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Abstract

The maximum likelihood linear regression (MLLR) technique is widely used in speaker adap-
tation due to its effectiveness and computational advantages. When the adaptation data are
sparse, MLLR performance degrades because of unreliable parameter estimation. In this paper,
a robust MLLR speaker adaptation approach via weighted model averaging is investigated. A
variety of transformation structures is first chosen and a general form of maximum likelihood
(ML) estimation of the structures is given. The minimum description length (MDL) principle is
applied to account for the compromise between transformation granularity and descriptive abil-
ity regarding the tying patterns of structured transformations with a regression tree. Weighted
model averaging across the candidate structures is then performed based on the normalized MDL
scores. Experimental results show that this kind of model averaging in combination with regres-
sion tree tying gives robust and consistent performance across various amounts of adaptation

data.



1 Introduction

Speaker adaptation is a crucial technique for speech recognition systems which modifies the origi-
nal acoustic models towards a specific speaker given the speaker’s acoustic characteristics. It can
yield significant improvements over “unadapted” recognizers and therefore plays an important
role in real-world applications. In the past two decades, speaker adaptation has become one of
the most active research areas in the speech recognition field with many important contributions.
Generally speaking, speaker-adaptation techniques fall into two categories: transformation-based
approaches and model-based approaches. Transformation-based approaches relate the original
and adapted model parameters by a transformation, either a linear one [1] or a nonlinear one
[2]. The model-based approaches adapt model parameters directly without an assumption of
transformation [3][4][5].

If a large amount of adaptation data is available, both transformation-based and model-
based approaches yield satisfactory performance. In real-world applications, however, situations
often occur when only a limited amount of data is available for adaptation. This may be due to
difficulty in collecting the data or a requirement of rapid speaker adaptation. In this situation,
data sparseness will affect performance. To deal with this issue, a variety of methods has been
developed for both approaches. For the transformation-based approach, a regression class tree
is adopted in [1] to dynamically tie the transformation parameters, while dependencies between
acoustic units are studied in [6] and [7] to make effective usage of the data. In the model-based
approach, a structural MAP adaptation algorithm is proposed in [4] and [5] utilizing hierarchical
priors and obtains good performance. These techniques can yield reliable adaptation for observed

or unobserved acoustic units by smoothing the adaptation parameters across the sparse data.



Another interesting way to address the sparse-data problem is the eigenvoice method inves-
tigated in [8] where the acoustic models are obtained via a linear combination of representative
speaker independent models in the eigenvoice (principal components) space. In case of adapta-
tion, only the linear combination coefficients need to be estimated, which makes it a good choice
for rapid speaker adaptation. The eigenvoice method has been extensively studied in the past
few years and encouraging performance has been reported (e.g. [9][10][11]).

Among speaker adaptation techniques, the maximum likelihood linear regression (MLLR) [1]
is one of the most well-known and widely-used approaches due to its effectiveness and computa-
tional advantages. In this paper, we investigate a robust speaker adaptation scheme using MLLR
with a structured transformation matrix. The scheme yields consistent performance across var-
ious amounts of adaptation data - sparse or adequate. Structured MLLR transformations are
clustered through a regression tree [1] and their ML estimation is provided. Given a certain
amount of adaptation data, a variety of transformation structures is chosen and their tying
patterns with the regression tree are described by the minimum description length (MDL) [12]
to account for the tradeoff between transformation granularity and descriptive ability. Based on
the normalized MDL scores, the final transformation is obtained by a weighted average across
the candidate structures.

Previous work on applications of the MDL principle in acoustic model selection [13] and
[14] involves the use of MDL to automatically determine the regression tree depth, applied to a
mean shifting [13] and structural MAP adaptation [14]. In this paper, we investigate the use of
the MDL principle to determine the optimum transformation structure from a set of predefined

structures.



The remainder of the paper is organized as follows: In Section 2, formulation of estimation
of structured MLLR transformations is provided. Structure description via the MDL principle
and weighted model averaging based on normalized MDL scores are given in Sections 3 and
4. Section 5 discusses the choice of proper structures. Experimental results are presented in

Section 6 which is followed by a discussion in Section 7. A summary is presented in Section 8.

2 Structured Transformations

As in [1], the MLLR transformation can be written as:

p=At 1)

where ¢ = [1, 1, ,un]? is the augmented mean vector with p = [u1,- -+, un]? denoting the
N-dimensional mean vector of a Gaussian mixture in speaker-independent acoustic models. The
adapted Gaussian mixture mean i is computed from the original augmented mean £ via a linear
transformation matrix A with an N x (N + 1) dimension.

When the adaptation data are adequate to perform reliable estimation, a full matrix form
of A is preferred. However, most often in practical situations, only limited adaptation data are
available. Under this condition, it is interesting to investigate different structures of A which may
render fewer free parameters to estimate while still providing a good descriptive ability of the
transformation. For a particular structure, only the elements of interest in the transformation
matrix are taken into account while the rest are set to zeros. For instance, Eq.2 illustrates a
structure of the transformation matrix A with elements of interest located in the first column

and along the three principal diagonals in the remaining sub-matrix.



X X X
- 4 Nx(N41)

Before we derive the ML estimate of the structured transformation, let us first review the
derivation of transformation matrix A with no assumption of its structure (see for example [1]).
It will become manifest that the ML estimate of the structured transformation is an extension
of the estimate of a full transformation matrix in an EM framework.

Suppose there are R adaptation utterances and U" is the number of frames in the rth
utterance. 7} (i,k) = p(s} =14,k = k|O", ) is the posterior probability of being at state 4 and
Gaussian mixture & at time t given the rth observation sequence O" = {of,--- , 0 }. &) and Xy,
are the augmented mean vector of u;; and covariance matrix associated with state ¢ and Gaussian
mixture k. X are the parameters of previous models in the EM iterations. Transformations are
tied into @ classes: {wy, -+ ,wy, - ,wqg}. For a specific class w,, the transformation matrix A,
is shared across all the Gaussian mixtures N (0}; puix, Xix) with (i, k) € wg. The ML esitmation

of A, can be obtained from:
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Define the terms the same way as in [1]:

U’V‘
o= ) v, k)Sy (4)
t=1
D, = &l (5)
R U™

Zg = Y Y > k)T i (6)

r=11=1 (i,k)Ew,

Hence:

vee(Z) = [ 32 3 (Vi@ Dip) | - vee(A,) (7)

R
=1 (i,k)€wqy

T
where vec(-) converts a matrix into a vector in terms of the rows and ® is the Kronecker product.

When the covariance matrix ¥;;, is diagonal, A, could be computed row by row from the

following linear relationship:

Z(?m = qu ’ a(j;m (8)

where 2z, and ag, are the mth row of Z, and A, and:

R
Gl]m = Z U:k(mm)DZk (9)
r=1 (i,k)Ewq
where v;"k(mm) is the mth element on the diagonal of matrix V.

In this paper, we are interested in the structure of A and ways of exploiting the structure
in robust speaker adaptation. For a structured transformation, suppose the mth row of 4,

has P, elements of interest, namely,

Qgm = [07 701aqm,l1701"' aoaaqm,lpmaoa"' 70] (10)

Define

al]m = [aqm,h ’ aqm,lza Ty aqm,lpm]



and

Zqgm = [zqm,ll s Zgmilay " s qu,lpm]

as being the sub-vectors consisting of only those elements of interest. Then, a4, can be solved

using the following relationship:

Zom = Gam - Ggm (11)
where i )
(gm) (gm) (gm)
gllh glllg e gllle
(gm) (gm) (gm)
~ 911 9,0, 7 G
qu _ 201 2l2 20Py, (12)
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In other words, the matrix CN-'rqm is generated by eliminating the rows and columns of Gy,
which correspond to the zero elements in the structure, and keeping those of interest. The ML
estimation of the structured transformation obtained in Eq.11 is a general form for all possible

structures.

3 Description of Structured Transformation Based on MDL

Since it was first proposed in 1978 [12], the MDL has been extensively studied and applied in
model selection problems. There are many excellent papers reviewing MDL, e.g. [15], [16], [17],
etc. In speech recognition, the MDL was also used as a means to cluster acoustic units or optimize

acoustic models [18][19]. Rooted in information theory, the MDL principle renders a view to



model selection from a coding perspective. It treats a statistical model S with parameter 6 as
a coding algorithm to compress data X for the estimation. The total length (L(S)) to describe
the coding of the data via the model includes the length of the compressed data (—logp(X|0))

plus the length describing the model itself (L(0)):

L(S) = —logp(X|0) + L(6) (13)

In Eq.13, the first term on the right-hand side accounts for how well the model fits the data and
the second term describes the complexity of the model. It is desirable to describe complicated
phenomena by a simple model just as the famous Occam’s razor states — “One should not
increase, beyond what is necessary, the number of entities required to explain anything”. Thus,
given M competing models, the one with the shortest code length is favored which results in a
simple model (or short L(#)) with a good fit of the data (or short —logp(X16)). In this paper,
the MDL is employed to describe the structured MLLR adaptation using a regression tree.
Given an amount of adaptation data and a transformation structure, a regression class tree
[1] is a good choice to obtain robust performance by dynamically tying Gaussian mixtures in
the acoustic HMMs in terms of spatial similarity. The regression tree is created based on the
centroid splitting algorithm using the Euclidean distance between the Gaussian mixture means
as described in [20]. During adaptation, the Gaussian mixtures are pooled within their base class
leaves or their parent nodes until the occupation counts are satisfactory for reliable estimation.
While different transformation structures have different numbers of parameters, they provide
different transformation descriptive ability and require different amounts of data to conduct
reliable estimation. For illustration purposes, Fig.1 compares the tying patterns of a 1-diagonal

and 3-diagonal transformations with a six-class regression tree. The six base classes are denoted



as the leaves at the bottom of the tree. In the figure, the tying of 1-diagonal structure is
represented by grey nodes with solid arrows and 3-diagonal structure by black nodes with dashed
arrows. For instance, in the 1-diagonal structure case, Gaussian mixtures from base class 1 share
the transformation estimated from their own class while Gaussian mixtures from base class 2
are applied with the transformation estimated from both base classes 1 and 2. On the other
hand, base classes 1, 2, 3 and 4 share the same transformation estimated from those classes in
the 3-diagonal structure case. There are totally 4 transformations for the 1-diagonal structure
and 2 transformations for the 3-diagonal structure.

From the figure, since the 1-diagonal structure has fewer parameters than the 3-diagonal case,
transformations have been tied at a lower level in the tree which indicates a better granularity.
On the other hand, the 3-diagonal structure has more parameters to describe the transforma-
tion; this indicates a better descriptive ability. Therefore, a tradeoff has to be made between
transformation granularity and descriptive ability.

Suppose there are M competing structures {Si,-- -, Sys} which result in different regression-
tree tying schemes. Typically, complicated structures have transformations tied across more
Gaussian mixtures (higher level in the tree toward the root node) and simple structures across
less Gaussian mixtures (lower level in the tree toward the leaves). To explore the compromise
between transformation granularity and descriptive ability for each transformation structure,
the minimum description length (MDL) principle is a good criterion.

In particular, suppose the Gaussian mixtures of the original acoustic HMMs are clustered
into L base classes with D; (I =1,---, L) mixtures in the [th class. For the dynamical tying of

the structure S,,, (m = 1,--- , M) resulting in @), transformations with a regression tree over R



adaptation utterances {O', 0?,--- ,OF}, the description length is composed of three parts:

L(Sm) = Ll(Sm) + LQ(Sm) + L3(Sm) (14)
where
Ll(Sm) = _logp(01a027"' 7OR|A17"' aAQm;X) (15)
Qm |Sm|

Ly(Sm) = ) 5 10gTmg (16)

q=1

L
Ls(Sm) = Y Diln (17)

=1

In Eq.14, L1(S,,) is the code length of the compressed data {O',0?,---  O%} using Q,,
distinct transformations with structure S,,; Lo(Sy,) is the code length of the @, transforma-
tions; L3(S,,) is the code length identifying one of the @, transformations for each Gaussian
mixture. The three terms influence the compromise between transformation granularity and
descriptive ability in different ways. L;(Sy,) and Lo(Sy,) balance the likelihood and the number
of transformation parameters by choosing transformation structures that have a higher like-
lihood with less parameters. In addition, L3(S,,) introduces penalty for tying patterns with
more transformations since they have to employ a longer code to describe the application of the
transformations to Gaussian mixtures. In the following, we will provide details on calculation
of the three lengths.

Suppose the introduction of the transformation does not alter (a) the initial state probabil-
ities, (b) the state transition probabilities, and (c) the frame/state alignment. Then, the first

term in Eq. 14, L1 (S),), could be computed based on the forward-backward procedure [21] using



transformed Gaussian mixtures by the transformations {4;,---, Ag,, }:

logp(017 021 s 7OR|A17 s aAQmax)

R
= IOng(Oqu,--- 7AQm;>\)

r=1

R
= Zlogp((’)qu, e aAQm; >‘)
r=1

R N
= ) log (Zai(z‘)ﬁ{(z‘)) (18)
r=1 =1
The forward variable o (i) and backward variable (] (i) are computed using the transformed
Gaussian mixture N (o}; Ag&ik, Zik)-
In the second term, Lo(Sp), |Sm| is the number of free parameters in the transformation

with the structure S,. I'y,, is the occupation counts of transformation A, with structure S,

and can be computed as:

Ur

quzzz Z vi (i, k) given Sy, (19)

r=11=1 (i,k)Ewq

which denotes the adaptation data’s total contribution to the transformation A, with structure
S

The third item, L3(Sy,), is the length of the code to locate a particular transformation in
the tree. Each of the @), transformations with structure S, is labeled by an integer from
{1, -+, Qu,} for identification. To specify a transformation with structure S,, for each Gaussian
mixture from base class [, the labelling integer j(m,[) of the transformations, which is a function
of structure S, and base class [, is identified and coded. In light of the coding literature such

as [22] and [23], the approximate universal code length for a non-zero integer j(m,1) is:

Ly = log 2 - (2 + logy | (m. 1)| + 2logy logy |j(m, 1)) (20)

10



where log | - | is the positive part of the logarithm function. Substituting Eq.20 into Eq.17, we
can compute the total bits needed to identify the transformations for all the Gaussian mixtures
in the acoustic models. Note that Li(S,,) and Ly(S,,) are computed in nats while L3(Sy,)
in bits, therefore, scaling factor log2 is needed to change the different logarithm bases in the
summation.

Together, the three coding lengths, L1 (Sy,), L2(Sp) and L3(Sy,), give the description length

of a transformation with structure S,,.

4 Weighted Model Averaging

Given the MDL scores for all the competing transformation structures with a regression tree,
the structure with the shortest coding length is preferred and may be considered as the best
candidate among all the competing structures. However, problems may occur if only the “best”
structure is adopted. First, the MDL is asymptotically accurate when applied to a large amount
of data. In case of limited data, the MDL choice may vary from one data set to another and
give unsatisfactory results. Moreover, when the MDL scores are close, there is no one structure
that is clearly superior to the others. In this situation, weighted model averaging could provide
a more stable and robust performance than a single structure.

Suppose the MDL scores for the M competing structures {Si,---,Sm} are {C1, -, ()
with (nin and (pee being the minimum and maximum scores, respectively. A normalized score

of the mth candidate structure S, is defined as

_Sm = Gmin_

Cma:n - C’rmn

An=mn-

11



where 7 is empirically determined, and the weight for the structure S, is computed as

e Am
= S 2
Assume the transformation applied to base class [ (I = 1, , L) with structure Sy, is Ag(m 1),
the final transformation for this base class is calculated as:
M
A=Y TmAgimy) (23)
m=1

Eq. 23 represents a final transformation by the weighted average of different structured

transformations.

5 Choice of Structure Form

Ideally, for the given amount of adaptation data, all possible transformation structures should
be considered and their corresponding MDL scores be calculated. Suppose the transformation

matrix A is N x (N +1) in dimension, then there are 2V*(N+1)

possible structures to investigate,
which is computationally prohibitive in practical situations. However, earlier research could shed
light on the appropriate choice of transformation structures. For instance, [24], [25] and [26]
show that vocal tract length normalization (VTLN) in the linear spectral domain can translate
into a linear transformation in the cepstral domain, which could be considered as a special case
of linear regression. The transformation obtained this way has a special structure: dominant
components are located along the several principal diagonals of the matrix. Fig.3 visualizes two
transformation matrices associated with two scaling factors using the approach investigated in

[26] for the Mel-frequency Cepstral Coefficients (MFCC) feature. Similar structures could also

be found in [24].
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The above-mentioned VTLN results provide an interesting acoustic motivation on the choice
for the transformation structure. Taking into account a reasonable coverage of structures and
computational considerations, we choose four structures for our experiments: 3-diagonal (3D),
7-diagonal (7D), 3-block (3B) and full matrix (full).! The 3-block structure with sub-full-matrix
for the static, first and second order derivatives of the transformation is widely used in MLLR
speaker adaptation [20]. Table 1 shows the number of free parameters for the four structured

transformation matrices.

6 Experimental Results

Fig. 2 elaborates the implementation of the proposed weighted model averaging approach with
structured transformations. Experiments are performed on the TIDIGITS and Resource Man-
agement (RM) databases. TIDIGITS consists of connected digit string composed of 1 to 7 digits
and RM is a continuous speech corpus where the sentences pertain to a naval resource manage-
ment task. The speech data are sampled at 16k Hz. MFCC features are computed with a 25
ms frame length and a 10 ms frame shift. The feature is 39 in dimension consisting of 13 static
MFCCs (including CO0) and their first and second order derivatives. TIDIGITS experiments use
phoneme-specific HMMs adopting a left-to-right topology with 3 to 5 states for each phoneme.
A 3-state silence model and 1-state short pause model are also used. There are 6 mixtures in
each state. All the Gaussian mixtures have diagonal covariance matrices. RM experiments use

triphone HMMs with 3 states for each triphone and 6 Gaussian mixtures in each state.

!The structures discussed here refer to the sub-matrix after the first column in A in Eq.1. For simplicity, we

refer to them as the structure of A.
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Four sets of experiments are designed for TIDIGITS testing: male-trained-female-tested,
female-trained-male-tested, adult-trained-adult-tested and adult-trained-child-tested. The male
speaker independent acoustic models are trained with 55 males and the female models with 55
females. The adult models are trained by pooling together the 55 males and 55 females. In the
testing set, there are 10 males, 10 females and 10 children. In both training and testing sets,
each speaker provides 77 utterances. Before recognition, data from each speaker are extracted
to adapt the speaker-independent models by MLLR. The adaptation is performed with 2, 5, 10,
15, 20, 25, 30 and 35 digits. For the RM database, speaker independent models are trained by
72 speakers with 40 utterances from each speaker. The test set contains 10 speakers with 300
utterances from each speaker. The adaptation is performed with 1, 3, 10, 50 and 100 utterances.

An MLLR regression tree with 128 base classes is created for the TIDIGITS task and 512
base classes from the RM task. To ensure matrix invertiblity during the transformation tree-
tying, a minimum number of Gaussian mixtures is required at the tying nodes which is 3, 7,
13 and 39 for 3D, 7D, 3B and full matrix, respectively. Furthermore, for reliable estimation,
a threshold has to be set for each transformation structure depending on its number of free
parameters. In this paper, we choose the threshold to be approximately equal to the number of
parameters for each structure. That is, 150, 300, 550 and 1500 are the occupation counts for
a valid transformation estimation with 3D, 7D, 3B and full matrix, respectively. The scaling
factor n in Eq.21 is set to 2.0. n is tuned to give reasonable weights for the structures. Values
around 2.0 will give the best performance according to our experiments and they are consistent
across recognition tasks.

Tables 2 - 5 show the TIDIGITS experimental results with four transformation structures

14



using different amounts of adaptation data. Baseline results are without adaptation. Adaptation
results using the “single” best structure based on MDL, and using the averaged transformation
across all four structures weighted using the MDL scores are denoted as “MDL” and “MDL-
Ave”, respectively. The 3-block and full matrix structure results with very limited data (e.g. 2
digits for 3-block matrix structure and 2 and 5 digits for full matrix structure) are not shown
in the tables since even the global tying for the transformation can not meet the occupation
threshold requirement, and the results are thus not meaningful. Table 6 shows the experimental
results for the RM database.

From the tables, structures with less parameters (3D or 7D) tend to give better performance
than those with more parameters (3B or full) when the amount of adaptation data is small.
When the amount of data increases, however, the situation is reversed. This is mainly due to
the tradeoff between transformation granularity and descriptive ability. By choosing the single
“best” model with the minimum score, MDL gives a better balanced performance with respect
to the amount of adaptation data. Very often MDL is able to obtain the best performance
among the four candidate structures given a certain amount of data. Weighted model averaging
across all structures based on the normalized MDL scores gives more consistent and robust
performance than MDL alone.

Although MDL-Ave yields the best WER in the TIDIGITS experiments, the statistical
significance level of MDL-Ave compared to certain structures (e.g. 3-diag) using the matched-
pair test [27] is not high (around 0.2-0.3). This is primary because the test set is not very large
and the adaptation baseline for the structures is high. In the experiments on the RM database,

MDL-Ave shows a statistically significant difference compared the best-performed structure (full

15



structure) at a significant level of 0.024.

7 Discussion

The tying of the MLLR transformation with competing structures in a regression tree, introduced
in this paper, is different from the model selection problems in nested linear regression coefficient
selection [15] or the optimal tree cut approaches [18][19]. This is because the tied transformations
can utilize data from overlapped Gaussian mixture sets, which are neither nested nor a partition
of the Gaussian mixture space. This makes it a more interesting problem. Furthermore, to
locate the transformations, the regression tree has to be traversed to get to certain nodes. In
this situation, MDL seems to be a superior choice to Akaike information criterion (AIC)[28]
or Bayesian information criterion (BIC)[29] because MDL could be interpreted from the coding
point of view, and the traverse of the tree to locate the transformations can be taken into account
as a part of the model itself. This can not be easily dealt with by AIC or BIC.

The coding of the model parameters in MDL is related to the Fisher information matrix which
could be directly employed to calculate the MDL score as in [19]. However, the asymptotic
form used in this paper may be a good approximation even without a large amount of data
under certain Bayesian assumptions [15] and this form also has its computational advantages.
As we know, in speech recognition, the connection between a good fit of model based on the
ML criterion and good performance in the Viterbi decoding is not strong. Moreover, most of
the model selection criteria including MDL, AIC and BIC are obtained based on large sample
theory. Therefore, they may not select the best model in some cases especially when only a

limited amount of data is given.
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Compared with MDL alone, the weighted model averaging strategy renders more robust
performance in most cases. This is because although MDL can not always choose the best
structure, it does give a good “guess” on the goodness-of-fit of the structures. Therefore, a
reasonable weight of the structure can produce better results. The tying pattern of the transfor-
mation with the regression tree is decided by (a) the structure and (b) the threshold of reliable
estimation for the structure, both can be handled by the MDL weighted model averaging. Dif-
ferent structures other than those investigated in this paper are also possible and the weighted
model averaging algorithm can be carried out accordingly. The major computational complexity
of the algorithm comes from calculation of individual transformations and computation of MDL
scores afterwards. This computational complexity grows linearly with the number of competing
structures.

Structural MAP and eigenvoice approaches are both effective techniques which have obtained
excellent results. The MDL and MDL-Ave algorithms discussed in this paper basically address
the sparse data problem within the MLLR framework. In the structural MAP approach, it is
difficult to choose the optimal tree structure for adaptation. The eigenvoice approach adapts
acoustic models from prior models in the eigen-space which is similar to the MDL-Ave in terms
of linear combination. However, eigenvoice is most effective when a limited amount of data is
available. When the adaptation data increase, its performance saturates quickly [8]. MDL-Ave
does not have this problem. It gives robust performance across various amounts of adaptation
data. Despite the difference among the MDL-Ave, structural MAP and eigenvoice, they have
similarities from the parameter smoothing perspective. MDL-Ave performs parameter smooth-

ing on predefined structures, structural MAP on prior distributions and eigenvoice on prior

17



eigen-models.

8 Summary

In this paper, we investigate a robust maximum likelihood linear regression speaker adaptation
approach with weighted model averaging across a variety of transformation structures. A general
form of the maximum likelihood estimation of the structured transformation is given. The
minimum description length (MDL) is adopted to describe the balance between transformation
granularity and descriptive ability of the structured transformations tied using a regression
tree. Based on the normalized MDL scores, transformations are averaged across all structures.
Experimental results show that the proposed approach obtains robust performance with respect

to the amount of adaptation data.
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3-di agonal

1-di agonal

Figure 1: A comparison of the transformation tying patterns with a regression tree of six base

classes using 1-diagonal (grey node), and 3-diagonal (black node) structures.

matrix structure 3-diag | 7-diag | 3-block | full

number of parameters 154 300 546 1560

Table 1: Number of parameters of MLLR transformation with different structures.
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Number of adaptation digits

2 ) 10 15 20 25 30 35

No adaptation || 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 13.0

3D 2711413 |11 08| 08 | 08 | 0.6
7D 70 | 17 | 1.3 |09 |07 | 07|06 | 06
3B - 29 |1 1.2 107 |07 | 06 | 06 | 0.5
full - - 48 | 1.8 | 0.8 | 0.6 | 0.6 | 0.5
MDL 30| 17|12 |08 |06 | 07 | 06 | 0.6

MDL-Ave 2111310907 06| 06 | 06 | 0.5

Table 2: Word error rate (%) of MLLR with different structured transformations on TIDIGITS
database. Acoustic models are trained with male speech and tested on female speech. The
performance is the average over the 10 female speakers in the test set. 3D, 7D, 3B and full

denote 3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
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|

Structure 2 Structure M

-t
[t

/

Weight
Computation

Test Data

—
Original Acoustic
Models

Recognizer

l

Text Outputs

Figure 2: Flow chart of implementation of weighted model averaging with structured MLLR

transformations. The structures are appropriately tied with a regression tree.
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2 4 6 8 10 12 2 4 6 8 10 12

Figure 3: Transformation matrices generated based on vocal tract length normalization with
scaling factor equal to 1.2 (left) and 0.8 (right). The darker the color, the more significant the

element is.
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Number of adaptation digits

2 5 |10 | 15|20 | 25 | 30 | 35

No adaptation || 4.4 | 4.4 |44 |44 |44 |44 |44 |44

3D 1.7109109]109]06 |06 |06] 0.6
7D 36119 12]1.0|08]0.7 )06 |0.6
3B - |56(11)08]08|0.8]0.7]0.6
full - - |40]15(09]08|0.8]|0.6
MDL 1.7113112]109]07(0.7]0.7] 0.6

MDL-Ave 1.0/10]08]08]06|0.6]|06] 0.6

Table 3: Word error rate (%) of MLLR with different structured transformations on TIDIGITS
database. Acoustic models are trained with female speech and tested on male speech. The
performance is the average over the 10 male speakers in the test set. 3D, 7D, 3B and full denote

3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
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Number of adaptation digits

2 5 |10 | 15|20 | 25 | 30 | 35

No adaptation || 0.9 { 0.9 1090909090909

3D 1110710910807 06|0.7]|0.7
7D 20108109]08|08]0.7]0.70.7
3B - 124(08107]08]0.7]08]0.6
full - - 126]10)07]07]0.7 0.7
MDL 1170810810807 |07]0.7]0.7

MDL-Ave 1.0107]107]07]07(0.6|0.7] 0.6

Table 4: Word error rate (%) of MLLR with different structured transformations on TIDIGITS
database. Acoustic models are trained and tested on adult speech (both male and female). The
performance is the average over the 20 adult speakers in the test set. 3D, 7D, 3B and full denote

3-diagonal, 7-diagonal, 3-block and full transformation matrices, respectively.
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Number of adaptation digits

2 5 |10 | 15|20 | 25 | 30 | 35

No adaptation || 2.9 {29129 (2929292929

3D 241141121312 |11|11]|1.0
7D 50116 (1209|1011 |1.0]0.8
3B - 193(13/09(08|1.0]09]0.8
full - - 182]3013 (11 (11]1.0
MDL 241141120909 1.0|09] 0.8

MDL-Ave 1911411170909 (091]09] 0.6

Table 5: Word error rate (%) of MLLR with different structured transformations on TIDIGITS
database. Acoustic models are trained on adults and tested on children. The performance is
the average over the 10 kid speakers in the test set. 3D, 7D, 3B and full denote 3-diagonal,

7-diagonal, 3-block and full transformation matrices, respectively.
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Number of adaptation utterances

1 3 10 50 100

No adaptation | 7.5 | 7.5 7.5 7.5 7.5

3D 5.9 | 5.7 5.4 5.0 4.8
7D 5.8 | 5.5 5.1 4.7 4.5
3B 6.7 | 5.5 4.9 4.5 4.2
full 75 | 7.0 5.2 4.4 4.1
MDL 5.8 | 6.2 5.2 4.4 4.1

MDL-Ave 5.9 | 8.5 4.9 4.2 3.9

Table 6: Word error rate (%) of MLLR with different structured transformations on RM

database.
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