
Power and Energy Analysis on Odroid-XU+E and
Adaptive Power Model

In Hwan Baek
University of California Los Angeles
chris.inhwan.baek@gmail.com

Xiangrui Liu
University of California Los Angeles

xrliu@ucla.edu

ABSTRACT
Today, the increasing demand for more powerful processors
on mobile devices has made the power dissipation increas-
ingly important to consider. To assist the developers to
make design decisions for better power e�ciency, researchers
have proposed several power models. However, the conven-
tional power model generation process is done with power
measurement at the device-level and is very time consum-
ing. To address the problem regarding the device-level power
measurement, we propose a CPU-level power model that is
generated with the power sensor data on each core of Exynos
5 Octa 5410. To further improve the accuracy of our power
model and overcome time consuming nature of model train-
ing, we propose a fast adaptive power model, which auto-
matically adjusts parameters in the model for di↵erent types
of tasks. The demonstration of the adaptive power model
is given with an energy consumption prediction program,
which also investigates execution time models and energy
consumption with respect to the CPU frequency. To eval-
uate our work, we calculated power consumption with the
adaptive power model and power consumption with an of-
fline trained model. The result shows that adaptive power
model after self-adjustment fits to the o✏ine trained model
with a small error.

Categories and Subject Descriptors
I.6.0 [Computer Methodologies]: Simulation and Mod-
elinggeneral

General Terms
Power, energy

Keywords
Power model, execution time model, measurement

1. INTRODUCTION
Today, the increasing demand for more powerful processors
on mobile devices has made the power dissipation increas-

ingly important to consider. However, many software devel-
opers lack knowledge on the power consumption behaviors
of devices. As a consequence, there are many unnecessarily
power-hungry applications for mobile devices [1].

To assist the developers to make design decisions for better
power e�ciency, researchers have proposed several power
models. A small selection of devices are investigated and
the power models are derived with power meters attached
to the selected devices. There are two main drawbacks for
such power model derivation process. First, the power mod-
els are generated at the device level, which would lead to
inaccuracy in the generated power models for each compo-
nents. To measure power dissipation on a specific compo-
nent, a common approach is turning o↵ other components.
For instance, cellular, WiFi, GPS, etc. are turned o↵ while
measuring the power dissipation on CPU. The problem is
that not all components, such as RAM, can be turned o↵.
The power dissipation on such components and even leak-
age power on the whole device may have a negative impact
on power measurement accuracy. Second, the power mod-
els may be accurate for the specific devices, from which the
models are derived, and inaccurate for other devices. The
problem is that it is nearly impossible to generate power
models for all available devices with such conventional ap-
proach because it is very time consuming and painstaking to
generate power model for the wide range of mobile devices
available today.

ODROID-XU+E and ODROID-XU3 are Linux/Android plat-
forms that feature Samsung Exynos processors, the same
processors installed in Samsung Galaxy S4 and Galaxy S5.
These platforms are great for characterizing these proces-
sors. These processors have ARM big.LITTLE architec-
ture. This architecture is discussed in section 2.2. The most
interesting feature is that these platforms have on-board
power sensors for the big CPU cores, the little CPU cores,
the GPU, and the RAM. Thus, they allow component-level
power measurement. The inaccuracy issue with device-level
measurement can be overcome with these sensors.

With the capability of component-level power measurement,
we propose a new approach to generate power model for
CPU. Using collected power sensor reading data on the big
CPU core and the little CPU core, we trained a power model.
We have studied of the variation of power consumption on
di↵erent types of tasks. To further improve the accuracy
of our power model, we propose an adaptive power model,



which automatically adjusts parameters in the model for
di↵erent types of tasks.

2. BACKGROUND
In this section, we discuss about the platform, on which we
implemented our system framework. The operation modes
of big.LITTLE architecture are described and the core switch-
ing method in CPU migration mode is explained. Dynamic
voltage frequency scaling (DVFS) is discussed because our
models are at CPU-level and the power dissipation on CPUs
largely depends on the supply voltage and the frequency.

2.1 ODROID-XU+E
Odroid-XU+E is a new generation of computing device with
more powerful, more energy-e�cient hardware and smaller
form factor. O↵ering open source support, the board can run
various flavors of Linux, including Ubuntu and the Android
4.2. By adopting e-MMC 4.5 and USB 3.0 interface, the
ODROID-XU boasts high speed fast data transfer, a feature
that is increasingly required to support advanced processing
power on ARM devices. The board is equipped with four
big cores (ARM Cortex-A15 up to 1.6GHz) and four small
cores (ARM Cortex-A7 up to 1.2GHz).

2.1.1 Power monitor

ODROID-XU+E has an integrated power analysis tool. This
package contains a special ODROID-XU board which has
four current/voltage sensors to measure the power consump-
tion of the Big A15 cores, Little A7 cores, GPUs and DRAMs
individually. The professional developers can monitor CPU,
GPU and DRAM power consumption via included on-board
power measurement circuit. By using the integrated power
analysis tool, developers will reduce the need for repeated
trials when debugging for power consumption and get the
opportunity to enhance and optimize the performance of
their CPU/GPU compute applications, and therefore keep-
ing power consumption as low as possible.

2.2 big.LITTLE Architecture
By using the big.LITTLE heterogeneous computing archi-
tecture, the Samsung Exynos 5 Octa 5410 couples slower,
low-power processor cores with relatively faster, high-power
processor cores in order to reduce power consumption. The
”big”or faster cores are used for computation-intensive tasks
such as gaming, whereas the ”little” or slower cores are used
for less intensive tasks.

2.2.1 CPU Migration

The big.LITTLE architecture has three operation modes to
utilize and arrange the high performance big CPU cores and
power e�cient little CPU cores. These three modes are clus-
ter switching, in-kernel switcher (CPU migration), and het-
erogeneous multi-processing (Global task scheduling), which
are compared in Figure 1 Exynos 5 Octa 5410 was the first
architecture that featured cluster switching mode, the sim-
plest mode of the three. In cluster switching mode, the big
cluster consists of identical big CPU cores such as Cortex-
A15 and the little cluster consists of identical little CPU
cores such as Cortex-A7 [2]. In the perspective of the Op-
erating System scheduler, only one cluster exists at a time.
In other word, one cluster can be active at a time. Depend-
ing on the load on the CPU, all relevant data migrate to

Figure 1: ARM big.LITTLE operation mode (Source:
ARM)

another cluster via L2 cache. One of the main drawbacks of
this mode is that within one cluster, the load on each core
will vary. In other words, one core may have heavy load
while another core has little load.

CPU migration mode was implemented by Linaro to over-
come such imbalanced CPU load. In CPU migration mode,
one big CPU core and one little CPU core are paired up
and the OS scheduler sees each pair instead of a cluster.
The migration decision is taken at the cpufreq driver level.
If the required frequency is too high or too low for the cur-
rent CPU core, migration to another core is requested to
the In-kernel Switcher logic. In order to approximate a lin-
ear scale across the combination of A7 (little core) and A15
(big core), the virtual frequency set for A7 is scaled down
by half. In other words, A7 core’s maximum available fre-
quency 1.2GHz is scaled down to 600MHz. If the requested
frequency is greater than 600MHz, A15 is activated. If a fre-
quency less than or equal to 600MHz is requested, A7 is acti-
vated. Based on the collected data on the power dissipation
of A7 and A15 in di↵erent frequencies, we concluded that
CPU migration mode was in use on the ODROID-XU+E.

2.3 Dynamic Voltage Frequency Scaling
Dynamic voltage and frequency scaling (DVFS) is a commonly-
used power-management technique where the clock frequency
of a processor is decreased to allow a corresponding reduc-
tion in the supply voltage.

2.3.1 Idle states and Performance states

In order to e↵ectively manage power consumption, modern
processors have several idle states (C-states in ACPI stan-
dard) and processor performance states(P-states). Di↵erent
levels of idle states have di↵erent power consumption sav-
ings and wakeup latency overheads [3]. In other words, the
deeper a processor sleeps the less power is consumed but
longer it takes to wake up. Performance states, on the other
hand, are related to CPU frequency and voltage. A proces-
sor in a higher performance state runs at lower frequency
and voltage. The control of the performance states is done
by the CPUfreq subsystem.

2.3.2 CPUfreq subsystem



Governor Summary
Interactive Designed for latency-sensitive

workload. Significantly more
responsive than other governors.

Performance Sets to the maximum frequency
available.

Powersave Sets to the minimum frequency
available.

Userspace Only user can set the frequency.
ondemand Sets to the maximum frequency

when CPU utilization exceeds
threshold and then steps down to
lower frequencies if the utilization
is less than the threshold until the
lowest frequency is set.

conservative Gradually increases or decreases
the frequency while checking the
utilization.

Table 1: CPUfreq Governors

The CPUfreq subsystem provides users ability to tune the
performance state management. There are six in-kernel gov-
ernors for the CPUfreq subsystem: interactive, performance,
powersave, userspace, ondemand, and conservative. Each
has a di↵erent policy to select performance states as shown
in Table 1.

3. SYSTEM FRAMEWORK
We first discuss the power consumption at CPU level. Based
on this, we explain our approach to generate a CPU-level
power model. The adaptive power model design incorpo-
rates the pre-trained power model. The design is explained
in details. Execution time models are generated to analyze
the performance and energy consumption with respect to
the task load and the CPU frequency. The our approach to
execution time model generation is described.

3.1 Power Model
In order to explore the factors contributing to the CPU
power consumption, it is necessary to look at the CMOS
integrated circuit power consumption equation [4]:

P
total

= P
dynamic

+ P
short�circuit

+ P
leakage

(1)

The equation consists of three components. Figure 2 illus-
trates this three components of transistor power consump-
tion. The first component estimates the dynamic power con-
sumed by charging and discharging the capacitance at each
gates output. The second component estimates the power
expended by the ”short-circuit” current which momentar-
ily flows between the supply voltage and ground when the
CMOS gates switch. The third component estimates the
power due to current leakage.

In practice, we observe that the dynamic power component
dominates the total CPU power consumption. The dynamic
power consumed by a CPU is approximately proportional to
CPU frequency and the square of the CPU voltage [5]:

P
dynamic

= ↵CV 2f (2)

Figure 2: The dynamic, short circuit and leakage power com-
ponents of transistor power consumption

where ↵ is the activity factor (0↵1), i.e. a proportional
constant indicating the percentage of the system that is ac-
tive or switching, C is capacitance, V is the supply voltage,
and f is the clock frequency. The activity factor is used to
model the average switching activity in the circuit, which
depends on the pattern of task which is executed on the
CPU.

Since the dynamic power component dominates the total
CPU power consumption, in our project, we simplify the
model of CPU total power consumption as:

P
total

= ↵CV 2f + � (3)

The task of CPU power estimation comes down to obtaining
good estimates for parameter ↵C as a whole and parameter
�. We execute matrix multiplication program with several
di↵erent input data size on the Odroid XU+E platform and
collect 54 sets of data for big CPU and 48 sets of data for
little CPU, including CPU power, supply voltage and CPU
frequency. Here, we consider the product of CPU frequency
and the square of supply voltage as the only predictor and
consider CPU power consumption as response. Then, we
use 10-fold cross-validation to train these data and then ob-
tain a linear regression model, which would find estimates
of the parameters so that the sum of the squared errors is
minimized for big CPU and little CPU respectively. Fig-
ure 3 shows the big CPU power model and the small CPU
power model we build for matrix multiplication task. The
resulting power models for the big CPU core and the little
CPU core are shown respectively in equations 4, 5.

Power = 8.27⇥ 10�4V 2f � 5.29⇥ 10�2 (4)

Power = 1.722⇥ 10�4V 2f + 6.534⇥ 10�5 (5)

In addition, a certain CPU frequency have a demand of a
certain amount supply voltage. In order to make our pro-
posed system work, we also explore the correlation between
frequency and supply voltage for big CPU and little CPU
respectively. Figure 4a shows that there is a good linear
relationship between supply voltage and frequency for big
CPU. Figure 4b shows that, for little CPU, supply voltage



(a) Big CPU

(b) Little CPU

Figure 3: CPU power models (matrix multiplication)

is a constant value when frequency is lower than 400 MHz
and then supply voltage linearly increase with the increased
frequency.

The relation between voltage and frequency can be expressed
in the following equations.

V = 0.95, 250MHz  f  350MHz (6)

V = 1.2⇥ 10�3f + 0.4765, 400MHz  f  600MHz (7)

V = 3.152⇥ 10�4f + 0.6473, 800MHz  f  1.6GHz (8)

Furthermore, in order to observe whether the CPU power
model is independent of the type of task which is executed on
the CPU, we use the same method described above to build
the big CPU power model and the little CPU model for dd
command which is used to convert and copy a file in Linux
operating system. Figure 5 shows the power model we build
for dd command and also the comparison between the power
models for two kinds of tasks, i.e. dd command and matrix
multiplication. From Figure 5, we found that the slope of
two straight line is di↵erent. This is because di↵erent kinds
of tasks have di↵erent switching activity in the circuit level

(a) Big CPU

(b) Little CPU

Figure 4: Correlation between frequency and voltage

hence the corresponding activity factor ↵ is di↵erent. In
conclusion, the type of task can influence the parameters in
the CPU model. This motivates us to develop an adaptive
CPU power model for the Odroid-XU+E platform.

3.2 Adaptive Power Model
Power models are used in many di↵erent applications. How-
ever, power values calculated from power models are mere
estimates. As shown in the comparison between the power
consumption of a matrix multiplier and that of dd command,
the activity factor ↵ varies depending on di↵erent types of
tasks. However, it is hard to predict ↵. From our experience
building a power model, ↵multiplied with C can be obtained
as the slope of the regression line of the power model. How-
ever, training separate models for di↵erent tasks to find ↵
is not very feasible for most cases because it requires huge
data sets beforehand.

We propose an adaptive power model to overcome such dif-
ficulty. The adaptive power model we have designed is in-
spired by the general feedback control system. Figure 6 is
the overview of the adaptive power model design. The adap-
tive power model first imports the original power model we
have built in subsection 3.1. From a user space CPUfreq



(a) Big CPU

(b) Little CPU

Figure 5: CPU Power models (dd command)

Figure 6: Adaptive Power Model

interface, ”scaling cur freq”, the current frequency is ob-
tained. Then, voltage is computed from the current fre-
quency. These values along with predefined parameters, ↵
C and �, are used to calculate the power consumption.

Then, the adaptive power model generation algorithm col-
lects the power sensor data for a very short time period. The
measured power is then compared with the calculated power
from the original model by taking the absolute value of the
di↵erence between these power values. The absolute value
is then compared with a threshold. The threshold value
depends on the CPU core. For big CPU cores, we have a
predefined threshold taken from the largest residual error
obtained when we trained the big CPU core power model.
The threshold for little CPU cores are taken from the largest
error obtained when we trained the little CPU core power

model. If the di↵erence between the measure power and cal-
culated power is greater than the threshold, the parameters
↵C are re-calculated with equation 9.

↵C =
P
measured

� �
V 2f

(9)

The new ↵C value is used to adjust the power model and the
algorithm calculates the power with adjusted model. The
new calculated power can be compared with the sensor read-
ing for further parameter adjustment.

To demonstrate the e↵ectiveness of our adaptive power model,
we have designed an energy analysis program that estimates
the power consumption from the CPU frequency and pre-
dicts execution time based on the load and the CPU fre-
quency. Then, the energy is computed from the resultant
values. The program is implemented with our power model,
execution time model, and adaptive power model as shown
in Figure 7. The execution time model is explained in the

Figure 7: Energy consumption prediction

following subsection. The program’s adaptive power model
algorithm adjusts all parameters instantly as a specific task
starts running.

By integrating our adaptive power model algorithm, many
applications that need power estimation via power models
can have only ”one” model that adapts to di↵erent types of
tasks.

3.3 Execution Time Model
In our project, we define the execution time of a program as
the time that elapses from when the first CPU starts execut-
ing on the problem to when the last CPU completes execu-
tion. Actually, it is quite impossible to exactly predict the
execution time of an arbitrary program on a specific compu-
tational resource. To avoid such complexity, we only chose
programs that will have predictable tasks. In our project, we
built two sets of execution time models for a matrix multi-
plication program and Linux dd command. To demonstrate
our approach in this section, we focus on a specific task,
i.e. matrix multiplication. We execute the matrix multi-
plication program with di↵erent input matrices dimensions
under each frequency and collect 272 sets of data. Figure 8
is a three dimensional visualization plot of our collected raw
data. From Figure 8, we have confirmation that there is
indeed a relationship between execution time and CPU fre-
quency as well as dimensions of two input matrices. In order
to obtain the quantized models, in the following subsection,
we will explore two kind of correlations respectively: the cor-
relation between execution time and CPU frequency as well
as the correlation between execution time and input data
size.



Figure 8: Execution Time Raw Data Visualization

3.3.1 Correlation between Execution Time and CPU

Frequency

While the CPU core is a major contributor to a system’s
power consumption, other subsystems, such as memory and
I/O, are also significant and can in some cases even dominate
the CPU. Moreover, such contributions generally are inde-
pendent of the core frequency. In this perspective, Snowdon
et al.[6] modeled the overall execution time T as a function
of the various clock rates f

x

used in the system:

T =
C

cpu

f
cpu

+
C

bus

f
bus

+
C

mem

f
mem

+
C

io

f
io

+ ... (10)

The coe�cients C
cpu

, C
bus

, C
mem

, C
io

... depend on the
instruction stream of the actual workload.

In our project, since memory and I/O subsystem will not
dominate the CPU, we simplify the correlation between ex-
ecution time and CPU frequency as:

T =
↵
i

f
+ �

i

(11)

where f is CPU frequency, ↵ and � is the co↵ecients which
are influenced by input matrices dimensions. In order to
estimate parameters ↵ and � for di↵erent workload, we run
several simulations on the Odroid XU+E platform and col-
lect 144 sets of data for Big CPU and 128 set of data for
Small CPU, including execution time, CPU frequency and
dimension of input matrices. Here, we consider the recipro-
cal of CPU frequency as predictors and consider execution
time as response. Then, we use 10-fold cross-validation to
train the data and then, obtain a linear regression model
which would find estimates of the parameters so that the
sum of the squared errors is minimized for each di↵erent
workload. Figure 9 shows the correlation between execution
time and the CPU frequency.

However, the above model is not workable on Odroid XU+E
platform in practice, since the coe�cient ↵ and � in the
model is depend on instruction stream of actual workload
but Odroid XU+E platform doesn’t have performance mon-

(a) Big CPU

(b) Little CPU

Figure 9: Correlation between execution time and frequency

itoring counters which is used for workload characterisation.
Actually, we also try to build a regression model to predict
the instruction stream of actual workload by using input ma-
trices dimension as predictor, but the regression model we
build has a low prediction accuracy. We leave the study of
applying model that characterizes the relationship between
execution time and CPU frequency to Odroid XU+E plat-
form in practice to future work.

3.3.2 Correlation between Execution Time and Input

Data Size

In this subsection, we change to another perspective to ex-
plore execution time model. By manually analyzing source
code of matrix multiplication program, we know the time
complexity of each part in the program, which provides us a
bound function depending on the input data size. The time
complexity of basic matrix multiplication part is O(n3), and
the time complexity of input matrix initialization part and
multiplication result output part is O(n2), where n is the
dimension of two input matrices. As a consequence, the
estimated execution time of matrix multiplication program



can be modeled as a function of the dimension of two input
matrices:

T = ↵
fin

3 + �
fin

2 + �
fi (12)

where ↵ and � represent estimated coe�cients for predictors,
namely n3 and n2 respectively, � represents the estimated
intercept, and n is the dimension of two input matrices.

In order to estimate parameters ↵, � and � for each fre-
quency, we run several simulations on the Odroid XU+E
platform and collect 272 sets of data (16 sets of data, in-
cluding execution time and input matrices dimension, for 17
di↵erent frequency). Here, we consider the cube of input
matrices dimension and the square of input matrices dimen-
sion as predictors and consider execution time as response.
Then we use 10-fold cross-validation to training the data
and then obtain a linear regression model which would find
estimates of the parameters so that the sum of the squared
errors is minimized for each frequency. Figure 10 shows the
correlation between execution time and the dimension of in-
put matrices. In our project, we implement this execution
time model which characterize correlation between execu-
tion time and input matrices dimension for each available
frequency of Samsung Exynos 5 Octa 5410 on the Odroid
XU+E platform.

4. IMPLEMENTATION
We implemented tools for data collection and model train-
ing. From the resultant power model and data collecting
method, we were able to implement an adaptive power model,
which automatically adjusts the model by correcting the ac-
tivity factor based on real power sensor data. The data col-
lection tool and the adaptive power model are implemented
in C and C++ on the ODROID-XU+E running Linux ker-
nel 3.4.75. On the other hand, the model training is imple-
mented with R script.

4.1 Data collection
Data collection tools utilize the power/voltage sensor inter-
faces, CPUfreq subsystem, and some Linux functions. The
Power and voltage data were collected with di↵erent CPU
frequencies and di↵erent workload and were used to train a
power model. The execution time data are used for the exe-
cution time model, which helps analyze energy consumption
on the platform.

4.1.1 Power and voltage data

The biggest problem with the power/voltage sensors inte-
grated onto the ODROID-XU+E is that only one sensor is
connected to all A7 cores and another sensor is connected
to all A15 cores. Thus, only sum of all A7 cores’ power and
sum of all A15 cores’ power can be collected. Since the load
on each core will not be uniformly distributed, it is hard to
know the power dissipation on each core. In order to over-
come such issue, we deactivated all other CPU core pairs
except for one pair (cpu0). Deactivation of CPU core pairs
can be easily done in the user space as shown in Figure 11.
With only one cpu core active, the power and voltage data
apply to just one core. Throughout the implementation of
all tools and systems, we had kept only one CPU core pair
active. We implemented the power/voltage data collection
tool in C. It manually selects from the lowest available fre-
quency, 200MHz, to the highest available frequency, 1.6GHz.

(a) Litte CPU

(b) Big CPU

Figure 10: Correlation between execution time and the di-
mension of input matrices

Figure 11: Deactivation of CPU cores in Linux

For each frequency, we used fork() function to create a child
process that runs a measurement algorithm and the parent
process makes a system call via system() to run a one-task-
specific program. When system() returns, the program is
done running and the parent process sends an interrupt sig-
nal to the child process to stop the measurement. The mea-
surement algorithm is implemented with a while loop. We
used userspace power/voltage sensor data interfaces. In ev-
ery loop, the sensor reading data are read from the interfaces
and timestamped. These data are appended to an output
text file for each CPU frequency. We are aware of the over-
head of this power/voltage measurement tool. To reduce
the overhead, the small sampling rate is chosen. We made
data collection sleep for 0.1 second for every loop. There-
fore, sampling rate is only 10Hz. Since the power/voltage do
not change significantly over time, very low sampling rate
is still suitable for data collection. Then, the collected data



are compared with the voltage and power displayed directly
from the sensor interfaces in real-time while the specified
program is running in the background. The di↵erence is
negligible, so the data collection tool is accurate enough for
our purpose.

4.1.2 Execution time data

The execution time data collection tool is simply a modifi-
cation of the power/voltage data collection tool. For each
selected CPU frequency, it makes a system call via system()
to run a specified program. Just before the system call, it
gets a timestamp using gettimeofday() function. Then, it
gets another timestamp after system() returns. The di↵er-
ence between these timestamps is the approximate execu-
tion time. To verify this method, we ran ”dd if=/dev/zero
of=/dev/null count=10000000”. At the end of its execution,
it prints out the elapsed time to the stdout. We compared
the measured execution time and the printed time by the
program itself. The di↵erence is negligible, so the execution
time data collection tool is accurate enough for our purpose.

4.2 Model training
The raw training data are collected by using the methods
mentioned in the previous subsections and then, are stored
in several csv format files. The power model training and
the execution time model training are all implemented in
R scripts. In R scripts, we used read.csv() function to
read raw data from the csv format files and then, gener-
ated data, frame which is used for data pre-processing. In
the data pre-processing part, we subset the generated data
frame to obtain predictor and prediction target that we want
to use for model training. We used the train() function
in R package caret to train robust linear regression model.
The train() function generates a resampling estimate of per-
formance. Because the training set size is not small, 10-
fold cross-validation should produce reasonable estimates of
model performance. The trainControl() function is used to
specify the type of resampling. Finally, the training results,
i.e. the model parameters, were visualized by using Matlab.

4.3 Adaptive power model
As mentioned in subsection 3.2, we implemented an en-
ergy consumption predictor program to demonstrate adap-
tive power model. This program accepts two input argu-
ments, which are dd count size and the required minimum
execution time, i.e. QoS(Quality of Service). The program
is written in C.

First, it calculates execution time with the execution time
model and the dd count size given as an input. The resultant
execution times for each available are stored in an array. The
elements of the array are then compared with the QoS spec-
ified by the user. From this, we can find the minimum CPU
frequency that satisfies the QoS. With a for loop, it iterates
from the minimum required frequency to the maximum fre-
quency and calculates power consumption for each frequency
with the default power model using ↵ = 8.27 ⇤ 10�4 for the
big CPU core and ↵ = 1.722 ⇤ 10�4 for the little CPU core.
In each iteration, the power is multiplied with the execution
time to calculte energy consumption. The results are stored
in an array. The assumption on the energy calculation is
that the power dissipation is constant for the same work-
load and the CPU frequency. Therefore, the integral of the

power over execution time is just the product of these two.
Then, it finds the minimum value of the energy consump-
tion array and print a message suggesting which frequency
would have most energy saving.

Then, we run the same simulation with the adaptive power
model. fork() is used to create a child process that runs ”dd
if=/dev/zero of=/dev/null count=10000000”. A large count
number is chosen on purpose to ensure that it is running for
su�cient time. The parent process sets the CPUfreq gover-
nor to Userspace governor and select a frequency that will
choose the little CPU core. Then, it sleeps for 2 seconds
to avoid power calculation before the child process starts
running the dd command. The adaptive power model al-
gorithm instantly calculates the new ↵C value for the little
CPU core. Then, a frequency that will choose the big CPU
core. Then, the algorithm calculates the new ↵C value for
the big CPU. With these new values, it adjusts the power
model and repeats the energy consumption calculation algo-
rithm described above.

5. RESULTS AND EVALUATION
There are several approaches we have tried to evaluate our
work. These evaluation approaches are discussed in the sub-
sections.

5.1 Power model
To evaluate the prediction accuracy of our CPU power mod-
els, we compared our predicted CPU power data with the
observed power data obtained from power sensor on the
Odroid-XU+E platform. Figure 12 shows observed CPU
power values versus predicted CPU power values for the big
CPU power test set and the little CPU power test set re-
spectively. From Figure 12, we can find that all the points
are around the straight line y=x, which indicates that the
predicted CPU power values are all very closed to their cor-
responding observed CPU power values. As a consequence,
our big CPU power model and small CPU power model are
both accurate enough.

5.2 Execution time model
We can directly evaluate the execution time model though
Figure 9 which characterizes the correlation between exe-
cution time and CPU frequency as well as Figure 10 which
characterizes the correlation between execution time and in-
put data size. From Figure 9 and Figure 10, we can see that
all the raw data points are closed to their corresponding fit-
ting model lines, which is enough to demonstrate that our
execution time models have a good performance.

5.3 Adaptive power model
As described in subsection 3.2, we designed a simple pro-
gram that displays power, execution time, and energy com-
puted with our models. The purpose of this program is to
suggest a frequency that would minimize the energy con-
sumption. However, we use it to evaluate and demonstrate
the e↵ectiveness of the adaptive power model algorithm.
The program first displays the execution time, the power
dissipation, and the energy consumption computed using
our power model and execution time model. Then, it dis-
plays another set of these items but using our adaptive
model. Figure 13 is an output when the processor runs ”dd



(a) Little CPU

(b) Big CPU

Figure 12: CPU power model evaluation

if=/dev/zero of=/dev/null count=10000000”. The program

Figure 13: Energy consumption prediction output

runs only one iteration for the parameter adjustment. In

Calculated Power
Trained Model Adaptive Model Percent Error

0.049211 0.046832 -4.83%
0.058114 0.056185 -3.32%
0.063152 0.065538 3.78%
0.075814 0.075919 0.14%
0.094412 0.096442 2.15%
0.119130 0.120166 0.87%
0.149021 0.147313 -1.15%
0.182674 0.178108 -2.50%
0.440806 0.418641 -5.03%
0.491711 0.515415 4.82%
0.590648 0.622044 5.32%
0.702031 0.738962 5.26%
0.822303 0.866604 5.39%
0.962241 1.005403 4.49%
1.112906 1.155794 3.85%
1.265207 1.318212 4.19%
1.441543 1.493090 3.58%

Table 2: Comparison of power calculated with a separately
trained model and that with our adaptive model

other word, only one power measurement for each core is
used for parameter adjustment. Table 2 shows the compar-
ison between the power calculated with a separately o✏ine
trained model and the power calculated with our adaptive
model. The lowest percent error is as low as 0.14% while
the largest percent error is 5.39%. This is a significant ac-
curacy even with only one parameter adjustment iteration.
Multiple iterations can improve the accuracy even further.

Another interesting observation from the output of this pro-
gram is that the energy consumption is the least with low fre-
quency. In some cases, the suggested frequency is 250MHZ
and in another cases, it is 300MHz. The theory on power and
energy consumption claims that the energy consumption is
independent of the CPU frequency. However, the output
results show that energy consumption significantly changes.
Our assumption is that the reason is the non-linearity of the
execution time over frequency. The execution time also de-
pends on the memory access speed, the bus speed, etc. Thus,
increasing only CPU frequency can make other components
as the bottleneck of the performance.

6. LIMITATIONS AND DISCUSSION
Our work focuses on a new approach to build a power model
specifically for each type of task. The design and implemen-
tation have room for further improvements. In this section,
we discuss about the limitations of our works and propose
future work according to these limitations.

First, we are forced to use only one CPU core pair. As
mentioned earlier, this limitation is largely due to the lim-
ited number of power monitor sensors. There are only one
sensor for all A7 cores and one sensor for all A15 cores.
If there are eight sensors for each core, we may allow all
CPU core pairs to operate and collect data for each core. In
the scope of our work, using only one CPU core pair is, in
fact, not a problem since all CPU core pairs are identical.



However, Capability of power/voltage measurement on each
core would allow to investigate real-case power consumption
of multi-core processors.

Second, the accuracy of the data collection tools can be im-
proved. Based on our observation on the collected data,
there are peaks on both power data and voltage data. The
potential causes for such peaks are not investigated. For
analysis, we chose the mean values of both power data and
voltage data. However, modes are more suitable in this case
because a mode is less sensitive to peak data.

Third, the adaptive power model can adjust the parame-
ters only when the specific task is currently running. The
algorithm can be modified to accepted past power sensor
readings from log files. although this modification can al-
low the adaptive power model to work for past and present
tasks, but it cannot predict power consumption of a task
that has never run on the platform.

Forth, our adaptive power model may not be suitable for
the tasks that runs for very small time period. The power
sensors on ODROID-XU+E delivers the data to the proces-
sor via I2C bus. There must be a delay associated with the
bus.

Fifth, the overhead of the adaptive power model is not eval-
uated. The overhead largely depends on how often the al-
gorithm adjusts the parameters. In the energy consumption
predictor program demo, only one specific task runs so that
it was not necessary for the adaptive model algorithm to
adjust often. However, if we have a program that consists
of a large number of little tasks, the adaptive model must
be capable of fast adjustment. Fast adjustment will have a
significant overhead. The trade-o↵ of fast adjustment and
low overhead should be studied.

7. CONCLUSIONS
This paper proposed power models for Samsung Exynos 5
Octa 5410 at the CPU level. The behavior of the CPU mi-
gration on this big.LITTLE architecture is investigated and
separate models for the big core and the little core are gen-
erated. The adaptive power model is proposed to improve
the accuracy, which su↵ers from the activity factor variation
for di↵erent tasks. With only one parameter adjustment it-
eration, the accuracy of the model with respected to o✏ine
trained model is approximately 0.14% -5.39% . With mul-
tiple parameter adjustment iterations, the accuracy will be
improved. The scope of our work is not generating state-of-
art power models but providing a new approach for accu-
rate power model generation. There is still a big room for
improvement. We expect that system development that re-
quires accurate CPU-level power model would benefit from
our approach with future improvement.

8. ACKNOWLEDGMENTS
The authors would like to thank Professor Mani Srivastava.

9. REFERENCES
[1] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Robert P.

Dick, Z. Morley Mao, Zhaoguang Wang, and Lei Yang.
Accurate online power estimation and automatic

battery behavior based power model generation for
smartphones. In Proceedings of the Eighth
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis.

[2] Hongsuk Chung, Munsik Kang, and Hyun-Duk Cho.
Heterogeneous multi-processing solution of exynos 5
octa with arm big.little technology.

[3] Madhu Palmur, Zhichao Li, and Erez Zadokg. Cpuidle
from user space.

[4] P.R Panda, B.V.N Silpa, A. Shirivastava, and
K. Gummidipudi. Power-e�cient System Design.
Springer, 2010.

[5] Vishwani D.Agrawal and Srivaths Ravi. Dynamic and
static power in cmos. 2007.

[6] David C. Snowdon, Godfrey Van Der Linden, Stefan M.
Petters, and Gernot Heiser. Accurate run-time
prediction of performance degradation under frequency
scaling. Workshop on Operating Systems Platforms for
Embedded Real-Time applications, 2007.


