on �. So:

�Y�i�

��
�

Z fs��

�



�

��
Hi�f ���

�
Sx�f�df (5)

The weights of the ith filter, Hi�f ���, are assumed to be triangular
and half-overlapping with the i� �st and i��st filters. Let f�i � � �
i � Nf be the original center frequencies of the filter bank, and let
them be modified to f�i by the FW function (f� � 	 and fNf

�
fs�
 are not changed). Using the unit step function U���, Hi�f ���
may be expressed as:

Hi�f ��� �



f � f�i��
f�i � f�i��

�
�U�f � f�i���� U�f � f�i ��

�



f�i�� � f

f�i�� � f�i

�
�U�f � f�i �� U�f � f�i���� (6)

We can write
�

��
Hi�f ��� �

X
j

�Hi�f ���

�f�j
�
�f�j
��

(7)

For brevity, denote �Hi�f ���
�f�

j
by H�

i�j . It is clear that H�

i�j�f� will be

non-zero only for j � i� �� i� i�� (except of course, for i � � and
i � Nf , where H�

��� and H�

Nf �Nf��
are not defined). To compute

these, we differentiate Eq. 6 using the product rule, and use the facts
dU�t�
dt

� ��t�, and t���t� � 	, where ��t� is the Dirac delta function,
whose use as the generalized derivative of the unit step function is
common in system theory [14]. Though the calculations could be
performed without using it, the Dirac delta function is a very useful
mathematical device which simplifies calculations. It can then be
shown that

H �

i�i�� � �
f�i � f

�f�i � f�i���
�
� �U�f � f�i���� U�f � f�i �� (8)
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Fig. 2. The shapes of (a) the Mel filter bank, Hi�f ���, and (b) the
derivative filterbank, �

��
Hi�f ���, for the PL FW at � � �. In (b),

the filters are alternately plotted with solid, dotted and dash-dotted
lines. fs is 8kHz and the number of filters is 15.

H �

i�i � �
f � f�i��

�f�i � f�i���
�
� �U�f � f�i���� U�f � f�i ��

�
f�i�� � f

�f�i�� � f�i �
�
� �U�f � f�i �� U�f � f�i���� (9)

H �

i�i�� �
f � f�i

�f�i�� � f�i �
�
� �U�f � f�i �� U�f � f�i���� (10)

Here we use two kinds of FW functions, first the piecewise linear
(PL) FW function, which is described by a single parameter � that
controls the initial slope of the function:

f�i �

�
�f � � f � fr

�fr �
�
fs����fr
fs���fr

�
�f � fr�� fr � f � fs�	

(11)

�

��
f�i �

�
f � � f � fr

fr �
�

fs���f
fs���fr

�
fr � f � fs�	

(12)

where fr is a fixed reference frequency, around ��
fs�	 [1].
We also consider the sine-log all-pass transform (SLAPT) a MPFW
[8]:

f�i � f �
fs
	
�

KX
k��

�k sin

�
	k�f

fs

�
� � � f �

fs
	

(13)

�

��k
f�i �

�
fs
	

�
� sin

�
	k�f

fs

�
� � � k � K (14)

where is fs is the sampling frequency, and � � ��� � � � �K �. SLAPT
FWs have the advantage of mathematical simplicity as well as the
ability to approximate arbitrary FW functions by choosing K suffi-
ciently large.

Using Eqs. 7-12, the expression for �
��
Hi�f ��� can be computed,

and used to form a filterbank which has the same number of channels
as the original filterbank, for each FW parameter. This is shown in
Fig 2 (b) for the PL FW at � � �. JY��� may then be computed
from Eq. 5 using a summation approximation.

5. COMPUTATIONAL COST OF THE GRADIENT

From the equations in Sec. 3, we note that in the feature extraction,
for the �, CMS, and DCT blocks, the computation of the deriva-
tives are of exactly the same complexity as the blocks themselves.
In the case of the LOG block, the computation of the derivative is
less intensive than the block itself. From the conclusions of Sec.
4, it follows that the derivative of the filterbank block with respect
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Fig. 3. (a) F��� and (b)rF��� with respect to � for PL VTLN

to each parameter requires approximately the same number of com-
putations as the original filterbank. Since this is typically the most
expensive block in the feature extraction, comparing Eqs. 2 and 3
we can say that if the computational cost of F��� is C, then that of
r�F��� is approximately equal to nC where n is the number of
FW parameters.

6. EXPERIMENTAL RESULTS

The focus of our research is on improving children’s speech recog-
nition, where VTLN has been shown to give significant reductions
in recognition word error rate (WER). Since there doesn’t yet ex-
ist a database for large vocabulary recognition (LVR) of children’s
speech, we tested VTLN on connected digit recognition of children’s
speech using the TIDIGITS database. But many of the results of this
paper should also be applicable also to LVR of children’s speech
since the objective function is likely to have a similar shape.
Monophone models for connected digit recognition were trained
from the adult male speakers and tested on the male children from
TIDIGITS. There were 21 HMMs, including 19 monophones, si-
lence and short pause models and the monophone HMMs had 4
emitting states each and 3 Gaussian mixtures per state. The first
13 MFCCs and their first and second time derivatives, were used as
features, with CMS performed on each utterrance. The ten children
with the worst WER were chosen for further experiments. The base-
line WER was 62.33 %, and is comparable to that in [16].
Eleven adaptation utterrances, one of each of the 11 digits (zero
to nine and ’oh’) were used to estimate the FW for each boy test
speaker.
As a verification of our calculations, F��� and rF��� were plot-
ted for the PL FW for a typical speaker, and are shown in Fig. 3.
One modification was to normalize F��� by the total number of
speech frames. Though F��� appears to have a smooth concave
shape,rF��� appears to be non-monotone and has local variations.
These may be caused by the summation approximation used to com-
pute rF��� with the FFT, since the the derivative filterbank has
discontinuous steps. Otherwise, it is seen that rF��� � � roughly
at the point of maximum ofrF���.
In the optimization for PL FW, because of the non-smooth behav-
ior of rF���, a quasi-Newton method would be inappropriate and
a simple gradient search with backtracking was used and the initial
step size was coarsely tuned for fast convergence. The stopping con-
dition was a tolerance on the magnitude of the gradient, which is
related to the accuracy of the estimated parameter. For SLAPT with
multiple parameters, a quasi-Newton method with BFGS update was
found to converge faster than the plain gradient descent method.
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Table 1. Results of MPFW VTLN Experiments: models trained on
adult males and tested on 10 ’difficult’ male children from TIDIGITS

FW Func. No Warp PL FW SLAPT-1 SLAPT-2
Avg. WER 62.23 % 22.64 % 20.25 % 18.55 %

SLAPT-3 SLAPT-4 SLAPT-5 SLAPT-6
17.07 % 11.94 % 10.91 % 10.58 %
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Fig. 4. Speaker dependent Mel curve. The dashed line shows the
regular Mel curve, the dash-dotted line shows the Mel curve esti-
mated with PL FW, the solid line shows the estimated Mel curve
with SLAPT-4 FW, and the dotted line is the identity curve.

The results of VTLN experiments are shown in Table 1. Adaptation
using SLAPT FW with n parameters is denoted SLAPT-n. It is seen
that as the number of parameters in the SLAPT FW is increased, the
WER decreases, and SLAPT-5 shows an improvement of more than
50% compared to the single-parameter PL FW.
As mentioned in Sec. 1, VTLN by modifying the center frequencies
of the filterbank may also be viewed as a speaker dependent normal-
ization of the Mel curve. Fig. 4 shows the Mel curves estimated for
a test speaker with PL FW and SLAPT-4. For this speaker, the WER
decreased from 37.6% with PL FW to 8.3% with SLAPT-4.
Efficiency: We wish to quantify the computational efficiency of the
gradient search over the grid search for the case of single parameter
PL FW (n=1). When comparing the two methods, the accuracy of ��
in the gradient search which is controlled by the stopping condition,
was chosen so as to be approximately the same as in the grid search,
where the � step is typically 0.02 for PL FW [3, 5, 15]. Therefore,
the WERs are usually the same for both methods.
Since the costs of evaluating F��� and rF��� are both approxi-
mately C (Sec. 5), the total cost of an algorithm may be measured
as an integral multiple of C. In grid search, the warp factor is ini-
tially 1 (no warping) and then increased (for children speakers tested
on adult-trained models) gradually in steps till the likelihood score
starts decreasing. If the optimal warp factor is �� and the step size is
��, the number of function evaluations is ��������� and the cost
is ���������C. In gradient search, if the number of iterations ism,
there are �m� �� evaluations each of F��� andrF���, and so the
cost is ��m���C. Backtracking during any iteration in the gradient
search involves an additional cost of C. On the average over all the
test speakers, the gradient search was found to be more efficient than
the grid search by a factor of around 1.6. For some children, �� was
as high as 1.25 and the efficiency factor was around 3.
For n � �, the grid search becomes more tedious and the computa-
tional savings of a tuned gradient search or a quasi-Newton method
using the BFGS update are expected to be greater.

7. CONCLUSIONS

A gradient search algorithm was developed for VTLN estimation
with MFCC features. The novel calculation was that of the gradi-

ent of the filterbank with respect to the FW parameters. The cost
of computing the gradient of the VTLN objective function is ap-
proximately the number of FW parameters times the cost of eval-
uating the function. For male children speakers tested on mod-
els trained from adult males, the algorithm was used to estimate
multiple-parameter SLAPT FW for VTLN, and more than 50% rel-
ative reduction in word error rate was obtained compared to single-
parameter PL VTLN. For single parameter PL VTLN, the algorithm
was more efficient than the widely used grid search by a factor of
around 1.6. For multiple parameters, grid search would be inefficient
and the computational savings of gradient search would be greater.
The method also has potential for combined optimization of other
front-end parameters for fast speaker and channel normalization and
different objective functions like MMI need to be explored. 1
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