# An Assessment of Water Technology: Using Ghana As A Case Study





Michelle Thompson, UCLA Doctoral Student Institute of the Environment and Sustainability mthomp@g.ucla.edu

#### Agenda

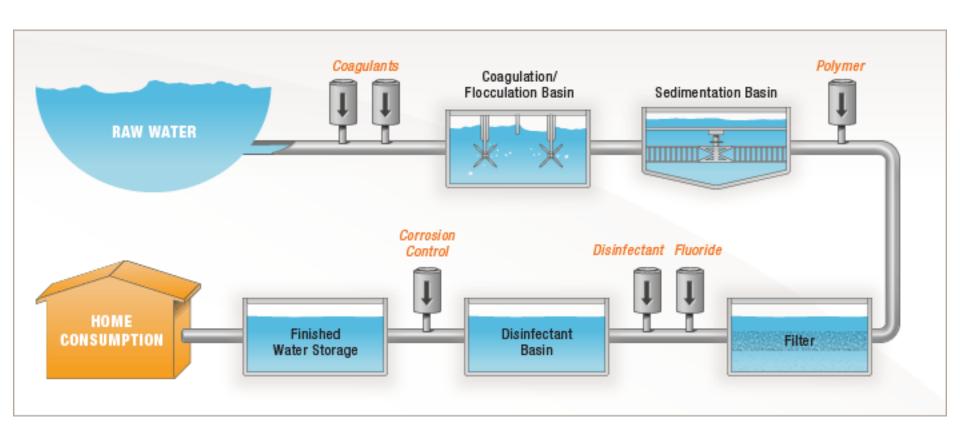
- Challenge
- Existing water conditions in Ghana
- Current water filtration technology
- Evaluation Tool Criteria
- Recommendations

#### The Challenge

 How do you systematically determine what is the best technology to use in a particular scenario?

### **Existing Water Conditions in Ghana**




# **Existing Water Conditions**



Source: Adam Wylie


#### **Current On- Site Water Options**

#### Water treatment plant



#### Ground water wells





# **Personal Water Options**

#### Water satchet

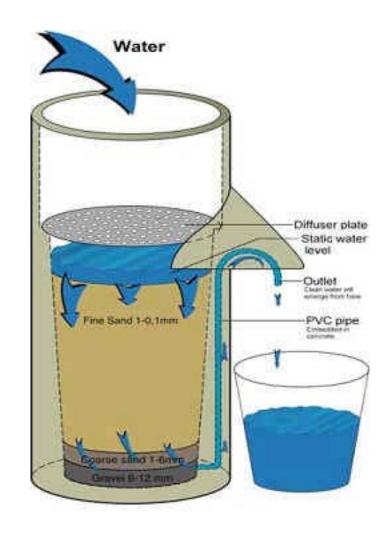


#### Kosim filter

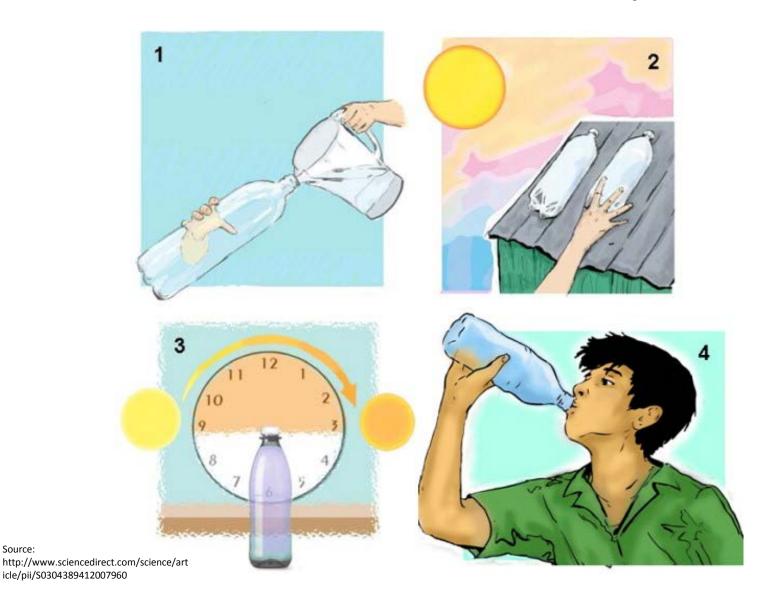




Source: http://web.mit.edu/newsoffice/2010/itwhome-water-0429.html


### Lifestraw®






Source: http://eartheasy.com/lifestraw

#### Slow sand filter



# Solar water disinfection (SODIS)



#### Criteria

- 1. Effectiveness
- 2. Cost
- 3. Energy Consumption
- 4. Environmental Impacts
- 5. Waste generated

#### **Decision Tool & Findings**

Table 1. Assessment of Personal and On-Site Water Technologies

| Treatment technologies           | Capital<br>Cost <sup>a</sup>               | Operating<br>cost (per<br>liter) <sup>b</sup> | <b>Effectiveness</b> <sup>c</sup> | Energy<br>Consumption <sup>d</sup> | Environmental<br>Impacts <sup>e</sup> | Waste<br>Generated <sup>f</sup> | Advantages                                                                            | Disadvantages                                                                                                          |
|----------------------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------|------------------------------------|---------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Bottled water                    | \$0                                        | \$1                                           | High                              | Manufacturing,<br>transportation   | Low                                   | Plastic<br>bottles              | Individual use                                                                        | Temporary solution,<br>possibly delaying long<br>term solution, potential<br>supply problem                            |
| Ceramic clay<br>pot "kosim"      | \$14                                       | \$0                                           | High                              | None                               | Low                                   | Exhausted sorbents              | Low cost, on-site<br>alternative,<br>potentially useful<br>for families or<br>groups. | Variable quality of<br>locally-made filters,<br>Viruses, no residual<br>protection,<br>recontamination,<br>maintenance |
| Groundwater<br>Well <sup>s</sup> | Highly<br>variable<br>and site<br>specific | \$0                                           | High                              | None after drilling                | Low                                   | None                            | Potential long-<br>term solution                                                      | Maintenance and management required, easily contamination                                                              |
| LifeStraw®                       | \$0                                        | 0.015                                         | High                              | None                               | Low                                   | Litter                          | Contains no chemicals, portable                                                       | Limited to 1600 liters;<br>one-person only;<br>recurring cost; may<br>delay long term solution                         |
| Cloth filter                     | \$5-10                                     | \$0                                           | Low                               | None                               | Low                                   | None                            | Individual use or<br>household level,<br>affordable                                   | Microbe removal varies by pore size                                                                                    |

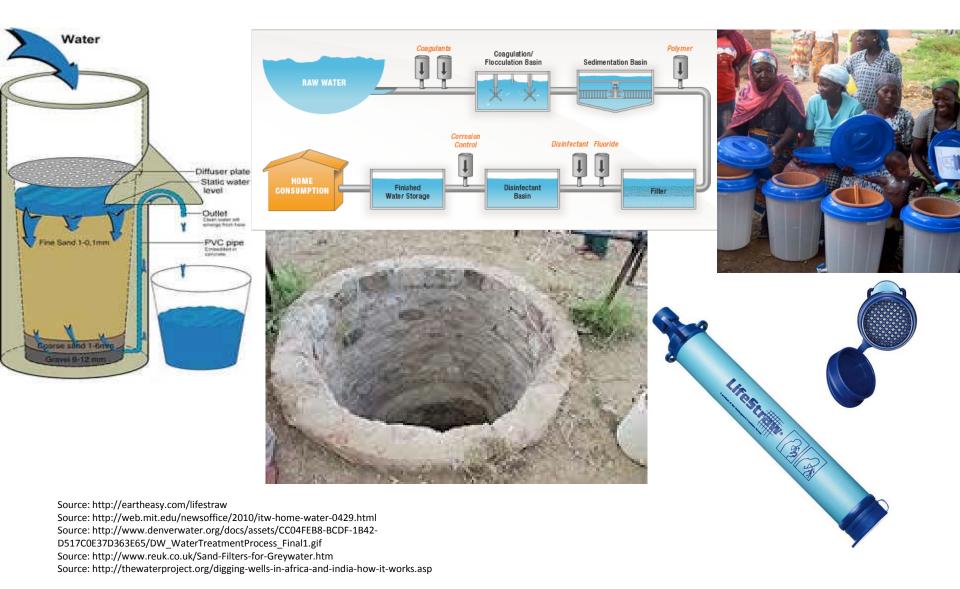
<sup>&</sup>lt;sup>a</sup> Capital cost of \$0 is colored green, moderate range is yellow, high is orange, and significant expenses are coded red. These judgments was made based upon capital cost to per capita income of individuals in developing countries

Same as above

<sup>&</sup>lt;sup>c</sup> High effectiveness is colored green.

<sup>&</sup>lt;sup>d</sup> No energy consumption is colored green

<sup>&</sup>lt;sup>c</sup> Low environmental impacts are colored green.


<sup>&</sup>lt;sup>f</sup> No waste is colored green.

g 30-50 feet

# **Decision Tool & Findings**

| Slow sand filter                           | \$16-25              | \$0                              | High                                                 | Pump, vents, and drain                 | Low                                         | None                               | Simple to use,<br>Small scale and<br>community level.                         | Requires technical<br>knowledge and training;<br>Constant maintenance                                           |
|--------------------------------------------|----------------------|----------------------------------|------------------------------------------------------|----------------------------------------|---------------------------------------------|------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Solar water<br>disinfection<br>(UV) (size) | \$0                  | \$1                              | Moderate,<br>Function of<br>sunlight, cloud<br>cover | None                                   | Low                                         | Litter                             | Low cost, no<br>energy required, on<br>site                                   | Leaching of bottle<br>material, regrowth of<br>bacteria, toxic chemicals<br>still in the water; training        |
| Water satchet                              | \$0                  | \$0.008                          | High                                                 | Manufacturing<br>and<br>transportation | Plastic<br>waste, litter                    | Plastic bags                       | Individual use                                                                | Temporary solution,<br>possibly delaying long<br>term solution, potential<br>supply problem                     |
| Water<br>treatment plant                   | \$7,000-<br>\$40,000 | Depends on cost for broken parts | High                                                 | Significant                            | Land<br>required,<br>potential<br>pollution | Water<br>treatment<br>plant sludge | Long term water<br>supply, May lead to<br>economic growth,<br>improved health | Requires capital investment, dedicated land, good quality source water, and competent management with training. |

### A Variety of Solutions



#### Solutions

- Invest in on-site water treatment facilities
- Develop partnerships with agencies, NGOs, and private organizations

#### Questions?

### Michelle Thompson

UCLA ESE Doctoral Student

mthomp@g.ucla.edu

http://www.environment.ucla.edu

Acknowledgements: Dr. Stenstrom, UCLA, Emerging Leaders in Extraction and Environment Program (ELEEP), & Dr. Hilary Godwin