Advanced Oxidation of RDX and HMX Wastes using Fenton Reagent

Kyung-Duk Zoh and Michael K. Stenstrom*

*Dept. of Civil and Environmental Engineering University of California, Los Angeles

High Explosives

•Defined by their rate of reaction (high versus "low" or "normal" explosives)

•Some typical HE - RDX, HMX, TNT, PETN, Ammonium-Nitrate

 Low Explosives - gunpowder, nitroglycerin

Pressure Curve

Usage

•Commercial blasting - coal mining, tunneling, road building

- •Military usage bombs, artillery shells, various warheads
- •Nuclear weapons creates the implosion
- •Some explosives had other uses, e.g., RDX used as rat poison

Explosive Wastes

(2,4,6-Trinitrotoluene)

(Hexahydro-1,3,5trinitro-1,3,5-triazine; *R*oyal *D*emolition e*X*plosive) (Octahydro-1,3,5,7tetranitro-1,3,5,7tetrazocine; *H*igh *M*elting eXplosive)

NO

Health Hazards

RDX

- a hazardous waste (EPA)
- Health Advisory by EPA
 - 2 μg/L for lifetime exposure for adults in drinking water
- A possible human carcinogen (Class C)
 HMX
 - a hazardous waste (EPA)
 - Health Advisory (1989) Class D Carcinogen

Explosives Contamination

- Munitions production over the past years led to widespread and persistent contamination at government facilities.
- The current emphasis on demilitarization.
- Past methods for disposal include dumping at lagoon, at landfill areas, open burning.
- RDX and HMX pose risks to human health, and can be toxic to aquatic and terrestrial organisms.
- Thousands acres of highly toxic soils and groundwaters need to be cleaned up.

Existing Technology for Treatment

Physical

- Incineration
- Excavation
- Adsorption
- Biological
 - Aerobic
 - Anaerobic
 - Compositing
- Chemical
 - Hydrolysis + Biological treatment (zoh et al., 1999)
 - Advanced oxidation

Advanced Oxidation Processes (AOPs)

- AOP processes (O₃, UV, O₃/H₂O₂, Fenton reagents, TiO₂) were commonly used for remediating wastes and wastewaters contaminated with recalcitrant organic compounds.
- Fenton reaction is one of the oldest, most powerful oxidation treatments available.
- The chemical kinetics of Fenton oxidation of RDX and HMX and identification and quantification of intermediate products were investigated

Fenton Oxidation Mechanism

H_2O_2 + Fe²⁺ → Fe³⁺ + OH⁻ + HO⁻ HO⁻ + R → oxidized products

Experimental for Kinetics

- Performed in a water bath between 20 and 50 °C
- Conducted in a flask in the dark conditions
- [Fe²⁺] is the form of FeSO₄·7H₂O, and calculated amount of 30% H₂O₂.
- Initial RDX and HMX was 10 mg/L (0.045 mmol/L) and 4.5 mg/L (0.015 mmol/L).
- pH was fixed to 3 using 1N H₂SO₄.
- Samples were collected, and were immediately filtered into cooled (0 °C) HPLC vials, and were analyzed using HPLC (236 nm)

Fenton Oxidation of RDX at Different Temperature ([RDX] =0.045 mmol/L, [H₂O₂] = 210 mmol/L, [Fe²⁺]=2.16 mmol/L, pH=3

C/Co

Fenton Oxidation of RDX and HMX at Different Temperature ([RDX] = 0.045, $[H_2O_2] = 210$, $[Fe^{2+}] = 2.16$ mmol/L, pH=3; [HMX] = 0.015, $[H_2O_2] = 69.2$, $[Fe^{2+}] = 0.72$ mmol/L, pH=3).

Temperature dependency of rate constants on Fenton oxidation of RDX and HMX

ln k

The impact of increasing Fenton reagents concentration on rate constant of RDX and HMX oxidation (RDX = 0.045 mmol/L, HMX = 0.015 mmol/L, Fe²⁺: H₂O₂ = 1:95, pH=3)

RDX

HMX

Nitrogen Balance: The Kinetics of RDX and HMX degradation and Nitrate (NO₃-) Formation

Gas Analysis Results

5-mg/L of RDX and HMX were put into a gas tight glass reactor. The system was sealed and purged with Helium gas. The syringes were attached to measure gas volume after the reaction. The gas samples were analyzed with GC with TCD. Using ideal gas law, measured gas volume, concentration of produced gas were calculated.

	RDX	HMX
N ₂ (%)	0.41%	0.34%
The remains (O ₂ , Argon, H ₂ O)	71.0%	67.9%
Total mole produced	0.053 mol N ₂	0.033 mol N ₂
Normalized Yield	2.36 M N₂/ M RDX	1.94 M N₂/ M HMX

Normalized molar yields for Fenton Oxidation products

Mineralization of RDX Oxidation

1. TOC Measurement during reaction of RDX with Fenton reagent (RDX = 0.045 mmol/L, Fe²⁺ = 2.16 mmol/L, H₂O₂ = 210 mmol/L) 2. ¹⁴C study (100-mL solution were spiked 10 mg of RDX and 5 μ Ci of [U-¹⁴C] RDX).

CPM

306259

85390

29058

114627

113716

75 %

37 %

179

Time (min)

Other Studies of Advanced Oxidation on Explosives

- Using UV, UV/H₂O₂, O₃, O₃/H₂O₂, and UV/O₃, RDX degradation was investigated. There was no mineralization, 50% of nitrogen was transformed to NO₃⁻ (Bose *et al.*, 1998)
- TNT destruction using Fenton reagent yielded oxalate, CO₂, and NO₃⁻ (Li *et al.*, 1997). Fenton oxidation of TNT (70-mg/L) solution resulted in complete destruction within 8 h, and 40% mineralization within 24 h.

Carbon Byproducts - Formaldehyde (HCHO) Formation

- Formaldehyde analysis using 2,4dinitrophenylhydrazine (DNPH) solution.
- From HPLC analysis, the derivative (dinitrophenylhydrazone) was detected at the initial phase of the reaction, and then the peak decreased and finally disappeared.
- Formaldehyde can be the intermediate during oxidation of RDX, and can be further oxidized to final products such as CO₂.

Organic Carbon Byproducts - GC/MS Analysis

- The reaction end products of RDX and HMX were analyzed using LLE followed by GC/MS.
- Any non-polar intermediates and extractable by CH₂Cl₂ can be detected.
- A comprehensive set of blank samples were also extracted LLE and analyzed with GC/MS

GC-MS chromatogram

Proposed Mechanism of RDX Fenton Oxidation

Conclusions

- RDX and HMX Fenton oxidation are rapid between
 20 and 50 °C.
- Experimental data could be fit to a pseudo firstorder rate equation.
- Reaction rate coefficient was strongly dependent on temperature, H_2O_2 and Fe^{2+} concentrations.
- The activation energy using Arrhenius equation was 51.3 (RDX) and 48.6 (HMX) kJ·mol⁻¹.
- The byproducts (NO₃⁻ and N₂) and mineralization of the oxidation of RDX and HMX were discussed.
- No further non-polar unknown end-products could be detected by GC/MS.