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ABSTRACT OF THE DISSERTATION 

Data Mining of Remote Sensed Data for Stormwater Systems 

By 

Hsueh-hwa Lee 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2003 

Professor Michael K. Stenstrom, Chair 

The main objective of this research was to enhance understanding of the Santa 

Monica Bay area stormwater systems. The runoff system is proven too intricate for 

conventional approaches, as most of its parameters are complex and spatially distributed. 

A novel three-part approach was developed to redress problems that had long prevented 

stormwater research from breaking new ground. 

Although remote sensed data have been available for many years, no stormwater 

model has used them as direct model input. This dissertation proposes establishing a 

geographic information system (GIS) with remote sensed data, using data mining 

techniques to explore land use information for stormwater modeling, and performing 

hydrological analysis on one of Santa Monica Bay's discrete watersheds. The unique 

technological combination of the Geographic Information System (GIS) and artificial 
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neural network (ANN) algorithms is the approach that stormwater research has been 

waiting for. 

The study focused on the geographical characteristics of the Santa Monica Bay 

stormwater systems, but the method can be extrapolated to other watersheds. 
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1. INTRODUCTION 

1.1 Problem Definition and Significance 

Stormwater runoff has historically been one of the most complex and 

consequently one of the least understood environmental systems under scrutiny by 

environmental researchers. Numerous factors such as geology (surface elevation, slope, 

etc.), precipitation characteristics, and human activities (land use pattern, land surface 

improvement, and drainage networks) affect runoff quality and quantity, and standardized 

measurements are difficult both to achieve and to evaluate [Corbit, 1989]. Preparing 

effective yet efficient runoff models requires technologies that have only become widely 

available in the last decade; innovations like the data mining technology, geographic 

information system (GIS), and others have streamlined previously laborious processes, 

making them more accessible and feasible to researchers. This is critical to the 

continuing efforts and success of controlling non-point source pollution. 

Stormwater runoff models vary in their complexity and data, personnel and 

computational requirements [Charbeneau and Barrett, 1998]. Obviously, technology that 

can facilitate any or all of these is invaluable to the field as a whole. Among all the 

required parameters, land use information is the most essential to monitor runoff quality 

and quantity. Based on land use patterns, stormwater management models define 

imperviousness and event mean concentrations of pollutants. In recent decades, land use 

mapping has been enhanced by remote sensed satellite images, which are now a standard 

source of planning, tracing, and classifying land use patterns. However, again, the 
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computing resources required for processing and analyzing these images have long posed 

a challenge. 

Advances in computing hardware and software and the innovation of the data 

mining technology of the last two decades have provided a solution to this hardship. In 

particular, data mining using artificial neural networks with the addition of fuzzy logic 

has been very effective. Data mining uses an efficient way to discover new, valuable, 

and non-obvious information from a huge collection of data [Bigus, 1996; Mesrobian et 

al., 1996]. With digital databases of remote sensed data now more affordable and 

accessible, data mining techniques have become a popular cost-effective way to extract 

precious land information. 

An Artificial Neural Network (ANN) is a computational structure inspired by 

human biological neural processing [Rao, 1995]. ANN simulation has gained enormous 

attention as a technique for classifying remote sensed data and has proved to be one of 

the key algorithms used in data mining. Whereas ANNs deal with learning and 

probabilistic reasoning, fuzzy logic is concerned with imprecision and uncertainty 

[Zadeh, 1994]. Neural Fuzzy (NeuroFuzzy) networks are networks that use fuzzy logic 

in the processing units or in the connection weight representations [Okada et al., 1992]. 

The integration of ANN and fuzzy logic produces a system that is greater than the sum of 

its parts-a synergy that overcomes the weaknesses of each technology and thus results 

in a holistic approach to data mining. 

Most established database management systems were originally developed to 

manipulate tabular-format numeric data sets. However, nearly all the information 

2 
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required for stormwater modeling is distributed spatially. GIS technology now provides 

for the conversion of complex geographic reality into a finite number of database records 

or objects, which includes lines, points, or areas, and also possesses descriptive attributes 

[Goodchild, 1993]. GIS therefore complements remote sensing techniques as a 

framework for integrated spatial analysis and helps develop and tailor remote sensed data 

sets. The complex spatial data requirement forges vital links among GIS, remote sensed 

data, and stormwater management models. More specifically, GIS could be defined as a 

computer hardware and software system designed for the storage and processing of 

geographic data in both geographic and analytical forms [Sanchez and Canton, 1999]. A 

GIS application typically requires extensive geographic, cartographic, engineering, and 

statistical knowledge and experience as well as considerable analytical skills. 

1.2 Objectives and. Scope of Research 

California's entire Santa Monica Bay (SMB) area, and in particular two of its 

discrete watersheds, the Ballona Creek Watershed and the Malibu Creek Watershed, were 

selected as the study area for this project. Extensive development and population growth 

in this area have led to severe degradation of the surface water quality. It is important to 

explore the causes of the damage in order to restore the Bay to its pristine state. 

The goal of this study is to develop a GIS integrated with data mining system that is 

powered by artificial neural network algorithms, modem database servers, and 

conventional surface hydrological models. The GIS based data mining system contains 

more than 80 geographic layers or images and occupies 40 Gigabytes (GB) of disk 

3 
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storage. It will glean data necessary for understanding and depicting the stormwater 

runoff parameters and mechanisms of 5MB. The methodology used in and the data 

derived from this research project will contribute to a better understanding of the 

stormwater system in the 5MB watershed, and thus will be useful in developing a better 

monitoring program for runoff pollution control. 

The primary objectives of this research are: 

1. To establish a centralized GIS containing remote sensed images and other GIS layers 

for the entire 5MB watershed. 

2. To preprocess NeuroFuzzy model input parameters with GIS and present statistical 

observations between the 5MB land use patterns and satellite imagery. 

3. To perform polygon level land use classifications using NeuroFuzzy models for 

5MB. 

4. To perform pixel level land use classification using supervised and unsupervised 

learning algorithms near the Ballona Wetland and the surrounding areas. 

5. To build a GIS to support U.S. Army Corps of Engineer HEC-HMS hydrological 

modeling program parameters, to perform HEC-HMS stormwater quantity modeling, 

and to use the ANN simulation as an alternative for imitating the model output in the 

Malibu Creek Watershed. 

1.3 Organization of the Dissertation 

This dissertation is composed of four research manuscripts ready to be submitted 

for publication. Each paper addresses one or more objectives listed in Section 1.2: 

4 
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Chapter 2 describes the GIS techniques used for satellite image processing and presents 

graphs of statistical observations. Chapter 3 introduces a NeuroFuzzy network to 

perform polygon-level land use classification. Pixel-level land use classification using 

both supervised and unsupervised learning algorithms is proposed in Chapter 4. In 

Chapter 5, a GIS integrated with both a traditional hydrological model and ANN is built 

to perform watershed analysis. Chapter 6 makes conclusions about this study and 

Chapter 7 describes the future works. 

1.4 Referen.ces 

Bigus, Joseph. (1996). Data Mining with Neural Networks. McGraw Hill, Inc., New 

York, NY. 

Charbeneau, R. J. and Barrett M. E. (1998). "Evaluation of Methods for Estimating 

Stormwater Pollutant Loads", Water Environment Research. Vol. 70, No.7, pp. 

1295-1302. 

Corbit, R.A. (1989). Standard Handbook of Environmental Engineering. McGraw Hill, 

Inc., New York, NY. 

Goodchild, M. F. (1993). "The State of GIS for Environmental Problem-Solving". At 

Environmental Modeling with GIS. Oxford University Press, New York, NY. 

Mesrobian, E, Muntz, R, Shek, E, Nittel, S and et al (1996). "Mining Geophysical Data 

for Knowledge". IEEE Expert 0885-9000/96. Vol. 11, No.5, October 1996. 

pp.34-44. 
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Okada, H., Watanabe, N., Kawamura, A., Asakawa, K., Taira, T., Isida, K., Kaji, T., and 

Narita, M. (1992). "Initializing multilayer neural networks with fuzzy logic", 

Proceedings of the IEEE International Conference on Neural Networks, Vol. 1, 

pp. 239 - 250. 

Rao, V. B. and Rao, H. V. (1995). C++ Neural Networks & Fuzzy Logic. MIS Press. 

New York, NY. 

Sanchez, Julio, and Canton, M. P. (1999). Space Image Processing. CRC Press LLC. 

Boca Raton, FL. 

Zadeh, L. A. (1994). "Fuzzy logic, neural networks, and soft computing" in 

Communications of the ACM, 3, pp. 77 - 84. 
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2. Data Mining of Thematic Mapper Images for Santa Monica Bay 

Land Use Characterization with GIS 

H H. Lee, Michael K. Stenstrom, liun-shiu Ma, and Kenneth M. Wong 

Abstract 

This paper was developed mainly for quantity and quality research of stormwater 

runoff in the Santa Monica Bay Watershed. It suggests the integration of remotely 

sensed data and the land use layer with a geographic information system to redress the 

potentials of using these data to classify complex urban land use patterns (specifically, 

the challenges of the numerical characterization of spectral signatures and the additional 

problem of selecting an appropriate methodology). Using theories of spectral signatures 

and GIS spatial analyses, Digital Numbers of each spectral band were extracted from the 

Landsat Thematic Mapper images. The relationships of land use patterns and spectral 

signatures suggested the potential for multi-band spectral signatures to yield significant 

information of land use characterization. This paper focuses on the methodologies used 

to collect and extract information, and presents the first-stage observations of a multi­

phase research project. 

2.1 Introduction 

The terms land use and land covers are used to describe different surface features 

of landscape. Land use refers to the economic and functional roles of land surface in 

human activities [Sanchez and Canton, 1999]. Land cover is an integrated expression of 

7 
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the physical, climatic, and biotic environment as well as of the history of human land use 

[Gopal et aI., 1999]. Land use focuses on the socioeconomic issues while land cover 

refers to the physical components. The data from both are not only useful for stormwater 

modeling, but are also influential over the local, state, and federal policy-making. 

Land use data is essential for monitoring the quality and quantity of stormwater 

runoff. As such, it is required for almost all stormwater runoff models. Traditionally, to 

determine the land use patterns, various techniques of mapping are applied to a 

designated area. In the last two decades, the field of land use mapping was greatly 

enhanced by the innovation of satellite imagery. Since then, these images and the 

extraordinary detail that they depict have been integral to the planning, tracing, and 

classifying of land use patterns. The introduction of data mining techniques in the 1990's 

likewise has allowed for efficient discoveries of valuable and non-obvious information 

from a large body of data [Bigus, 1996; Mesrobian et al., 1996]. 

The consensus among environmental researchers is that a combination of 

techniques is the best way to extract information from the satellite imagery just 

mentioned, as well as other spatial data: data mining integrated with a geographic 

information system (GIS) covers all areas fundamental to information discovery. Typical 

of economic constraints, a data mining operation is only successful when the value of the 

extracted information exceeds the cost of processing the raw data. The methodology and 

example presented in this paper follow this logic, and therefore provide a unique cost­

effective approach to the process of eliciting information from remotely sensed data. 

8 
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2.2 Research Scope and Brief Review of the Study Area 

The Santa Monica Bay (SMB) Watershed in the State of California was selected 

as the study area because of its huge socioeconomic impact and significant geographical 

location. The 5MB (Figure 1) Watershed serves approximately nine million people, the 

largest population in the West Coast of the United States-as well as its commercial 

center. It extends from the shoreline of Los Angeles and the adjacent cities of Santa 

Monica. Factors affecting the quality and quantity of stormwater runoff in the 5MB area 

are complicated and not fully understood. The goal of this study is to: 

1. Establish a GIS for the 5MB Watershed with satellite images and other 

geographic data. 

2. Perform GIS spatial analyses and observe the relationships between land use 

patterns and satellite images. 

3. Provide a better characterization of land use in the 5MB Watershed and 

possibilities for future studies of more complicated classification methods. 

The land use data used here came from Southern California Association of 

Governments [AIS, 1996]. A slightly modified definition of the Anderson Land Use 

Classification [Anderson et al., 1976] was used. Anderson's theory of Level II 

classification represents the land use categories by two digital codes, and is utilized to 

describe the prominent geographic attributes of the study area. 

The land use patterns playa key role in stormwater runoff quantity and quality by 

affecting the imperviousness and the specific pollutant's Event Mean Concentration 

9 
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(EMC). Previous studies have used land use polygons to estimate nonpoint source 

pollutant loadings of urban watershed [Wong et al., 1997] and sewershed [Ventura et al., 

1993]. The runoff coefficient, RV, is defined as the ratio of overall average runoff to 

rainfall, and is greatly correlated to the imperviousness (IMP) of surface area [Discoll et 

aI., 1990]. The relationship between RV and IMP is presented in the following equation: 

RV= 0.007 IMP + 0.1 (Eq. 1) 

Based on the 5MB drainage area characteristics from the Los Angeles County 

Department of Public Works, CA, the values of IMP and calculated RV for each of the 

land use pattern are described in Table 1. 

2.3 Space Image Processing 

Remote sensing is based on radiation emitted and reflected from the Earth's 

surface. Instruments of remote sensing measure the relative brightness of objects over a 

range of wavelengths. The spectral signature of an object can be defined as the result of 

a set of observations accounting the variations in the response of the same object and the 

difference with other objects [Sanchez and Canton, 1999]. In practice, spectral signatures 

have helped identify various features of the Earth's surface, such as crops, forests, 

minerals, and land use patterns. Due to the temporal and spatial variations of the spectral 

signatures of various objects, the identification process can be quite complicated. Objects 

may also present different signatures under different temperatures. Even with great 

10 
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variations, investigation of spectral properties is an indispensable component of remote 

sensing. While unique signatures of specific objects may not be easily defined, the 

associated spectral patterns of the objects can always be discovered. 

Since the late 1960's, the National Aeronautics and Space Administration 

(NASA) has developed and launched its Earth-monitoring satellites (Landsat). Landsat 

images with Thematic Mapper (TM) as sensors are used in this study. Landsat TM 

supports an on-board analog-to-digital conversion with a value range from 0 to 255 (8 

bits). This value is referred to as digital number (DN) in this study. A TM scene is 

composed of seven spectral bands; the usage of the DNs of seven bands to define spectral 

signatures can greatly enhance the accuracy, since "significant differences or similarities 

may well remain hidden if the variables are considered one at a time and not 

simultaneously" [Mather, 1976]. 

Landsat data used for land characterization include images generated by the 

Landsat Multi-spectral Scanner Sensors (MSS) [Benediktsson et aI., 1990; Lee et aI., 

1990], Landsat TM [Hepner et aI., 1990; Civco, 1993; Yoshida and Omatu, 1994; Moody 

et aI., 1996J, Advanced Very High Resolution Radiometer (A VHRR) [Gopal et aI., 1994; 

1999], and other data sets. Both statistical and soft-computing approaches have been 

applied to land use classification. 

2.4 Raw Data Processing 

Only one Landsat TM scene (Figure 2, USGS scene no. 5237717480), composed 

of seven spectral bands, was used in this study (Features described in Table 2). Each of 

11 
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the seven bands of the raw TM data has a file size of approximately 75-80 MB 

(megabytes) in BIP (Band Interleaved by Pixel) format. 

The TM sensor has a spatial resolution of 30 meters for bands 1 through 5, and 

band 7, and a spatial resolution of 120 meters for band 6. However, it should be noted 

that the TM scene used in this study has been post-processed with "edge-enhancement" 

technique and has a spatial resolution of 25 meters for all spectral bands. The map 

projection of the raw data is in Universal Transverse Mercator (UTM) system with map 

units in meters. In UTM, the globe is divided into six zones, each spanning six degrees 

of longitude with its own central median [ESRI, 1994]. Figure 3 presents the spectral 

Band 1 in gray scale. The red line overlaying the raw image is the boundary of the 5MB 

Watershed. A subset of image covering study area (Figure 4) was clipped from the raw 

data in order to save the storage space and processing time. 

Because a TM scene is composed of seven spectral bands and most video display 

systems only have three-color schemes (blue, green, and red), any combination of three 

bands can form a composite image and be displayed on a video system. Table 3 presents 

band combinations and their corresponding potential applications [Sanchez and Canton, 

1999]. 

Forming multi-band composite images demands the complex task of image 

processing. First, the raw TM image for each band is clipped and converted to GIS grid 

format. Then any three grids of bands can be converted to an image file. Figure 5 

schematically illustrates the process of creating a normal-color image by superimposing 

three spectral bands. 
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The normal multi-band composite image is created by coloring Band 1 blue, Band 

2 green, and Band 3 red (Figure 6). The infrared composite image can be generated by 

coloring Band 2 blue, Band 3 green, and Band 4 red (Figure 7). Figure 8 shows a closer 

look at the west portion of Los Angeles on the infrared composite image. Each of these 

images contains 4,158,720 pixels (1,520 rows x 2,736 columns). In reality, each pixel of 

a TM scene is 25 meters wide and 25 meters long and contains a unique combination of 7 

digital numbers from 7 various spectral bands. It is assumed that the information of 

spectral signatures for land use pattern characterization is hidden within these digital 

numbers. 

2.5 Land Use Characterization 

There are 5,241 land use polygons defined in the study area; Figure 9 shows the 

GIS vector-based polygon coverage. A summary of land use polygons in Santa Monica 

Bay is listed in Table 4. The global average DN of each land use pattern in the entire 

study area can be calculated by the following equation. 

N; Ii / 

DN, ~ 'f,dn~, (Eq.2) 

where DNi = global average DN for land use pattern i 

dnj = DN of a pixel j in the domain of land use pattern i 

Ni = total number of pixels of land use pattern i 
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To calculate the average DN, it is necessary to first overlay two GIS sources: the 

5MB land use coverage (5,244 vector polygons) in vector format and the TM scene 

(4,158,720 pixels) in raster grid format, and then perform spatial analyses. Several GIS 

zonal functions were used to calculate the global average DN values of each spectral 

band for each land use pattern in the whole study area. 

The next task is to characterize each land use polygon with DN. The average DN 

of a specific spectral band for a single land use polygon can be calculated by the 

following equation. 

(Eq.3) 

where DNkp = average DN of spectral band k in polygon p 

dnkj = DN of spectral band k for pixel j G is inside polygon p) 

Np = total number of pixels inside polygon p 

Again, the average DN of a specific spectral band for a specific polygon can be 

calculated by overlaying each land use polygon spatially with the corresponding TM 

bands by using GIS zonal functions. 
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2.6 Results and Discussion 

GIS zonal functions (Eq. 3) were used to calculate the global average DN values 

of each spectral band for each land use pattern in the whole study area. The results are 

presented in a 7 x 7 matrix (Table 5). 

After performing the GIS spatial analysis, the average DNs of each TM spectral 

band (seven total) of each land use polygon (5,244 total) were calculated and stored in a 7 

x 5,244 matrix. Figure 10 plots the average DNs (Band 1 and Band 2) of random­

sampled land use polygons among all polygons; the distributions of points for the 

different land uses at this point are almost indistinguishable. However, when the number 

of land uses is reduced from seven to two (Single and Multi-family), two distinct land use 

patterns start to emerge in Figure 11. They become even more separable when the 

average DNs of Band 3 and Band 4 are used in Figure 12. 

When the average DNs of Bands 1,2, and 3 for Single and Multi-family land uses 

are three-dimensionally plotted on Figure 13, the patterns themselves become more 

distinguishable. Similar to the increased detail between Figures 11 and 12, Figure 14 

shows what happens when the average DNs of Band 2,3, and 4 are plotted. 

Again, Figure 15 plots the average DNs of Commercial and Open land uses on 

Band 1 and Band 2, and Figure 16 plots the average DNs on Band 3 and Band 4. Based 

on this study, Commercial and Open land uses are made more discernible by using the 

average DNs of Band 3 and Band 4. And, Commercial and Open land uses are even most 

differentiable when plotted three-dimensionally with the average DNs of Band 2,3, and 4 

as in Figure 17. 
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2.7 Conclusion and Future Works 

The results achieved by this study provide a valuable database of information for 

future endeavors in the area. The integrated GIS is able to depict the land features of a 

watershed numerically, and the geographically related spectral signatures provide a great 

resource for other environmental researches in the Santa Monica Bay Watershed. 

Specifically, the usage of TM spectrum signatures facilitates the differentiation of land 

use patterns, and a combination of two or more spectral bands offers the potential to 

define spectraUy distinct land use patterns. 

The methods used to elicit these findings could become a new model for the field 

of storm water data mining in general. The numerical matrix of spectral signatures 

corresponding to each land use polygon is established in a format readily accessible to 

other statistical and soft computing based applications. Perhaps most significantly, the 

methodology utilized in this research, such as numerical spectral signature extraction 

from TM images and spatial statistical analysis performed by GIS, can be applied as a 

blueprint to the study of other watersheds. 
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Table 1 SCAG Land-Use Characteristics [Wong et aI., 1997] 

Land Use Land Use 
Impervious 

Runoff 
Pattern Code 

Surface Area 
Coefficient 

[%] 
Single-family 11 42 0.39 
Multi-family 12 68 0.58 
Commercial 20 92 0.74 
Public 30 80 0.66 
Light Industrial 40 91 0.74 
Other Urban 50 80 0.66 
Open 60 0 0.10 

Table 2 Description of the Thematic Mapper Image 
Projection Layer: UTM 10111 

Source: US Geological SurveylUC Santa Barbara 

Capture Method: LANDSAT on-board multi-spectral sensor 

Data Format: Geo-referenced bip.(raw binary image) 

Resolution: 25 meters 

File Size: Approximately 75 - 80 MB per band per scene 

Image Size 8540 (rows) x 9110 (columns) 

213.5 km (width) x 227.75 km (length) 

Data Updated: Data acquired in 1990 
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Table 3 Thematic Mapper Band/Color Combinations and Potential 
Applications 

Blue Green Red Composite Possible 
Applications 

1 2 3 Normal color 
Water sediment 
pattern 

2 3 4 Infrared 
Urban features 
recognition 

3 4 5 False color N/A* 

3 4 7 False color N/A* 

3 5 7 False color 
Vegetation 
enhancement 

4 5 7 False color N/A* 

1 4 7 False color N/A* 
* Not Available 

Table 4 Summary of the Santa Monica Bay Watershed Land Use Coverage 

Land Use Land Use Code 
Total Number 

Pattern of Polygons 

Single-family 11 1,297 
Multi-family 12 1,062 

Commercial 20 981 

Public 30 602 
Light 40 151 
Industrial 

Other Urban 50 271 

Open 60 877 
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Table 5 Global Average Digital Numbers (DNs) of All Seven Spectral Bands for 
SCAG Land Use Patterns 

Land Use Code 
Global Average DN 

Pattern Bandt Band2 Band3 Band4 BandS Band6 Band7 
Single-family 11 100 45 57 68 84 162 162 
Multi-family 12 112 50 65 61 79 167 167 

Commercial 20 116 52 67 54 75 169 169 

Public 30 109 49 64 67 87 164 164 
Light 40 120 55 72 59 90 170 170 Industrial 

Other Urban 50 116 55 75 65 106 168 168 

Open 60 83 35 45 58 94 164 164 
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Figure 1 
Santa Monica Bay (SMB) Vidnity Map 
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Figure 2 
Thematic Mapper Index 
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Figure 3 
Thematic Mapper Raw Image (Band 1) 
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Figure 4 

A Clipped Subset of the Raw Image 
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Figure 5 

Formation of Normal-color Multi-band Image 
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Figure 8 
Infrared Composite Image of West Los Angeles 
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Figure 9 
5MB Land Use Polygon Layer 
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Figure 10 Average DN for Band 1 and Band 2 
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Figure 12 Average DN ofSlngie and Multiple Family Land Use for Band 3 and Band 4 
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Figure 14 
Average DNs of Single and Multiple Family Polygons for Band 2, 3, and 4 
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Figure 17 
Average DNs of Commercial and Open Space Land Use for Band 2,3, and 4 
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3. Fuzzy Neural Networks and GIS for Multi-Spectral Land Use 
Classification 

Hsueh-hwa Lee, Michael K. Stenstrom, and Jiun-shiu Ma 

Abstract 

Until the appearance of geographic information system (GIS), the conversion of 

the spatially distributed remote sensed data into artificial neural network (ANN) input 

was an arduous, even insurmountable task. Characterizing the heterogeneous and 

spectrally complex systems required a level of technological sophistication that most 

researchers could not overcome; others remained daunted by the complexity of the data 

characterization process. 

Now, after decades of research stymied by the ineffectuality of traditional 

approaches, the urban land use patterns of the Santa Monica Bay (SMB) can at last be 

classified. The use of fuzzy neural networks together with a GIS circumvents the 

challenges mentioned above in two steps. First, GIS spatially transforms remote sensed 

data into proper network input representation. Then the network was trained to learn land 

use patterns from various space images and geomorphic data. This classification is then 

quantitatively evaluated in terms of mean square error, percent accuracy, and correlation 

coefficient. An input data sensitivity analysis was conducted to evaluate the significance 

of each of these input parameters to the output. 

The results elicited by these approaches support the main goal of this study: to 

develop a methodology for classifying 5MB land use polygons with both Landsat 

Thematic Mapper images and USGS DEM (Digital Elevation Model) data. Thematic 
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Mapper spectral Band 4 was found to be the most significant input parameter for most 

land use categories, and the Multiple Layer Perceptron network with a fuzzy logic pre­

processor outperformed all other classifiers. 

3.1 Introduction 

Over the past few years, ANN has gained enormous attention as a technique for 

classifying remote sensed data. These include: images acquired by the Landsat 

Multispectral Scanner (MSS) [Benediktsson et aI., 1990; Lee et ai., 1990], Landsat 

Thematic Mapper [Hepner et aI., 1990; Civco, 1993; Yoshida and Omatu, 1994; Moody 

et aI., 1996], and A VHRR [Gopal et aI., 1994; 1997] as well as other data sets. The 

majority of studies indicate that ANN classifiers perform better than conventional 

statistic algorithms, for they can incorporate ancillary data easily and their architecture is 

more flexible and thus can be easily optimized for best performance. Additionally, they 

are distribution-free, so that no prior knowledge about the statistical distributions of the 

classes of data sources is required [Benediktsson et aI., 1990]. 

Regarding classification, most ANN applications use a supervised and 

feedforword network structure with a back propagation algorithm [Key et aI., 1989; 

Hepner et aI., 1990; Benediktsson et aI., 1990; Kanellopoulos et ai., 1992]. While 

yielding a higher classification accuracy than other techniques, the computationally 

complex ANN classifiers can be very complex computationally and requires a lot of 

representative samples to elicit their performance. 
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Most investigators have constructed ANN applications without sufficient quantity 

or quality of data sets, and as well have lacked modem database management tools. In 

contrast, the approach adopted in this paper is the integration of the ANN model with 

spatial and spectral data stored and analyzed in GIS. 

3.2 Methodology 

3.2.1 Description. of Raw Data 

In addition to Thematic Mapper image and land use data as previously mentioned 

in Chapter 2, USGS 7.S-min DEM (Digital Elevation Model) data were used as ancillary 

data. The USGS 7.S-minute DEM data correspond to the USGS 1:24,000 and 1:25,000 

scale topographic quadrangle map series for all of the United States. The 7.S-min. DEM 

is composed of 30 x 30-meter pixels, each of which stores an elevation value. Figure 3.1 

presents the DEM of Santa Monica Bay. The average slope data (Figure 3.2) can be 

derived from DEM with GIS. 

3.2.2 Description. of the Artificial Neural Network Algorithm 

Based on biological nervous systems, ANNs are parallel systems built from 

massive processing elements (PEs). These PEs are interconnected by massive sets of 

weights, and it is this interconnectivity that defines the ANN's topography. The signals 

flowing on the connections are scaled by a weight matrix. The sum of all these 

connections produces an output, which is a nonlinear function of that sum [Principe et al., 

1999]. Because the PE is a processor with many different input connections and only one 
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output sent to other PEs, this output becomes either the system output or input of other 

PEs. 

The Multiple Layer Perceptron (MLP) network with a backpropagation learning 

algorithm was used in this study [Bruzzone et. al., 1997; Serpico and Roli, 1995; Hertz et 

al., 1991; Rao et ai., 1995]. The MLP network topology consists of multiple layers of 

PEs where only adjacent layers of PEs are connected. Input is processed from the input 

layer, and travels through successive hidden layers, eventually reaching the output layer. 

MLP is a feedforward network, in which the information flows in forward 

direction only. Figure 3.3 shows the topology of an MLP with one hidden layer. The PE 

is the sum of products through nonlinear activation function! Equation 1 describes the 

input (x) - output (y) relationship. 

(1) 

where D is the number of input PEs, Xi is input, Wj is weights, and b is a bias term. The 

activation function used is the hyperbolic tangent (tanh) function. 

f(net) = tanh( net) (2) 

The nonlinearity of the Tanh function is smooth. This is very important for network 

learning, because it means that its derivative exists. 

Back propagation, a learning algorithm based on training examples, was coupled 

with MLP at this point in the study. Thus, as is customary, it underwent supervised 

training with a finite number of pattern pairs consisting of both input and desired output 

patterns. The desired and computed outputs were compared first and subsequently a 

43 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

function of errors was calculated. Adjustment of connection weights between was 

performed next. This procedure was repeated with each sample data set assigned for 

training the network until the error is confined within a desired tolerance. Each cycle 

through all the training samples is called an epoch. 

The mean square error (MSE) is the sum of the square difference between the 

desired response and the computed output. It (J) can be calculated from Equation 3. 

INM21NM 
J=-"''''& =_",,,,fd _y \2 

2N ~f:t pi 2N ~f:t~ pi pj} 
(3) 

where N is the number of observations, & is an error between the desired response (d) and 

the computed output (y), p is the index over the patterns, and i is the index over the output 

PEs. 

The goal of the ANN training process is to present a sufficient number N of 

unique input-output training samples to search for the connection weights to minimize 

cost function (Mean Square Error), J. The back propagation algorithm minimizes J by 

gradient decent rules and updates the weight values according to the following equation: 

(4) 

where wij is the weight connecting the jth PE of the input layer and the ith PE of the 

output layer, 1] is the learning rate, and ~ is the local error of the ith PE. ~ is defined as 

(5) 

if PE is at the output. For all other layers, the local error is computed by summing all the 

contributions of the local errors in the output layer, scaled by the corresponding weights 
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o;(n) = y;(n) IOk wki(n) (6) 
k 

Momentum learning is an improvement to gradient-decent search. In momentum 

learning, the following equation is used for weight update: 

W if (n + 1) = W ij (n) + 1] OJ (n) x j (n ) + a( W ij (n) - W ij (n - 1) ) (7) 

where a is the momentum constant, usually between 0.5 and 0.9. The momentum term 

can speed up the learning process, keep the weight update process moving, and thereby 

not get stuck in a local minimum. 

The network training process should be stopped when the network has learned the 

patterns of all of the training samples. Recent developments in learning theory [Vapnik, 

1995] indicate that after a critical point, the MLP with backpropagation learning 

algorithm will continue to perform better in the training data sets, but the performance of 

testing data sets will begin to deteriorate. This phenomenon, called overtraining, can be 

tempered by the cross validation method. The training data sets are divided into two data 

sets: training and cross validation sets. The training process should stop when the error 

of the cross validation set begin to increase. Utilization of cross validation can facilitate 

MLP in reaching maximum generalization: how well the network performs with data not 

belonging to the training set. 

3.2.3 Input Sensitivity Study 
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The sensitivity analysis of MLP input parameters can be performed by fixing all 

the weights, and, while keeping the other inputs at their mean value, randomly perturbing 

each channel of the input around its mean value, and then measuring the change in the 

output (Principe et aI., 2000). The sensitivity for input k is can be expressed as 

(8) 

where Yip is the ith output obtained with the fixed weights for the pth pattern, 0 is the 

number of network outputs, P is the number of patterns, and a/ is the variance of the 

input perturbation. Input parameters with large sensitivities have a significant impact on 

the results and should be kept. In contrast, input parameters with smaller sensitivities 

have less impact on the result and can be discarded. This is critical for conserving 

computing resources and reducing the cost of data collection. 

3.2.4 Fuzzy Logic 

Because of the natural synergy between neural networks and fuzzy logic, the 

latter has become a major instrument in processing uncertainty in geographical databases 

[Bigus, 1996; Canters, 1997; Rao et ai., 1995]. Fuzzy logic, best known in the context of 

set membership, is concerned with imprecision, while neural networks deal with learning. 

First proposed by Dr. Lotfi Zadeh at the University of California at Berkley in 1965, 

fuzzy sets are data sets in which members are presented as ordered pairs, including 

information on degree of membership [Zadeh, 1994]. 
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In this project, triangle fuzzy functions were used to map raw input data onto a 

range of 0.0 and 1.0. The function/was shaped by calculating the global average and the 

standard deviation of each input parameter (Figure 3.4). Fuzzy sets for input parameters 

of all Thematic Mapper spectral bands in the Santa Monica Bay are listed in Figure 3.5(a­

g). Figure 3.6, for example, demonstrates how the memberships of seven land use 

categories can be obtained from a single pixel value input through the fuzzy function of 

Band 1. 

The most effective application of fuzzy logic in artificial neural networks is as a 

data pre-processer (Figure 3.7). This results in a multi-layer feedforward network with 

fuzzy logic in either the processing units or in the connection weight representations 

[Buckley and Hayashi, 1994]. By using intuitive fuzzy rules to represent knowledge and 

converting them into feedforward neural networks, it creates a way of imparting explicit 

domain knowledge to neural networks, without the need for training [Okada et aI., 1992]. 

The combination of neural networks and fuzzy logic results not only in better initial 

performance by the network, but also in faster learning. 

3.3 Resu.lts and Discussion 

3.3.1 Network Construction 

In the next stage of the project, a MLP with a back propagation learning algorithm 

was constructed (Figure 3.8). The input was first normalized from -1 to 1, and then it 

was summed up and sent to hidden layer through a hyperbolic tangent function. The 

output of the hidden layer was again summed up and delivered to an output layer through 
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another hyperbolic tangent function. The output of that layer was then compared with the 

desired output of the training samples and the errors were calculated. The weights 

connecting the layers were adjusted by the back propagations algorithms until the training 

stop criteria were satisfied. Table 3.1 lists all the input parameters used this study. 

When fuzzifier was used as an MLP pre-processor, each of the spectral band data 

set was fuzzified to one of seven land use fuzzy memberships. The coordinate data of the 

polygon centroid calculated geo-spatially with GIS were used as ancillary input. Four 

MLP networks and one Fuzzy Neural Network of different input were constructed; their 

characteristics are listed in Table 3.2. In the Fuzzy Neural Network (NeuroFuzzyl), the 

input of the seven spectral bands was fuzzified into 49 memberships (seven memberships 

based on land use categories for each of the seven spectral bands). 524 (l 0%), 1,310 

(25%), and 3,407 (65%) among a total of 5,241 land use polygons were randomly chosen 

as cross validation, testing, and training data (Figure 3.9). 

3.3.2 Classification Results 

The MSEs of the networks are listed in Table 3.3. The training results showed 

that the MSEs of both training and cross validation data decreased as the input increased. 

The cross validation MSEs of all except the NeuroFuzzyl networks reached their 

minimum at the end of training (l,OOOth epoch). For NeuroFuzzyl, the MLP Network 

with fuzzy logic pre-processor, the cross validation MSE minimized at the 498th epoch 

and started to increase slightly as the training process continued and as the training MSE 

continued to decrease. This observation is proof that the addition of fuzzy logic 
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processor can accelerate the training process when knowledge IS introduced to the 

network explicitly through the fuzzifier function. 

However, due to the larger network size, the neural fuzzy network can be very 

costly in terms of computing resources. The MSE is a valuable indicator, but there is no 

direct relationship between it and classification accuracy. The performance of a network 

is based on the accuracy of classification. The classification results (percent accuracy) 

for each land use categories of training, cross validation, and testing are listed in Table 

3.4(a), (b) and (c). 

Correlation coefficient, r, is another parameter to evaluate the network 

performance. Table 3.5 lists the,z of training, cross validation, and testing data. As with 

the inverse ratio of MSEs to input, in general, classification accuracy improves as the 

networks receive more training information--more input. The classification of training 

data outperformed those of cross validation and testing data. MLP 1 performed poorly 

with limited input information--Bands 1, 2, and 3. With the addition of spectral Bands 4, 

5, 6, and 7, MLP2 significantly increased the classification accuracy. MLP3, which 

incorporated geomorphic information (DEM and Slope) into the network, performed only 

slightly better than MLP2. The addition of coordinate information (X-Cen and Y-Cen) 

again enhanced the accuracy in MLP4. Finally, NeuroFuzzyl, equipped with the fuzzy 

pre-processor, increased the classification accuracy significantly. 

The true land use classification is compared with the output from the neural 

network in a table entitled Confusion Matrix. A perfect classification gives a confusion 

matrix with only the diagonal populated and all other entries zero. Table 3.6 presents the 
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Confusion Matrix of NeuroFuzzyl network. The classification results of Public, Light 

Industrial, and Other Urban land use polygons were less satisfying than other categories. 

This might have resulted from the fact that fewer training samples were selected in the 

training process for these three categories, and thus, the network weights were trained 

favorably to match other categories. 

Further complicating things, land use definitions themselves can be ambiguous. 

For instance, two land use polygons with similar physical and geomorphic features might 

be classified into two categories for political, economic, or taxational purposes. In Table 

3.6, most misclassified Multiple Family polygons were classified as Single Family land 

use, due to their similar spectral feature. The majority of misclassified Light Industrial 

land use polygons were classified as Commercial or Open land use. Most wrongfully 

identified Other Urban land use polygons were categorized to Open land use. The 

observation from the confusion matrix was consistent with the common sense used in 

land use definition. 

3.3.3 Sensitivity Analysis 

A sensitivity analysis of input parameters was performed based on MLP4 training 

data. The change of output was monitored while specific input was varied and all others 

were fixed at their mean values (Figure 3.10). Table 3.7 calculates the sensitivity of all 

input parameters for each land use category. In three of seven land use categories, 

Spectral Band 4 was found to be the most significant parameter as well as having a major 

impact on the others. Spectral Band 4, the so-called "Infrared Band," has proven very 

50 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

useful in urban feature identification in many other studies. The results of the sensitivity 

analysis from this study corroborate traditional spectral band classification theories. 

They also indicate that coordinate information had little impact on the output based on 

the sensitivity analysis, though experimental observation did demonstrate the 

performance improvement 

3.4 Conclu.sions and Fu.ture Research 

The main purpose of this investigation was the assessment of the effectiveness of 

multi-source data for land use characterization and the capabilities of fuzzy neural 

networks with GIS to efficiently exploit remote sensed data The results not only attest to 

the ability of MLPs with Fuzzy Logic pre-processors to classify urban land use patterns, 

they also reinforce certain research features, e.g., the importance of spectral data as well 

as other ancillary geomorphic and coordinate data in complex land use classification. 

Better classification performance could have been elicited with more complete input 

information. 

The results also indicate that the incorporation of fuzzy logic into neural networks 

greatly enhances the overall performance and yields satisfactory accuracy. The 

sensitivity analysis recognizes the most significant input parameters impacting the 

classification results. The clumsiness of the network to classify certain land use polygons 

is undesirable, but not surprising, given the complex nature of land use definitions. 

Increased network accuracy can be achieved by the introduction of economic and 

political input parameters. It should also be noted that, though many environmental and 

51 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

engmeenng studies rely heavily on current land use definitions to estimate 

imperviousness, concentrations of pollutants, and other parameters, it does not mean that 

these definitions are ideal for environmental or engineering purposes. 

This study focused on classification of existing land use polygons and the input 

variables were averaged in a polygon, but there are several areas in which it could be 

expanded. Future studies could adopt the Thematic Mapper image pixel (30 meters by 30 

meters) as operation units for study of the interesting features for each pixel. Pixel-level 

operations require much more computing resources. For example, the Santa Monica Bay 

study area is composed of only 5,241 land use polygons, but approximately 1.1 million 

image pixels. The pixel level operation could be a great challenge to neurocomputing. 

Future studies should include other important physical parameters as well: 

imperviousness, pollutant concentration, canopy cover, soil type, vegetation type, etc. 

The network should perform regression analysis in addition to classification tasks in 

order to estimate those interesting parameters with quantitative magnitude. It is very 

difficult to find proper training data sets for neural network regression analyses. 

Extensive field survey and lab analysis need to be conducted to gather sufficient data 

sets. 

Another issue mentioned earlier is related to the proper definition of land use. 

Current definitions might not be suitable for certain research interests. Unsupervised 

neural networks could be developed to discover valuable patterns hidden in multi­

dimensional space composed by input vectors. These new patterns are strictly related to 

only input data without any outside or pre-determined influence. 
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The methodology in this study can be applied to higher resolution data, such as 

aerial photo or IKONOS Satellite images. The resolution of the IKNONOS Satellite 

(launched in 1999) is one meter and the resolution of aerial photo could be less than an 

inch with a much higher cost. The higher spectral resolution images, coupled with other 

ancillary data and appropriate neural networks, will greatly improve the accuracy of land 

use classification. 
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Input Code 

Band I 

Band2 

Band3 

Band4 

Band5 

Band6 

Band7 

DEM 

Slope 

X-Cen 

Y-Cen 

Network 

MLPI 

MLP2 

MLP3 

MLP4 

NeuroFuzzyl 

Table3.l Summary of Input Data Used 
Description 

Average Pixel Value ofTM* Spectral Band 1 in a Land Use Polygon 

Average Pixel Value ofTM Spectral Band 2 in a Land Use Polygon 

Average Pixel Value ofTM Spectral Band 3 in a Land Use Polygon 

Average Pixel Value ofTM Spectral Band 4 in a Land Use Polygon 

Average Pixel Value ofTM Spectral Band 5 in a Land Use Polygon 

Average Pixel Value ofTM Spectral Band 6 in a Land Use Polygon 

Average Pixel Value ofTM Spectral Band 7 in a Land Use Polygon 

Average DEM in a Land Use Polygon 

Average Slope in a Land Use Polygon 

The X Coordinate of Centroid in a Land Use Polygon** 

The Y Coordinate of Centroid in a Land Use Polygon** 

Table 3.2 Lists of Networks Constructed 

No. of Input No. of Hidden 
Network Inputs 

Layer Pes Layer PEs 

3 7 Band!, Band2, Band3 

Unit 

Dimensionless 

Dimensionless 

Dimensionless 

Dimensionless 

Dimensionless 

Dimensionless 

Dimensionless 

Meter 

Degree 

Meter 

Meter 

Range 

53 - 188 

14 - 100 

10 - 143 

2 - 159 

0-217 

136 -198 

2 -140 

0-838 

0-48 

320,602 - 384,436 

3,753,925 - 3,786,702 

7 14 Bandl, Band2, Band3, Band4, Band5, Band6, Band7 

9 18 
Bandl, Band2, Band3, Band4, Band5, Band6, Band7, 
OEM, Slope 

11 20 
Bandl, Band2, Band3, Band4, Band5, Band6, Band7, 
OEM, Slope, X-Cen, Y -Cen 

53 41 
Memberships of Band 1 to 7 (7 x 7), OEM, Slope. x-
Cen, Y-Cen 

T bl 33 a e N kM etwor ean S iquare E rrors 
Training Data Cross Validation 

Network Minimum Minimum 
Epoe No.* 

MSE 
FinalMSE EpoeNo.* 

MSE 
Final MSE 

MLPI 1000 0.199 0.199 1000 0.196 0.196 

MLP2 1000 0.171 0.171 1000 0.168 0.168 

MLP3 1000 0.166 0.166 1000 0.167 0.167 

MLP4 1000 0.156 0.156 1000 0.160 0.160 

NeuroFuzzyl 1000 0.134 0.134 498 0.152 0.187 .. 
*Epoch when MSE IS at Its mmimum 
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Table 3.4(a) Testing Results on Training Data 
Land Use Categories (% Accuracy of Training Data) 

Network LUll- LUl2-
LU20- LU30-

LU40- LU50-
LU60-Single Multiple 

Commercial Public 
Light Other 

Open Family Family Industrial Urban 

MLPI 70 58 56 26 21 16 68 

MLP2 77 71 73 52 58 49 83 
MLP3 80 75 73 55 60 55 86 
MLP4 83 77 78 60 65 60 88 
NeuroFuzzy 1 91 80 86 70 71 66 91 

Table 3.4(b) Testing Results on Cross Validation Data 
Land Use Categories (% Accuracy of Cross Validation Data) 

Network LUll- LU12-
LU20- LU30-

LU40- LU50-
LU60-

Single Multiple 
Commercial Public 

Light Other 
Open 

Family Family Industrial Urban 

MLPI 69 64 56 20 15 15 56 

MLP2 69 79 67 40 46 44 75 

MLP3 75 79 70 54 54 52 80 

MLP4 77 82 75 58 62 52 85 

NeuroFuzzyl 88 83 80 66 62 59 89 

Table 3.4(c) Testing Results on Testing Data 
Land Use Categories (% Accuracy of Testing Data) 

Network LUll- LUl2-
LU20- LU30-

LU40- LU50-
LU60-

Single Multiple 
Commercial Public 

Light Other 
Open 

Family Family Industrial Urban 

MLPI 68 66 51 15 13 15 57 

MLP2 70 70 65 40 50 46 77 

MLP3 78 77 71 55 60 55 82 

MLP4 82 80 77 57 59 58 84 

NeuroFuzzyl 90 82 80 67 67 60 90 
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Table 3.5(a) Correlation of Training Data 
r2 

Network LUll- LUl2-
LU20- LU30-

LU40- LU50-
LU60-Single Multiple 

Commercial Public 
Light Other 

Open Family Family Industrial Urban 

MLPI 0.46 0.35 0.40 0.14 0.19 0.28 0.46 

MLP2 0.71 0.71 0.54 0.41 0.43 0041 0.75 
MLP3 0.74 0.76 0.66 0.52 0.57 0.51 0.76 
MLP4 0.81 0.82 0.79 0.55 0.61 0.55 0.79 

NeuroFuzzyl 0.87 0.85 0.82 0.61 0.65 0.66 0.89 

Table 3.5(b) Correlation of Cross Validation Data 

r 
Network LUll- LU12-

LU20- LU30-
LU40- LU50-

LU60-
Single Multiple 

Commercial Public 
Light Other 

Open 
Family Family Industrial Urban 

MLPI 0.48 0.35 0.44 0.19 0.18 0.19 0.50 

MLP2 0.71 0.69 0048 0.40 0.40 0.38 0.77 

MLP3 0.73 0.72 0.62 0.53 0.61 0.55 0.71 

MLP4 0.75 0.76 0.71 0.54 0.62 0.57 0.76 

NeuroFuzzyl 0.82 0.81 0.77 0.60 0.65 0.61 0.85 

Table 3.5(c) Correlation of Testing Data 

r2 

Network LUl1- LUl2-
LU20- LU30-

LU40- LU50-
LU60-

Single Multiple 
Commercial Public 

Light Other 
Open 

Family Family Industrial Urban 

MLPI 0.43 0.32 0.42 0.17 0.24 0.20 0.48 

MLP2 0.73 0.68 0.47 0.42 0.43 0041 0.77 

MLP3 0.78 0.71 0.50 0.43 0.51 0.44 0.79 

MLP4 0.81 0.79 0.69 0.52 0.61 0.55 0.79 

NeuroFuzzyl 0.85 0.82 0.79 0.59 0.63 0.59 0.85 
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Table 3.6(a) Confusion Matrix of Training Data (NeuroFuzzyl) 

LUll· LUI2-
LU20· LU30· 

LU40- LUSO-
LU60-

Predict / Desired Single Multiple 
Commercial Public 

Light Other 
Open 

Total 
Family Family Industrial Urban 

LUll-Single Family 777 73 18 5 3 10 29 915 

LUl2-Multiple Family 21 561 40 10 1 8 7 648 

LU20-Commercial 5 19 554 20 15 2 10 625 

LU30-Public 19 34 22 275 5 3 4 362 

LU40-Light Industrial 0 0 0 0 70 0 0 70 

LU50-0ther Urban 0 0 0 0 0 106 1 107 

LU60-0pen 30 11 12 83 5 31 508 680 

Total 852 698 646 393 99 160 559 3,407 

Table 3.6(b) Confusion Matrix of Cross Validation Data (NeuroFuzzyl) 

LUII- LUI2-
LU20- LU30-

LU40- LUSO-
LU60-

Predict / Desired Single Multiple 
Commercial Public 

Light Other 
Open 

Total 
Family Family Industrial Urban 

LUll-Single Family 117 12 8 3 0 1 2 143 

LUl2-Multiple Family 10 92 5 2 1 I 2 113 

LU20-Commercial 3 1 73 10 3 I 2 93 

LU30-Public I 4 3 44 0 0 3 55 

LU40-Light Industrial 0 0 0 0 8 0 0 8 

LUSO-Other Urban 0 0 0 0 0 16 0 16 

LU60-0pen 2 2 2 8 1 8 73 96 

Total 133 111 91 67 13 27 82 524 
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Table 3.6(c) Confusion Matrix of Testing Data (NeuroFuzzyl) 

LUII- LUl2-
LU20- LU30-

LU40- LU50-
LU60-Predict / Desired Single Multiple 

Commercial Public 
Light Other 

Open 
Total 

Family Family Industrial Urban 

LUll-Single Family 281 24 9 15 1 2 17 349 
LUl2-Multiple Family 13 207 5 11 I 2 4 243 

L U20-Commercial 3 10 195 10 9 1 2 230 
LU30-Public 4 11 27 95 I 9 I 148 

LU40-Light Industrial 0 0 0 0 26 0 0 26 

LU50-0ther Urban I 0 0 0 0 50 0 51 

LU60-0pen 10 1 8 11 1 20 212 263 

Total 312 253 244 142 39 84 236 1,310 

Table 3.7 Sensitivity of Input Parameters 

LUlI- LUI2-
LU20- LU30-

LU40- LU50-
LU60-

Sensitivity Single Multiple 
Commercial Public 

Light Other 
Open 

Family Family Industrial Urban 

Band I 0.0116 0.0078 0.0025 0.0006 0.0002 0.0003 0.0007 

Band2 0.0129 0.0116 0.0018 0.0004 0.0000 0.0004 0.0005 

Band3 0.0074 0.0088 0.0017 0.0005 0.0001 0.0003 0.0007 

Band4 0.0138 0.0057 0.0097 0.0010 0.0001 0.0008 0.0009 

BandS 0.0043 0.0091 0.0017 0.0007 0.0001 0.0001 0.0024 

Band6 0.0044 0.0093 0.0005 0.0004 0.0003 0.0002 0.0008 

Band7 0.0007 0.0114 0.0006 0.0029 0.0000 0.0003 0.0002 

X-Cen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Y-Cen 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

DEM 0.0002 0.0009 0.0001 0.0001 0.0000 0.0000 0.0000 

Slope 0.0079 0.0092 0.0023 0.0115 0.0001 0.0005 0.0003 

Most Sensible 
Band 4 Band 2 Band 4 Slope Band 6 Band 4 Band 5 

Input 
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Figure 3.3 MLP of One Hidden Layer with D Inputs and M Outputs 
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Figure 3.4 Triangular Fuzzy Function 
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4. Neural Network and GIS to Determine Pixel-level Urban Land 

Use for Thematic Mapper Imagery 

Hsueh-hwa Lee and Michael K. Stenstrom 

Abstract 

A study of pixel-levelland use classification was performed on the Ballona 

Wetlands and the surrounding areas in Southern California. The objective was to classify 

and characterize land use pixels with Landsat Thematic Mapper imagery and other 

remote sensed data at the pixel level, using both supervised and unsupervised artificial 

neural network algorithms. 

The study area contained 26,614 pixels, each with a 25 x 25 meter resolution. 

Among them, 2,661 (10%),6,654 (25%), and 17,299 (65%) pixels were randomly 

selected as cross validation, testing, and training data for the supervised networks. The 

results indicate that increasing input data types greatly enhances classification accuracy; 

the best overall classification accuracy reached 90%, 86%, and 85% for training, cross 

validation, and testing data sets respectively. 

Three unsupervised networks were constructed with four, seven, and nine clusters. These 

results showed few correlations between clustering and existing land use categories; 

however, when viewed side by side with high resolution aerial imagery, a different 

picture emerged: the clusters closely resembled the major land features they were 

intended to imitate. 
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4.1 Study Area and Land Use Data Processing 

The Banona Wetlands and the vicinity land use pixels, located between Marina 

Del Rey and Westchester Bluffs, were the focus of this study (Figure 1). The Wetlands, 

formed over the last several thousand years, and once encompassing an area of over 

2,000 acres, have been degraded to less than 190 acres in the past century, mainly due to 

urban development. However, as a filter of toxic wastes and pollutants from stormwater 

runoff reaching the Santa Monica Bay (SMB), the area is still considered the biggest 

ecosystem of Los Angeles County, and is invaluable to environmental research. 

The land use data came from the Southern California Association of Governments 

(SCAG) [AlS, 1996] and consisted of 271 land use polygons (Table 1) in seven pre­

defined land use categories (Figure 2). It was necessary to first break down the current 

land use polygons into 25 x 25 meter land use pixels (Figure 3), and then spatially 

overlay the latter with TM pixels of the same resolution. Some of the land use pixels 

with boundaries of different land use polygons can reflect more than one land use pattern 

(Figure 3). This heterogeneity can detract from the validity of the experiment. In fact, 

previous research [Canters, 1997] shows that these non-homogeneous pixels can 

significantly degrade the performance of supervised neural networks. Thus, data from 

training pixel statistics, on which network characterizations of each land use category are 

predicated, must be as homogeneous as possible in order to keep the resultant data 

consistently valid. 
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Degradation of the networks arises in two ways: in the probable event that one 

pixel contains more than one land use pattern, and secondly, in inaccuracies of the 

representative training data, critical to network learning. 

Traditional methods have been unable to remove the heterogeneous pixels and 

pick up representative training pixels efficiently. In this study, however, all 

heterogeneous pixels were removed by a GIS spatial operation, and only the remaining 

homogeneous pixels were used in classification (Figure 4). This is just one example of 

the ways in which the application of GIS can greatly improve research results. A total of 

26,614 homogeneous land use pixels were used their statistics are listed in Table 2. 

Seven Thematic Mapper spectral bands were used for classification (Figure 5). Each land 

use pixel can be associated with seven unique pixel values from spectral bands one to 

seven. These seven pixel values constitute the "spectral signature" of the land use pixels. 

4.2 Methodology 

This study made use of both supervised and unsupervised learning algorithms. It 

IS important to understand the difference between supervised classification and 

unsupervised clustering: clustering is the process of grouping sets of input that are spatial 

neighbors. Classification involves labeling the input data via external criteria [Principe et 

at, 2000]. 

In supervised learning, these external samples were used as desired output for 

specific input. The network was given a learning algorithm to follow and calculate new 

connection weights that would elicit the desired output. In the unsupervised case, a 
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learning algorithm was sometimes given, but desired outputs were never given. Because 

similar units of input cause similar responses, data fed into the unsupervised network got 

clustered together [Rao et ai., 1995]. Both the Multiple Layer Perceptron (MLP) with 

supervised learning (Figure 6) and the Kohonen Self-Organization Map (SOM) with 

unsupervised learning algorithms were used here. MLP was mentioned previously in 

Chapter 3 and SOM is discussed below. 

Kohonen SOMs are feed-forward networks that use an unsupervised training 

algorithm. This process is caned self-organization, meaning self-adaptation of a network. 

The closest possible response to a given input signal is generated and other input then 

cluster together. The connection weights are modified through different iterations of the 

network operation, and the network creates the closest possible set of output for the given 

input [Rao et aI., 1995]. 

The Kohonen SOM output generally is organized in a one- or two-dimensional 

neighborhood of PEs (Figure 7). The weights between the input and output perform an 

association between themselves and the input. The PE whose weight vector is closest to 

the present input wins the competition. This is called competitive learning, which is 

unsupervised, and extracts information from the input patterns alone, without the need for 

a desired response. The change in weight vectors can be presented in the following 

equation. 

Wi (n + 1) = Wi (n) + Ai j' (n)rJ(n)(x(n) - WI (n)) (1) 
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where Ai,i* is a neighborhood function centered at the winning PE. Typically, both the 

neighborhood and the step size change with the iteration number. The neighborhood 

function A is normally a Gaussian function: 

(2) 

The Kohonen SOM is able to preserve the structure of the input space relatively 

well. The number of PEs is chosen experimentally. The number of output PEs affects 

the accuracy of the mapping and the training time. Increasing the number of PEs 

increases the resolution of the map, but also dramatically increases the training time. 

4.3 Results and Discussion 

4.3.1 Network Construction 

This study constructed three MLPs with a back-propagation learning algorithm 

and three Kohonen SOM networks. Table 3 lists all the input parameters. The 

coordinate data calculated geo-spatially with GIS were used as ancillary input. The 

characteristics of each MLP network with different input data are listed in Table 4. A 

total of2,661 (10%),6,654 (25%), and 17,299 (65%) among 26,614 land use pixels were 

randomly chosen as cross validation, testing, and training data (Figure 8). For the 

unsupervised learning, 3 SOMs with various numbers of output clusters were built (Table 

5). 

81 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

4.3.2 Classification Results 

The MSEs of training and cross validation data are listed in Table 6. The training 

results show that both training and cross validation MSEs decreased as more input 

information was provided to the MLP. However, the real performance of a MLP network 

is based on the accuracy of classification, not only the MSEs. The classification results 

(percent accuracy) for each land use categories of training, cross validation, and testing 

are listed in Table 7(a), (b) and (c). Correlation coefficients, r, another parameter to 

evaluate the network performance, are listed in Table 8. As noted above, the 

classification accuracy increases--from MLPI to MLP3--as the networks receive more 

input data. Thus, the incorporation of coordinate information with pixel values as inputs 

to MLP3 improves the network performance significantly. 

Confusion Matrices, which compare expected classification results with the 

network output, are presented in Table 9. Figure 9 depicts the confusion matrix of P­

MLP3 network training data classification in percentages. A perfect classification gives a 

confusion matrix with only the diagonal populated and all other entries zero. The 

classifications of Commercial, Public, and Light Industrial land use pixels 

underperformed that in other categories. These three land use categories also happened 

to have the least number of pixels included in the study area. Thus the network weights 

are trained favorably to match other categories due to the lack of training pixels of these 

three. 

It should also be noted that the introduction of coordinate information to MLP3 

greatly enhanced the classification accuracy. This information, though not directly 
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related to the SCAG land use categories, provided neighborhood information to the 

network. The neighborhood information improved the classification process by adding 

the land use information of adjacent pixels to the network, and it can be rationalized that 

a pixel tends to fall into the same land use categories with those of its surrounding 

training pixels. 

Figures 10, 11, and 12 present the unsupervised clustering of P-SOMI (four 

clusters), P-SOM2 (seven clusters), and P-SOM3 (nine clusters), together with the 

existing SCAG land use polygons. Clearly, the clustering processes have reached a 

certain degree of homogeneity inside each land use polygon. Table 10 lists the confusion 

matrices ofP-SOMI, 2, and 3 for the SCAG land use pixels. In Figure 13, a comparison 

ofP-SOMI clustering and an aerial photo are presented side-by-side. Though no obvious 

correlations could be drawn from Table lO's confusion matrices, almost all major land 

features in the aerial photo were somewhat represented in the clustering process from 

landsat pixels. 

4.4 Conclusions and Future Research 

The results in this paper confirm that ANNs and GIS together with remote sensed 

data can be valuable tools for enhancing pixel-levelland use classifications. The MLP 

performance improved as more input data types and samples were provided to the 

networks. Once again, GIS proved a great tool in the analysis of spatial data as well as in 

the visual presentation of the results. 
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As noted in Chapter 3, there is some inherent uncertainty and fuzziness in the 

current SCAG land use definition. The definition of land use is very generic in its nature. 

F or instance, two spectrally identical pixels might be categorized into two different 

categories due to socioeconomic variance. Thus, the spectral signature concept might be 

useful in classifying static natural or artificial land features. However, it cannot describe 

the underlying human activities used to define some of the land use categories. This 

paper also performed unsupervised SOM analysis, which, although it appeared to have 

few associations with the SCAG land use categories, depicted the land features vividly. 

The planned future expansion of this study involves methodology described in 

this paper: better imagery, and a different approach to defining the existing land use 

definition. Recent improvements in sensor technology, computation speed, and 

processing algorithms have drastically increased the availability of the imagery. More 

affordable and higher resolution datasets are now accessible to the general public due to a 

very competitive remote sensing marketplace. For example, I-meter resolution aerial 

imagery for the whole Los Angeles County is available for around $10,000 --a very 

affordable cost. Better resolution definitely leads to better recognition. However, more 

computing resources are required as I-meter imagery requires 625 times as much storage 

space as the 25-meter landsat TM imagery does. 

Future study should also involve more than just correlating the input to the 

generic SCAG land use; the spectral signature information, along with other 

socioeconomic information should be used to quantitatively define a new land use. The 

current land use categories and boundaries are significantly influenced by census 
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tractslblocks, and the assessor's parcel layer. It is believed that a new spectral pixel 

based land use definition will better serve hydrological modeling and environmental 

monitoring. However, more research activities of integrating spectral signatures with 

hydrological and environmental models need to be conducted in order to evaluate the 

correlations of spectral signatures and desired model outputs. 
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Table 1 Summary of Land Use Polygons 

Number of 
Land Use Category Code 

Polygons 

Single Family 11 23 

Multiple Family 12 63 

Commercial 20 52 

Public 30 31 

Light Industrial 40 12 

Other Urban 50 16 

Open 60 74 

Total 271 

Table 2 Summary of Land Use Pixels 
Number of 

Land Use Category Code 
Pixels 

Single Family 11 7,589 

Multiple Family 12 2,560 

Commercial 20 1,733 

Public 30 1,436 

Light Industrial 40 1,213 

Other Urban 50 2,955 

Open 60 9,128 

Total 26,614 
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Table-3 Summary ofInput Data Used 
Input Code Description Unit Range 

Bandl Pixel Value ofTM* Spectral Band 1 Dimensionless 5 -255 

Band2 Pixel Value ofTM Spectral Band 2 Dimensionless 0-255 

Band3 Pixel Value ofTM Spectral Band 3 Dimensionless 0-255 

Band4 Pixel Value ofTM Spectral Band 4 Dimensionless 0-255 

BandS Pixel Value ofTM Spectral Band 5 Dimensionless 0-255 

Band6 Pixel Value ofTM Spectral Band 6 Dimensionless 134-190 

Band7 Pixel Value ofTM Spectral Band 7 Dimensionless 0-255 

X-Cen The X Coordinate of Centroid ** in a Pixel Meter 365,234 - 368,534 

Y-Cen The Y Coordinate of Centroid ** in a Pixel Meter 3,756,968 - 3,762,625 

* Landsat Thematic Mapper 
** Based on NAD1983 UTM (Zone llN) Projection with Units (Meters) 

Network 

P-MLPI 

P-MLP2 

P-MLP3 

Network 

P-SOMI 

P-SOM2 

P-SOM3 

Table-4 Lists of MLP Networks 

No. ofInput No. of Hidden 
Layer PEs Layer PEs Network Inputs 

3 

7 

9 

No. of Input 
Layer PEs 

3 

7 

9 

7 

14 

18 

Band 1 , Band2, Band3 
Band I , Band2, Band3, Band4, Band5, 
Band6,Band7 
Band I , Band2, Band3, Band4, Band5, 
Band6, Band7, X-Cen, Y-Cen 

Table-5 Lists of SOM Networks 

No. of Output 
Network Inputs 

Clusters 

7 
Bandl, Band2, Band3, Band4, BandS, 
Band6, Band7 

14 
BandI, Band2, Band3, Band4, BandS, 
Band6, Band7 

18 
BandI, Band2, Band3, Band4, BandS, 
Band6, Band7 
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a e- ewor ean )guare rrors T bl 6 MLP N t k M S E 
Training Data Cross Validation 

Network Epoc Minimum Final Epoc Minimum Final 
No.* MSE MSE No.* MSE MSE 

P-MLPI 1000 0.208 0.208 1000 0.208 0.208 
P-MLP2 1000 0.125 0.125 1000 0.127 0.127 
P-MLP3 I 1000 0.088 0.088 1000 0.085 0.085 
*Epoch when MSE is at its minimum 

Network 

P-MLPI 
P-MLP2 
P-MLP3 

Network 

P-MLPI 
P-MLP2 
P-MLP3 

Network 

P-MLPI 
P-MLP2 
P-MLP3 

Table-7(al Testing Results on Training Data 
Land Use Categories (% Accuracy of Training Datal 

LUll- LU12-
LU30-

LU40- LU50-
Single M It' 1 LU20- Light Other u Ip e . 

Public 
Family F '1 Commercial Industrial Urban amI y 

73 65 70 73 70 75 
85 78 76 76 75 82 
92 85 81 82 80 88 

Table-7(b) Testing Results on Cross Validation Data 
Land Use Categories {% Accuracy of Training Data) 

LUl1- LU12-
LU30-

LU40- LU50-
Single M If 1 LU20- Light Other u Ip e . 

Public 
Family F '1 Commercial Industrial Urban amI y 

70 64 70 69 69 73 
82 72 73 73 75 80 
90 80 78 80 76 85 

Table-7(c) Testing Results on Testing Data 
Land Use Categories {% Accuracy of Training Data) 

LUll- LUl.2- LU20- LU30- LU40- LU50-
Single Multiple C . I Publl'c Light Other 
Family Family ommerCIa Industrial Urban 

69 67 70 71 63 70 
81 73 71 76 76 78 
91 85 79 68 78 87 

88 

LU60-
Open 

75 
92 
96 

LU60-
Open 

75 
85 
90 

LU60-
Open 

72 
86 
92 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table-8(a) Correlation of Training Data 
r2 

Network LUl1- LUI2-
LU30-

LU40- LU50-
LU60-

Single M If 1 LU20- Light Other u Ip e . 
Public Open 

Family F '1 CommercIal Industrial Urban aml y 
P-MLPI 0.55 0.48 0.47 0.31 0.35 0.51 0.58 
P-MLP2 0.72 0.70 0.68 0.78 0.75 0.69 0.79 
P-MLP3 0.77 0.77 0.82 0.88 0.91 0.83 0.92 

Table-8(b) Correlation of Cross Validation Data 
r2 

Network LUll- LUI2-
LU30-

LU40- LU50-
LU60-

Single 
. LU20-

Light Other MultIple . 
Public Open 

Family F '1 CommerCIal Industrial Urban amI y 
P-MLPI 0.53 0.44 0.42 0.32 0.38 0.60 0.55 
P-MLP2 0.75 0.73 0.65 0.75 0.77 0.70 0.75 
P-MLP3 0.75 0.75 0.80 0.87 0.88 0.81 0.89 

Table-8(c) Correlation of Testing Data 
r2 

Network LUll- LU12-
LU30-

LU40- LU50-
LU60-

Single M If I LU20- Light Other u Ip e . 
Public Open 

Family F '1 CommerCIal Industrial Urban amlY 
P-MLPI 0.54 0.46 0.41 0.35 0.35 0.56 0.58 
P-MLP2 0.69 0.70 0.66 0.70 0.70 0.65 0.78 
P-MLP3 0.73 0.72 0.80 0.84 0.88 0.78 0.86 
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Table-9(a) Confusion Matrix of Training Data (P-MLP3) 
LUlI- LUl2-

LU20- LU30-
LU40- LU50-

LU60-
Predict I Desired Single Multiple 

Commercial Public 
Light Other 

Open 
Total 

Family Family Industrial Urban 

LUll-Single Family 4,558 142 40 30 84 59 117 5,030 

LUl2-Multiple Family 205 1,406 20 19 2 10 11 1,673 

LU20-Commercial 36 30 902 32 39 27 12 1,078 

LU30-Public 50 37 30 769 13 7 20 926 
LU40-Light Industrial 8 19 81 28 632 27 18 813 
LU50-0ther Urban 0 0 20 4 0 1,673 60 1,757 

LU60-0pen 97 20 20 56 20 98 5,711 6,022 

Total 4,954 1,654 l,ll3 938 790 1,901 5,949 17,299 

Table-9(b) Confusion Matrix of Cross Validation Data (P-MLP3) 
LUIl- LUl2-

LU20- LU30-
LU40- LU50-

LU60-
Predict I Desired Single Multiple 

Commercial Public 
Light Other 

Open 
Total 

Family Family Industrial Urban 

LUll-Single Family 722 27 10 11 12 12 20 814 

LUl2-Multiple Family 55 213 8 4 1 1 15 297 

LU20-Commercial 10 14 126 4 6 4 14 178 

LU30-Public 6 7 7 106 1 1 15 143 

LU40-Light Industrial 0 2 4 4 94 5 1 110 

LU50-0ther Urban 0 0 0 1 0 263 22 286 

LU60-0pen 9 2 7 3 10 23 779 833 

Total 802 265 162 133 124 309 866 2,661 

Table-9(c) Confusion Matrix of Testing Data (P-MLP3) 
LUll- LU12-

LU20- LU30-
LU40- LU50-

LU60-
Predict I Desired Single Multiple 

Commercial Public 
Light Other 

Open 
Total 

Family Family Industrial Urban 

LUll-Single Family 1,668 39 19 145 13 21 42 1,947 

LUl2-Multiple Family 80 545 3 7 I 2 35 673 

LU20-Commercial 18 17 362 10 4 17 33 461 

LU30-Public 27 16 13 137 6 2 40 241 

LU40-Light Industrial 0 11 29 22 233 10 2 307 

LU50-0ther Urban 0 0 0 2 0 646 25 673 

LU60-0pen 40 13 32 42 42 47 2,136 2,352 

Total 1,833 641 458 365 299 745 2,313 6,654 

90 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Legend 

o SantaMonlcaBey 

o Study Area 

Figure 1 
Marina Del Rey and Santa Monica Bay 
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Figure 6 MUltiple Layer Pen.puon Network 

Figure 7 
Kohonen Self Organization Map Network 
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legend 
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5. Stormwater Runoff Simulation in Malibu Creek Watershed Using a 

Deterministic Hydrological Model and Artificial Neural Networks 

Hsueh-hwa Lee and Michael K. Stenstrom 

Abstract 

This paper makes use of a deterministic hydrologic model and artificial neural 

networks (ANN) to simulate the average daily rainfall-runoff processes of the Malibu 

Creek Watershed (MCW). The introduction of GIS as a spatial data management and 

analyzing tool had the effect of making the spatially distributed parameters required by 

this model more accurate and representative than ever before. The result was a 

successful prediction of the general trend of daily discharge hydro graphs after the model 

was calibrated with observed discharge gauging data from Los Angeles County 

Department of Public Works (LADPW). 

Additionally, with only precipitation data as input, several ANNs with different 

architectures were constructed and trained to simulate solely wet-weather daily 

discharges. This simulation demonstrated a high correlation on training data sets, and an 

acceptable correlation on testing data sets. Though limited to wet-weather conditions, it 

presented a performance comparable to that of the deterministic model. 

The data layers collected at the site and the results they elicited offer insight into 

the complexities of MCW. The computing methodology and data management models 

developed in this study could be readily implemented in any other major watersheds. 
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5.1 Introdu.ction 

Modeling stormwater runoff quantity is integral to watershed management, the 

designing of flood control facilities, and regional planning. The response of a watershed 

to precipitation is influenced by many heterogeneously distributed parameters [Zhang, 

2000], such as geomorphic features (topology, vegetation, and soil type) and climatic 

parameters (precipitation, temperature, etc.). There have been a great number of 

successful applications in the field of hydrological modeling in recent times, including 

both traditional hydrological modeling and soft computing methodologies. Most 

traditional models relate temporal and spatial precipitation history to stream flowrate data 

at a specific point of interest, and have been performed on different scales. 

Different scales require different types of models since it is well known that the 

nature of hydrological process varies greatly along these scales. They include micro­

scale, ranging from one cm2 to one km2
, meso-scale from one km2 to 100,000 km2

, 

macro-scale from 100,000 km2 up to global scale [Becker et aI., 1987]. Most watershed­

wide models are in meso-scale and are deterministic. A deterministic hydrological model 

describes the cause-effect relations stemming from the known features of physical system 

under study, and thus the modeling processes are considered free of random variation. 

The structure of a scientifically based deterministic hydrological model should be 

independent with spatial variance, and only the model parameters should be calibrated 

according to different study areas [Schultz, 1994]. 

Since the 1990s, the geographic information system (GIS) has become a powerful 

tool for hydrological modeling. GIS is particularly suited for meso-scale models because 
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of the spatial resolutions as well as its consistency in stream and watershed delineation 

using USGS Digital Elevation Models (DEMs) [Maidment, 2002]. Furthermore, GIS can 

be used to assemble the crucial water resource information required by deterministic 

models: land use, soil cover, gauging station, and other climatic variables. Likewise, soft 

computing using artificial neural networks (ANN) has also emerged as a significant tool 

for hydrological modeling in the past decade since is best suited to describe the complex 

and nonlinear nature of precipitation-runoff processes. 

There is a large number of publications recently concerning ANN applications of 

rainfall-runoff processes [Abrahart at al., 1997, 2000; Dawson et aI., 1998; 

Lachtermacher et aI., 1994; Mason et al., 1996; Smith et ai., 1995; Zhang et aI., 2000]. 

Most of these studies, however, assume a uniform distribution of precipitation over the 

study area based on insufficient data sets of watershed studies, and use them as network 

input. Conversely, the objective of this project is to collect, quality-check, and integrate 

extensive spatial data sets with GIS, and then perform both traditional deterministic 

hydrological modeling and ANN simulation on the Malibu Creek Watershed (MCW). 

After brief discussions of the background theories, the procedures used to pre­

process the deterministic model inputs are discussed in detail. Afterward, a comparison 

of the results of both approaches is presented. Finally, based on the model output, 

conclusions are made along with the implications for the future study. 
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5.2 Watershed Description 

The Malibu Creek Watershed (MCW), selected as the study area, is significant as 

one of the largest discrete watersheds draining to the Santa Monica Bay. MCW 

encompasses approximately 109 square miles, and is located in the northwestern end of 

Los Angeles County and the southeastern end of Ventura County (Figure 5.1). It has a 

Mediterranean-type climate: dry summer and moist winter periods [PCR, 2001]. The 

watershed is comprised of all or parts of the cities of Agoura Hills, Calabasas, Malibu, 

Thousand Oaks, Westlake Village, unincorporated Los Angeles County, and Ventura 

County. 

5.3 Deterministic Hydrological Modeling 

This study used the HEC Hydrologic Modeling System (HEC-HMS), developed 

by the u.S. Army Corps of Engineers Hydrologic Engineering Center (HEC). HEC­

HMS is a computer program that simulates both natural and controlled precipitation­

runoff and routing processes [USACE(a), 2000]. The followings are some of the HEC­

HMS components used to simulated rainfall-runoff process ofMWC in this study: 

• HEC Geospatial Hydrologic Modeling Extension (HEC-GeoHMS) was used to 

preprocess GIS data and delineate the watershed. 

• Meteorologic components were used to store precipitation and discharge data, and 

to properly represent spatial variations of precipitation. 

• Loss models were used to estimate the volume of runoff. 
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• Direct runoff models were used to estimate stream daily discharge. 

• Calibration component was used to calibrate model output based on observed 

discharge gauging data. 

All the models used in HMS were deterministic. Figure 5.2 presents the 

schematics of the HEC-HMS representation and Table 5.1 lists the major parameters used 

in this study. 

5.3.1 HEC Geo-HMS Processing 

HEC-GeoHMS is a GIS module used to develop a number of hydrologic 

modeling input. HEC-GeoHMS analyzes digital terrain information and transforms the 

drainage paths and watershed boundaries into a hydrologic data structure that represents 

the watershed response to precipitation. This GIS module featured terrain-preprocessing 

capabilities to construct a hydrologic schematic of the watershed at stream gages, 

hydraulic structures, and other control points. The hydrologic results from HEC­

GeoHMS were then imported by the Hydrologic Modeling System, HEC-HMS, at which 

point the simulation is performed [USACE(b), 2000]. 

In order to reach maximum modeling accuracy, the USGS 10-meter Digital 

Elevation Model (DEM) was used in this paper as Geo-HMS terrain input data. The 

USGS DEM data files are digital representations of cartographic information in a raster 

format, and consist of a sampled array of elevations for a number of ground positions at 

regularly spaced intervals. The 7.5- and I5-minute DEMs were included in the large-
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scale category while 2-arc-second DEMs fell within the intermediate scale category, and 

I-degree DEMs fell within the small-scale category. 

A master DEM required for this study was created by spatially merging several 

units of USGS 24K quads from the topographic quadrangle map series for all of the 

United States and its territories (Figure 5.3). It contains all often 24K quads: Calabasas, 

Camarillo, Canoga Park, Malibu Beach, Newbury Park, Point Dume, Point Mugu, 

Thousand Oal(S, Topanga, and Triunfo Pass. The DEM terrain data was analyzed and 

processed to determine flow path and watershed delineation. Figure 5.4 schematically 

presents the HEC-GeoHMS processing ofMCW. 

The HEC-GeoHMS processing has defined 17 sub-watersheds using GeoHMS 

processing (Figure 5.5). Table 5.2 lists the major parameters calculated for each sub­

watershed. 

5.3.2 Meteorologic Model 

This study used historical daily precipitation data from Los Angeles County 

Department of Public Works (LADPW) to simulate MCW runoff of five seasons, 1997 to 

2001. It should be noted that in this study a specific season is defined as October 1 to 

September 30. Thus, Season 1997 starts on October 1, 1996, and ends on September 30, 

1997. Five precipitation stations (Table 5.3) were selected to provide model input 

because they are geographically closer to the study area and they contain sufficient data 

sets to cover the time frame. 
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This paper adopted lnverse-distance-square method, which relies on the notation 

of "nodes" positioned within a watershed to calculate adequate spatial resolution of 

precipitation. The node of each sub-watershed can be represented by the centroid. 

Weight factors were computed and assigned to the gauges in inverse proportion to the 

square of the distance from the centroid to the gauge. The weighting factors could be 

calculated by: 

(Equation 1) 

in which w!f = the weighting factor of the jth gauge to the centroid of the ith sub-

watershed; d!f = the distance of the jth precipitation gauge to the centroid of the ith sub-

watershed; N = total number of precipitation gauges used in the calculation. The node 

hyetograph at time 1 could then be calculated as: 

N 

P, (I) = I W ik Pk (I) (Equation 2) 
k;j 

where P/t) = the precipitation of sub-watershed i at time I; Wik = the weighting factor of 

the kth gauge to the ith sub-watershed; Pdt) = precipitation measured at gauge k at time t. 

There are a total of five precipitation gauges and seventeen centroids (Figure 5.6) 

for all sub-watersheds. Therefore, 75 separate distances between precipitation stations 

and sub-watershed centroids of Equation 5.1 were calculated first (Table 5.4) in order to 

determine the weight factor of each station to each specific sub-watershed. Figure 5.7 
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shows the schematics of deriving a synthetic hyetograph of sub-watershed No. 17 from 

hyetographs of all precipitation gauges using the Inverse-distance-square method. 

5.3.3 Loss Model 

The Initial and Constant-rate Loss Model was used in this study. In this model, it 

is assumed that the maximum potential precipitation rate, Ic (inch/hour), is constant 

throughout an event, and initial loss, Ia (inch), is added to the model in order to reflect 

interception and depression loss. The model considers that only precipitation on the 

pervious surface area is subject to loss. Thus, the model requires three sets of model 

input:!c, la, and imperviousness (Imp in %). 

The constant loss rate,!c, can be considered the ultimate infiltration capacity of 

the soil. The U.S. Department of Agriculture Natural Resources Conservation Service 

(NRCS), (formerly the Soil Conservation Service (SCS)), classifies soil based on 

infiltration capacity [SCS, 1986]; Table 5.5 lists the estimated infiltration corresponding 

to SCS categories [Skaggs et aI., 1982]. The State Soil Geographic (STATSGO) Data 

Base ofNRCS [NRCS, 1994] was used to calculate !c. 

Figure 5.8 shows the STATSGO GIS soil map labeled with Map Unit ID (MUID) 

of MCW. In STATSGO, each map unit can have multiple components and each 

component can have multiple layers. In order to calculate the average!c of each sub­

watershed, the SCS soil categories in Table 5.5 must be quantified. The STATSGO layer 

was thus rasterized to a surface with the constant loss rate as the pixel value; a surface 

calculation was subsequently performed to calculate the average constant loss rate of 
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each sub-watershed (Figure 5.9). Similarly, a surface of the average imperviousness 

(Figure 5.10) for each sub-watershed can be calculated by using an imperviousness GIS 

layer from Los Angeles County Department of Public Works [LADPW, 1991]. 

la, initial loss, represents the maximum precipitation depth falling on the 

watershed without generating runoff. It is influenced by the degree of saturation of the 

watershed, watershed terrain, land use, soil type, and soil treatment. USACE (1994) 

suggests that 0.1-0.2 inches be used. This study adopted 0.1 inch initial loss rate, and 

later used it as a calibration parameter. 

5.3.4 Direct Runoff Model 

This paper employed kinematic-wave model to simulate overland flow. The 

kinematic-wave model represents the watershed with an open channel, and can be applied 

to the equations that simulate unsteady shallow flow in an open channel [USACE, 1970]. 

A kinematic-wave watershed is comprised of the following four components: overland 

flow planes, sub-collector channels, collector channels, and the main channel. This study 

installed the minimum configuration, which included one overland flow plane and the 

main channel for each sub-watershed. The parameters required for main channel were 

calculated by HEC-GeoHMS. 

In overland flow planes, all three required parameters, typical length, 

representative slope, and overlandllow roughness coefficients, can be elicited by GIS 

functions. In order to calculate typical length, first a distance surface to the longest flow 

channel in GIS grid format was generated, and GIS zonal functions were used afterward 
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to calculate the average distance to longest flow channel of each sub-watershed (Figure 

5.11). 

Representative slope can be calculated by averaging the slope surface derived 

from the USGS lO-meter DEM for each sub-watershed (Figure 5.12). The overland-flow 

roughness coefficient is influenced solely by over-land surface types, and USACE (1998) 

suggests that it be estimated by using Table 5.6. However, due to the unavailability of 

geographic data using the USACE surface definitions in Table 5.6, a correlation between 

the existing land use layer definition from the Southern California Association of 

Governments and the surface description of Table 5.6 had to be established to calculate 

the average roughness of each sub-watershed. Table 5.7 assumes the correlation between 

the corresponding USACE overland flow surface categories and overland roughness for 

each SCAG land use definition. Again,a surface of roughness was created and the 

average roughness of each sub-watershed was then calculated (Figure 5.13). 

5.3.5 Model Calibration 

The goal of HEC-HMS calibration is to identify reasonable model parameters that 

generate the best fit with observed hydro-meteorological data. Only one discharge gauge, 

LADPW stream gauging station F-130R, named "Malibu Creek below Cold Creek," is 

available in the study area. This gauge is located 0.2 miles downstream of Cold Creek, 

and 4.5 miles upstream of the MCW outlet (Figure 5.14). The total drainage area to this 

station is 104.96 square miles--approximately 96% of the whole watershed tributary to 
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the MCW outlet. Therefore, the observed discharge data of this station was used to 

calibrate the outflow simulated by HEC-HMS at the outlet. 

The HEC-HMS calibration model computes an index of the goodness-of-fit to 

compare a computed hydrograph to the observed hydro graph. HEC-HMS searches for 

calibration parameters that yield the best values of an objective function. The goal is to 

minimize the objective functions with reasonable calibration parameters. The objective 

function used in this study is the Peak-weighted Mean Square Error method [USACE, 

1998]. The Peak-weighted Mean Square Error objective function can be represented by: 

ZMSE = { :Q[ ~(q,(i) -q,(i)' ( q'~q:(~;::)an)) Jr (Equation 3) 

in which ZMSE = objective function of the Peak-weighted Mean Square Error method; NQ 

= number of computed hydro graph ordinates; qo(t) = observed flows; qlt) = calculated 

flows, computed with a selected set of model parameters; qo(mean) = mean of observed 

flows. This function compares all ordinates, squaring differences, and it weights the 

squared differences. This method is an implicit measure of comparison of the peak 

discharges, runoff volumes, and times of peak of the simulated and observed 

hydro graphs. 

HEC-HMS uses the trial-and-error approach to find the set(s) of parameters that 

will minimize the objective function. Initial and Constant loss rates were selected as the 

calibration parameters in this study. A universal scale factor of each parameter was used 

to calculate the error. HEC-HMS changes the parameters and reiterates the process until 

the error becomes acceptable. Univariate-gradient search algorithm was used in this 
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study. Detailed information of the search algorithm is described in HEC-HMS Technical 

Reference Manual [USACE, 2000] 

5.4 Artificial Neural Network Simulation 

The daily runoff hydro graph is affected by many parameters, including 

precipitation, temperature, land features, but precipitation is the primary influencing 

variable. In order to obtain the maximum forecasting potential from a limited number of 

data sets, lags of rainfall data were used to provide short-term recollection of previous 

events and antecedent conditions. Thus, the daily runoff hydro graph of MCW in this 

ANN simulation can be symbolically expressed as: 

Q(t) = f(R I , RI _ 1 , •••••••• ) (Equation 4) 

where Rt is the daily rainfall of day "t", and Rt-l is the daily rainfall of day "t-l". 

There were five feedforward multilayer perception (MLP) networks constructed 

with the backpropagation learning algorithm. Table 5.8 lists the input, output, and data 

sets assigned to each one of the five MLP networks. The centroid of the whole MCW 

was calculated and, again, Inverse-distance-square method was used to incorporate the 

five precipitation stations to calculate the effective precipitation for the whole watershed. 

In total, there were 1,825 (from Oct 1, 1996 to Sep 30, 200 1) observed daily discharges 

from the gauging data. However, due the great variance of dry- and wet-weather flow 

patterns, only wet-weather daily discharges were studied in the ANN simulation. Figure 

5.15 presents all of the 549 daily discharge points selected in the ANN simulation. 
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5.5 Results 

5.5.1 HEC-HMS Simulation 

Figure 5.16 presents the hyetograph and hydro graphs of the HEC-HMS simulated, 

calibrated, and observed hydrographs. The simulated (without calibration) runoff 

discharge hydro graph seemed to follow the general trend of the observed hydrograph 

from gauging data. However, it is obvious that the simulated peak discharges of 

precipitation events were off the observed ones quite a bit. 

The calibration process greatly enhanced the prediction. As an example, Figure 

5.17 plots the hydro graph of the 1998 wet season. It should also be noted that in Figures 

5.16 and 5.17, both calibrated and non-calibrated (simulated) HEC-HMS results over­

calculated the peak discharge and under-estimated the dry weather base flow. Figure 

5.18 plots a time series of residuals, differences between HEC-HMS calibrated and 

observed flows. Although the HEC-HMS calibrated hydro graph effectively simulated 

the base flow early in the season, it under-estimated the base flow later in the season. 

Table 5.9 summarizes the residuals by years and Table 5.10 lists the optimized scale 

factors of loss rates and the values of final objective functions from the calibration 

process. 

5.5.2 ANN Simulation 

Table 5.11 lists the mmlmum Mean Square Error (MSE) and correlation 

coefficients, r, of each network. Almost an networks had minimal MSEs, and the 

training data sets generated reasonable correlation coefficients. However, not all the 
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networks presented convincing correlations on the testing data sets. In Network Q-MLPI 

to Q-MLP4, only one season of daily discharge data was selected as testing data, and the 

rest of the (four seasonal discharge) data sets were used for network training. In Network 

Q-MLPS, all training, testing, and cross validation data sets were selected randomly. The 

correlation coefficient of testing data of Q-MLPS was the highest. The lower correlations 

of Q-MLPI to Q-MLP4 testing data suggest insufficient training data sets and that the 

networks had not been generalized enough to simulate any specific season of daily 

discharges. 

On the other hand, for Network Q-MLPS, the randomized training data sets 

vividly generalized network connection weights, and yielded a higher correlation of the 

testing data sets. Figures S.l9(a) to S.19(e) compare the simulated and observed daily 

discharges of all the networks. It should be noted that though randomizing data sets led 

to a higher correlation coefficient in Q-MLPS, they did not predict peak flow as well as 

the other networks did. The additions of more antecedent precipitation data to Q-MLP3 

and Q-MLP4 did not really improve the network correlation coefficients. In Table S.12, 

a sensitivity study conducted on Q-MLP4 training data sets indicated that Rt-3, Rt-4, and 

Rt-5 have little impact in predicting the discharges. 

The observed discharge data show that from November 25, 1997 to December 9, 

1997, almost all precipitation gauges recorded significant rainfalls, but no corresponding 

reasonable discharge hydro graph was recorded (Figure S.20). In order to maintain the 

integrity of the LADPW monitoring data, the discharge data have not been manually 

rationalized or altered in any of the HEC-HMS and ANN installations. However, it 
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should be pointed out that by removing daily discharge points of this potentially 

problematic period from the training data sets, the correlation coefficient of Q-MLP3 was 

improved from 0.90 to 0.92, and the correlation coefficient of Q-MLP4 increased from 

0.84 to 0.88. 

5.5.3 HEC-HMS and ANN Comparisons 

Figure 5.21(a) illustrates a comparison ofHEC-HMS calibrated simulation and Q­

MLP4 network output for all five seasons, 1997 to 2001. Both simulations generally 

followed the trend of observed discharges. Results for other networks are similar and are 

not included here for the sake of brevity. Figures 5.21(b) and 5.21(c) show the 

comparisons of the wet seasons of 1997 and 1998. In Figure 5.21(b), both HEC-HMS 

and Q-MLP4 simulations predicted the first several major precipitation events before 

January 1997. The calibrated HEC-HMS simulation outperformed Q-MLP4 in predicting 

peak discharges of events. However, both simulations underestimated the discharges 

beginning mid-January 1997. In Figure 5 .21 (c), while HEC-HMS overestimated several 

eventful peak discharges, Q-MLP4 provided a better overall replication of the observed 

hydro graph. 

5.6 Conclusions 

This study developed a GIS for the Malibu Creek Watershed with multiple layers, 

once again proving the effectiveness of the GIS in managing hydrological data and 

leveraging traditional modeling. A full-scale HEC-HMS simulation was conducted using 
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data collected by GIS, and spatial analyses were performed to delineate and calculate 

several major model input parameters. 17 distinct sub-watersheds were delineated after 

HEC-GeoHMS terrain processing. Five seasons of precipitation data from five LADPW 

precipitation gauges were used to calculate the daily discharge for the entire watershed. 

One set of LADPW discharge gauge data near Malibu Creek outlet was used for 

calibration, and detailed hydrological analysis results were obtained for all for all of the 

17 sub-watersheds. The established GIS database and methodology of GIS grid (raster)­

based calculation provide a great resource for future studies ofMCW. 

Five Artificial Neural Networks with the backpropagation learning algorithm 

were constructed as alternatives of HEC-HMS to simulate only wet-weather daily 

discharges. Instead of using all the parameters required by HEC-HMS, only precipitation 

data were used for ANN simulation. The results indicated that for certain rainfall events, 

ANN simulation could perform at least as well as the HEM-HMS simulation. 

This study also addressed the critical issue of source data quality and how it 

influences project results. Faulty observations have the potential to deteriorate the 

calibration and training process. More historical meteorological data will greatly enhance 

the HEC-HMS calibration and ANN training. The modeling effort itselfwill not lead to a 

better understanding of the MCW precipitation-runoff process; it is the quality of input 

data that establish the bottom line of performance. Thus, in addition to improvement in 

computing methodologies, future researches should incorporate even more observation 

data obtained from an ever better monitoring approach. 
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Table 5.1 Major Parameters Used in HEC-HMS 
Parameters Usage Data Source 
Precipitation Data Model Input LADPW Precipitation Gauges 
Constant Loss Rate Runoff Volume NRCS ST A TSGO Soil Database 
Imperviousness Calculation LADPW Imperviousness GIS Layer 
Typical Length Processing USGS DEM 
Roughness 

SCAG Land Use Layer and USACE Tables Coefficients Direct Runoff 
Slope Calculation Processing USGS DEM 
Longest Flow 

Processing USGS DEM 
Length 
Runoff Disahrge 

Model Calibration LADPW Malibu Canyon Runoff Gauge 
Data 

Table 5.2 Major GeoHMS Parameters of Sub-watersheds 

Watershed 
Longest 

Downstream 
Upstream Slope at 

Area 
Id 

Name Flow 
Elevation (ft) 

Elevation End 
(me) 

Lengtb (ft) (ft) Point 
1 RlOWI0 62,917 505 2207 2.7% 19.67 
2 R20W20 27,540 830 2362 5.6% 6.20 
3 R30W30 42,093 830 2260 3.4% 8.58 
4 R40W40 39,560 803 1794 2.5% 6.67 
5 R50W50 28,464 846 2349 5.3% 6.07 
6 R60W60 28,597 951 2522 5.5% 7.41 
7 R70W70 3,584 803 879 2.1% 0.09 
8 R80W80 40,592 951 2972 5.0% 9.23 
9 R90W90 27,427 846 1604 2.8% 5.51 
10 R100WI00 21,322 715 2020 6.1% 3.44 
11 RIlOWII0 39,837 715 2099 3.5% 11.27 
12 R120W120 27,892 505 1581 3.9% 4.60 

13 R130W130 31,070 485 2782 7.4% 5.68 
14 R140W140 11,719 433 1683 10.7% 2.31 
15 R150W150 3,013 485 882 13.2% 0.07 
16 R160W160 34,966 433 1633 3.4% 8.15 
17 Rl70W170 26,952 0 1482 5.5% 4.61 
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Table 5.3 
Station 

m 
434 

735H 
435 

1264 

306H 

Table 5.4 

Los Angeles County Department of Public Works Precipitation Gauges 

Station Locati.on Latitude Longitude 
Elevation 

Type 
(it) 

AGOURA 34-08-08 118-45-08 800 Automatic 
BELL CANYON 34-11-40 118-39-23 895 Automatic 
MONTENIDO 34-04-41 118-41-35 600 Automatic 
CALABASAS 

34-08-25 118-42-35 800 Manual LANDFILL 
ZUMABEACH 34-01-15 118-49-42 15 Manual 

Distance (ft)-matrix between Precipitation Gauges and Centroids of Sub­
watersheds 

Precipitation Gauge Agoura 
Ben Calabasas Monte Zuma 

Canyon Landfill Nnido Beach 
Watershed m 434 

735M 1264 435 306M 

1 16,387 19,692 7,490 30,409 62,709 

2 14,825 33,478 20,853 41,383 59,303 
3 14,656 27,759 16,708 38,795 61,598 

4 15,466 39,624 24,721 43,001 55,560 

5 27,525 60,226 40,395 50,268 42,543 
6 45,339 75,873 58,020 68,081 51,575 

7 3,175 36,278 14,839 30,716 48,995 

8 45,050 78,494 58,025 64,454 42,085 

9 21,869 50,213 33,505 48,343 51,199 
10 4,373 39,155 14,656 24,761 43,663 

n 16,885 52,837 29,352 35,085 34,551 
12 21,048 31,124 11,855 12,838 54,111 

13 12,662 44,824 19,364 19,825 37,028 
14 22,831 43,241 20,470 5,348 42,777 

15 17,839 40,960 16,795 10,049 42,567 

16 28,742 35,533 19,873 10,103 55,679 
17 33,970 52,093 31,320 8,408 42,121 
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Table 5.5 SCS Soil Groups and Corresponding Loss Rates [SCS, 1986] 
Range of 

SoH Group Description Loss Rates 
(in/hI') 

A Deep sand, deep loess, aggregated silts 0.30-0.45 
B Shallow loess, sandy loam 0.15-0.30 

C Clay loams, shallow sandy loam, soils low in 0.05-0.15 
organic contents, and soils usually high in day 

D Soils that swell significantly when wet, heavy 0.00-0.05 
plastic clays, and certain saline soils 

Table 5.6 Overland-flow Roughness Coefficients [USACE, 1998] 

Code Surface Description 
Roughness 
Coefficient 

01 
Smooth surfaces (concrete, asphalt, gravel, or bare 

0.01l 
soil) 

02 Fallow (no residue) 0.050 

03 
Cultivated soils (l): Residue cover less than or 

0.060 
equal to 20% 

04 
Cultivated soils (2): Residue cover greater than 

0.170 
20% 

05 Grass (1): Short grass prairie 0.150 

Grass (2): Dense grasses, induding species such as 
06 weeping love grass, bluegrass, buffalo grass, and 0.240 

native grass mixture 

07 Grass (3): Bermudagrass 0.410 

08 Range 0.130 

09 Woods (1): Light underbrush 0.400 

10 Woods (2): Dense underbrush 0.800 

124 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Table 5.7 Overland-flow Roughness and SCAG Land Use Correlation Table 
SCAG 
Land 

Land Use Description Corresponding Surface Roughness 
Use Coefficient 

Code 
1111 High Density Single Family Residential Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
Ul2 Low Density Single Family Residential Range 0.130 
1121 Mixed Multi-Family Residential Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1122 Duplexes and Triplexes Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1123 
Low-Rise Apartments Condominiums and 

Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 Townhouses 

U24 
Medium-Rise Apartments and 

Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 Condominiums 

1125 
High-Rise Apartments and 

Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 Condominiums 

1131 
Trailer Parks and Mobile Home Courts 

Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 Low Density 

1132 
Mobile Home Courts and Subdivisions Range 0.130 Low Density 

1140 Mixed Residential Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 
1151 Rural Residential High Density Range 0.130 
1152 Rural Residential Low Density Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1211 Low- and Medium-Rise Major Office Use Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1212 High-Rise Major Office Use Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1221 Regional Shopping Mall Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1222 Retail Centers Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1223 Modem Strip Development Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1224 Older Strip Development Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1231 Commercial Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 
1232 Commercial Recreation Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1233 Hotels and Motesl Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1234 Attended Pay Public Parking Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1241 Government Offices Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1242 Police and Sheriff Stations Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1243 Fire Stations Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1244 Major Medical Health Care Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1245 Religious Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1246 Other Public Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1247 Non-Attended Public Parking Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1251 Correctional Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1252 Special Care Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1253 Other Special Use Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1261 Pre-SchoolslDay CAre Centers Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1262 Elementary Schools Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1263 Junior or Intermediate High Schools Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1264 Senior High Schools Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1265 Colleges and Universities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1266 Trade Schools Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1271 Military Base (Built-up Area) Smooth Surface (concrete, asphalt, gravel, or base soil) O.OIl 
1272 Military Vacant Area Range 0.l30 

1311 Manufacturing and Assembly Smooth Surface (concrete, asphalt, gravel, or base soil) O.OIl 
1312 Motion Picture Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1314 Research and Development Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 

1323 Open Storage Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1325 Chemical Processing Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1331 
Mineral Extration - Other Than Oil and Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
Gas 

1340 Wholesaling and Warehousing Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

125 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1411 Airports Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 
1412 Railroads Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1413 Freeways and Major Roads Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1414 Park and Ride Lots Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1415 Bus Terminals and Yards Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1416 Truck Terminals Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
14211 Communication Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1431 Electrical Power Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1432 Solid Waste Disposal Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1433 Liquid Waste Disposal Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1434 Water Storage Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1435 Natural Gas and Petroleum Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1436 Water Transfer Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 

1437 Improved Flood Waterways and 
Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 Structures 

1440 Maintenance Yards Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
1450 Mixed Transportation Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
14611 Mixed Transportation and Utility Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
151111 Mixed Commercial and Industrial Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
161111 Mixed Urban Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
171111 Under Construction Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
18111 golf Courses Grass: Bermudagrass 0.410 
18211 Local Parks and Recreation Grass: Bermudagrass 0.410 
1830 Regional Parks and Recreation Grass: short grass prairie 0.150 
1832 Regional Park Undeveloped Grass: dense grasses 0.240 
1840 Cemeteries Grass: short grass prairie 0.150 
1860 Specimen Gardens and Arboreta Grass: dense grasses 0.240 
1870 Beach Parks Grass: short grass prairie 0.150 
1880 Other Open Space and Recreation Grass: short grass prairie 0.150 
19110 Urban Vacant Grass: dense grasses 0.240 

2110 Irrigated Cropland and Improved Pasture Cultivated soils (residue cover> 20%) 0.170 Land 

2120 Non-Irrigated Cropland and Improved Fallow (no residue) 0.050 Pasture Land 
2200 Orchards and Vineyards Woods: Dense underbrush 0.800 
2300 Nurseries Cultivated soils (residue cover <= 20%) 0.060 
2500 Poultry Operations Smooth Surface (concrete, asphalt, gravel, or base soil) 0.011 
2600 Other Agriculture Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 
2700 Horse Ranches Range 0.130 
3100 Vacant Undifferentiated Fallow (no residue) 0.050 

3200 Abandoned Orchards and Vineyards Woods: Light underbrush 0.400 

3300 Vacant With Limited Improvements Fallow (no residue) 0.050 
4100 Water Undifferentiated Smooth Surface (concrete, asphalt, gravel, or base soil) 0.01l 
4300 Marina Water Facilities Smooth Surface (concrete, asphalt, gravel, or base soil) O.oI1 
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Table 5.8 MLP Networks Used in This Study 
Netwrok Input Data Training Data Testing Data 

Q-MLPI Rio Rt- h Rt_2 Seasons 1997, 1998, 1999,2000 Season 2001 

Q-MLP2 Rb Rr-h Rt-z Seasons 1998, 1999,2000,2001 Season 1997 

Q-MLP3 Rt, Rr-b Rr-z, Rr-3, Rt-4' Rr-s Seasons 1997, 1998, 1999,2000 Season 2001 

Q-MLP4 Rb Rt_\, Rr-z, RI_3, Rt-4, Rr-s Seasons 1998, 1999,2000,2001 Season 1997 

Q-MLP5 Rb RI_\, RI_2, Rt-3, Rt-4, Rt_5 
Data Sets have been randomized. 10% for cross 
validation, 25% for testing, and 65% for training 

Table 5.9 Residuals of the Seasonal Runoff Volume and Peak Discharge 
Volume (acAt) Peak Discharge (cfs) 

Season 
Calibrated Observed Difference (%) Calibrated Observed 

Difference 
(%) 

1997 8,664 31,102 -72.14% 602.40 807.00 -25.35% 
1998 54,786 81,494 -32.77% 4,425.90 4,420.00 0.13% 
1999 5,544 7,418 -25.26% 292.06 134.00 117.96% 
2000 8,553 16,401 -47.85% 938.47 701.00 33.88% 
2001 18,914 38,824 -51.28% 3,508.30 3,950.00 -11.18% 

Table 5.10 Optimized Scale Factors and Values of Objective Function 

Season 
Optimized Scale Factor 

Objective Function 
Initial Loss Rate Constant Loss Rate 

1997 0.97 6.68 163.80 

1998 0.88 1.72 555.90 
1999 0.98 3.75 38.70 

2000 1.50 9.70 13.50 
2001 1.30 3.58 1,285.10 
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Table 5.11 ANN Simulation Results 

Network MSE 
r 

Training Testing Cross Validation 
Q-MLPI 0.0046 0.82 0.67 N/A 
Q-MLP2 0.0058 0.84 0.54 N/A 
Q-MLP3 0.0027 0.90 0.51 N/A 
Q-MLP4 0.0060 0.84 0.62 N/A 
Q-MLP5 0.0043 0.79 0.84 0.84 .. 

MSE: MInImum Mean Square Error; r: correlation coefficient 

Table 5.12 Sensitivity Analysis of Q-MLP4 Network 
Parameter Sensitivity 

RI 57.13 

R t - l 24.24 

R t-2 8.84 

R t-3 6.30 

R t-4 5.35 

R t-5 3.06 
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Figure 5.4 
HEC-GeoHMS Processing 
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Figure 5.16 Hydrograph ofHEC-HMS Simulated, Calibrated, and 
Observed Discharges 
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6 CONCLUSIONS 

Using the unprecedented technological combination of GIS and ANN algorithms, 

this study was able to elicit new information from new data and old, thereby not only 

answering its immediate questions, but also securing topics of future research endeavors. 

Something that was already known, but could be now used to increased benefit was that 

of all the parameters, land use information played a critical role in monitoring stormwater 

runoff quantity and quality. 

It is known that the performance of any modeling analysis is ultimately 

constrained by the availability and quality of its input data. Until now, spatial data 

relating to stormwater systems have been partiCUlarly prone to uncertainty and 

inaccuracy. Thus, one of the major accomplishments of this research was to establish a 

comprehensive spatial database for the study area. The process involves discovering 

reliable data sources, making intensive personal contacts, acquiring affordable or public 

data legitimately under license agreement, understanding constraints of data usage, and 

transforming data into desirable geospatial formats. The stormwater related data gathered 

in this study will be timeless and useful for future research activities, no matter how the 

technology has advanced. 

The land use classification was studied first. The Landsat thematic mapper 

imagery was used as a relative inexpensive data source to investigate more costly land 

use information. Then GIS was used to extract the spectral signature of each SCAG land 

use category in the Santa Monica Bay area. Based on the results of several scattered 
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plots of land use patterns on average pixel values, it was decided that pixel values of 

various spectral bands would help differentiate the land use patterns. 

Five artificial neural network classifiers including one with an input fuzzifier 

were built to distinguish existing SCAG land use polygons. The network inputs included 

pixel values of seven landsat spectral bands, digital elevations, average slopes, and 

coordinate information. Generally speaking, networks with more inputs generated better 

classification accuracies. The addition of a fuzzifier to the network also enhanced the 

network performance. Sensitivity studies were performed to evaluate the efficiency of 

each parameter to classify each land use pattern. 

Another three supervised neural network classifiers and three unsupervised 

networks were constructed to study the land use pixels of the Ballona Wetland and its 

vicinity areas. Again supervised networks performed better with more inputs. The 

results also indicated that pixel classification is more accurate than polygon-level 

classification. It should also be noted that pixel-level classifications required a lot more 

computing resources. With proper configuration, the unsupervised networks 

successfully clustered pixels to somewhat imitate certain major land features. 

Finally a conventional deterministic hydrological model was developed to 

simulate the daily discharge hydro graph of the Malibu Creek Watershed. In the mean 

time, artificial neural network approach was also applied as a comparison to the 

deterministic model. The results revealed that though with a much less data quantity 

requirement, neural network simulation could still marginally outperform the 

deterministic model in predicting certain specific output parameters. It was also 

155 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

discussed that how a potential problematic precipitation data set could influence the final 

model predictions. 
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7 FUTURE WORK 

Technology undergoes constant improvement, thus engendering the same in those 

fields of study that thrive on the immediacy and precision that it offers. Fields such as 

stormwater have experienced an exhilarating rate of growth-of budgets, of projects, of 

interest-and of possibilities. 

Specifically, dramatic improvements in sensor technology, computational speed, 

and processing algorithms have stimulated interest and serious professional research in 

the area of data mining for stormwater systems. GIS technology is also experiencing a 

boom in applicability. Evolved initially as a vector based system working with points, 

lines, and polygons, modern GIS technology incorporates powerful raster computing 

capabilities into its more conventional use. 

The research approaches proposed in Chapters Two, Three, and Four should be 

applied to higher resolution and better quality imagery, such as aerial and IKONOS 

satellite imagery. 

Efforts to integrate GIS with stormwater models should continue and new 

research should be pursued. Instead of using pixel numbers extracted from satellite 

imagery to indirectly predict model input parameters, such as imperviousness from land 

use information, it is suggested that soft computing methodology be used to directly 

calculate model inputs, or even model outputs. However, the direct approach requires a 

lot of reliable training data sets from fields in order to yield convincing network learning 

results. 
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At the mean time, temporal data modeling in GIS is getting more attention today 

than ever before. Adding the time element to GIS raises some intriguing questions and 

present new difficulties. Nevertheless, across the nation, on-going efforts to create a GIS 

include the dimension of time. Thus, future research activities to incorporate temporal 

remote sensed data and land use information to monitor stormwater system would be 

very promising. 
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