
FPGA Matrix Multiplier
In Hwan Baek

Henri Samueli School of
Engineering and Applied Science

University of California Los Angeles
Los Angeles, California

Email: chris.inhwan.baek@gmail.com

David Boeck
Henri Samueli School of

Engineering and Applied Science
University of California Los Angeles

Los Angeles, California
Email: dboeck@ucla.edu

Abstract—This paper describes an FPGA design that performs
4x4 matrix multiplication. The goal of the design is to optimize
throughput, area, and accuracy. The design of our matrix
multiplier consists of four main parts: fractional binary numbers
(fixed point notation), binary multiplication, matrix addition,
and fetch routine. Each part is designed and optimized to find
the optimal balance among the throughput, the area, and the
accuracy. According to the test results, the design with the
optimal result used a 3-stage pipeline from the BRAM block
to the output of the summation block, 13-bit representation of
binary values, shifting and addition to replace multipliers, and
an inexpensive fetch module.

I. INTRODUCTION

This paper describes an FPGA design that performs 4x4
matrix multiplication. The design is implemented with Virtex-
5 using Xilinx ISE. A matrix with input integer values as its
elements is multiplied with another matrix whose elements
have constant values as shown in Figure 1. For fetching input

Figure 1. Maxtrix A x Martix B

values, a good candidate is Xilinx Block RAM (BRAM).
Since the second matrix contains fractional values, the binary
values must be able to represent fractional values. Although
IEEE floating point is the standard representation, the design
uses fixed point notation for enhanced performance, which is
explained in more details in section II-A.

The number of bits chosen for the fixed point notation
directly affects the accuracy, the area, and the throughput of
the design. Because the fixed point notation only estimates
the fractional values, the accuracy may not be perfect. The
throughput is given as the number of matrices calculated per
second. The area is given as the number of used devices such
as registers. The goal of the design is to optimize throughput,
area, and accuracy. There is a trade off between the three
criteria. For instance, increasing the number of bits to represent
the matrix element values will improve the accuracy, but it will

increase the area because more registers are required to store
more bits. Performance, defined as throughput divided by area,
has a cost weight of 0.9. Accuracy has a cost weight of 0.1.
Using this evaluation method, the performance, the area, and
the accuracy need to be balanced in order to achieve the best
result.

II. SYSTEM DESIGN

The design of our matrix multiplier consists of four main
parts: fractional binary numbers (fixed point notation), binary
multiplication, matrix addition, and fetch routine. These are
explained in the subsections below.

A. Fractional Binary Numbers

Binary numbers in general represent integer values. Since
Matrix B contains fractions and mixed numbers, the output can
be fractions and mixed numbers. Binary strings can represent
fractions and mixed numerals if explicitly defined beforehand.
The notation used for this project is fixed point notation.

For fixed point notation, a fixed point must be chosen to split
the binary string. The bits to the left of the fixed point represent
integer values, while the bits to the right of the fixed point
represent fractional values. Figure 2 shows a 7-bit example
with the fixed point before the 3rd LSB. As shown, the weights
of each bit are still powers of two, it is just that to the right
of the fixed point the weights are inverse powers of two.

It is important to choose an appropriate fixed point lo-
cation as it will affect accuracy of this system. The range
of Matrix A are integer values from 1 to 16. Therefore,
maximum value for Matrix C occurs when Matrix A is all
16’s. The largest element from this matrix multiplication is
16 ×

(
1/8 +

3/2 + 5 + 140/123
)
≈ 124.21138. The integer

portion of 124 is represented in binary by 1111100. Thus, there
must be 7 bits to the left of the floating point to represent this
maximum integer number.

Figure 2. 7 Bit Fixed Point Example

Each of the elements in Matrix B can be represented exactly
by a 16-bit fixed point binary string except 7/15 or 140/123.
Thus, these numbers must be estimated which affects the
accuracy of the system. Table I shows fixed point estimations
for 7/15 and 140/123.

Mixed Number Binary Fixed Point

7/15 0.011101110...
140/123 1.001000110...

Table I
MIXED NUMBER ESTIMATION

In fact, the entire 16 bit allowance is not needed to represent
the other numbers in Matrix B be exactly. Only 3 bits to right
of the fixed point are needed for the elements in Matrix B
except for 7/15 or 140/123. This allows the accuracy to depend
only on 7/15 and 140/123. Thus, the minimum bound for output
number size is 10 bits: 7 bits for the integer and 3 bits for the
fraction. To increase accuracy, the fraction portion can increase
to 9 bits. However, this will affect performance as the area will
increase. We chose 11 bits for the initial design to estimate
7/15 by 0.0111 and estimate 140/123 by 1.0010. There is a
trade off between performance and accuracy, and the number
of bits used for the fractional portion is revisited during the
optimization phase.

B. Binary Multiplication

Binary multiplication is performed with one number from
Matrix A and one number from Matrix B. The value in Matrix
A is an integer value from 1 to 16, while a value in Matrix
B is a fixed point binary number. The multiplication function
must also return a fixed point binary number of the same size
as the number from Matrix B.

A general binary multiplication circuit that takes two un-
known binary numbers and multiplies them together is very
complex. This circuit complexity will increase area size and
delay. Both these issues degrade performance. However, Ma-
trix B is essentially a constant and can be hardcoded into the
design. Therefore, a general binary multiplier circuit is not
needed for this design. A circuit that multiplies by a constant
can be optimized as there is only one unknown input. This
approach was used for the binary multiplication of an element
in Matrix A with an element of Matrix B.

To optimize the multiplication circuit, 16 different multi-
plication modules were created. Each module was optimized
to multiply one of the elements in Matrix B with an input
number. The easiest element to implement was B11, B41 = 1.
However, this module cannot be a simple wire because the
input is a binary integer while the output is a fixed point binary
number. Therefore, the input needs to be shifted to the left by
the fractional bit width. The fractional bit width is the number
of bits to the right of the fixed point. This is needed to convert
the integer number input to the fixed point format.

The elements in Matrix B that are purely integer powers of
two only involve bit shifting. These numbers are B12 = 1/8,

B14 = 1/4, B24 = 2, B31 = 1/2, and B41 = 1/4. Dividing by
8 is shifting input three bits to the right, 4 is shifting input
two bits to the right, and 2 is shifting input one bit to the
right. Multiplying by 2 is shifting the input one bit to the
left. However, as with multiplying by unity, the input is first
shifted by the fractional bit width. Multiplying an input by
integer powers of two only requires one shifting step.

Multiplying by integers other than powers of two adds an
additional complexity. These elements are B13, B34 = 3 and
B32 = 5. These integers can be rewritten as 3 = (2 + 1) and
5 = (4+1). These equations contain a power of 2 and adds 1.
To multiply a given input Aij by 3, first Aij is multiplied by
2 by shifting. Then Aij is added to the previous shifted result.
Likewise, the same concept is applied to multiplying by 5.
These multiplication modules requires two steps to perform
the operation. There is a shifting step and an addition step.

The next step in complexity from multiplying by integers
are multiplying by fractions with powers of two in the de-
nominator. These numbers are B21, B44 = 3/4, B22 = 3/2,
and B23 = 3/8. These numbers can be expressed as a
sum of inverse powers of two: 3/4 =

(
1/4 +

1/4 +
1/4
)
,

3/2 =
(
1 + 1/2

)
, and 3/8 =

(
1/8 +

1/8 +
1/8
)
. Adders in

practice contain many combinational logic, and should be
minimized to increase performance. Multiplying by 3/4 and
3/8 contains two adders. It is desirable to optimize 3/4 and
3/8 to reduce the number of adders. Xilinx’s synthesis tool
contains primitives for adders and subtractors. If subtractor
primitives are used, then the following expressions can be
used: 3/4 =

(
1− 1/4

)
, and 3/8 =

(
1/2 − 1/8

)
. Instead of using

two adders, one subtractor is used. To multiply by 3/8, a given
input Aij is multiplied by 1/2 and 1/8. The two results are
then subtracted. The same concept is applied to 3/4 and 3/2.
Therefore, these multiplication modules contain two steps as
well. There is a shifting step and an addition/subtraction step.

The last two elements of Matrix B, B34 = 7/15 and B42 =
140/123, must be estimated as discussed previously. The initial
design used 4 bits to represent the fractional portion. Therefore
from Table I, these numbers are estimated by truncation with
B34 = 0.0111 and B42 = 1.0010. With these estimations,
B34 =

(
1/4 +

1/8 +
1/16

)
and B42 =

(
1 + 1/8

)
. Multiplying

by B42 is easily implemented with a shifting step and addition
step as was done with previous values. However, multiplying
by B34 will involve two adders. Using subtraction, we can
rewrite as B34 =

[
1−

(
1/2 +

1/16
)]

. Even though this result
contains one adder and one subtractor, there are two numbers
to shift rather than three numbers to shift. Therefore, B34 is
implemented with a subtractor for improved optimization.

C. Matrix Addition Module

Every element in result Matrix C is a sum of four products.
Equation (1) shows the required products for an element of
Matrix C for a given row (i is the row number). This equation
demonstrates that to calculate a row of Matrix C, only the same
corresponding row is needed from Matrix A. To calculate row
1 of Matrix C, only row 1 of Matrix A is needed; to calculate
row 2 of Matrix C, only row 2 of Matrix A is needed, etc. All

16 elements of Matrix A do not need to be present in order
to start computation.

Ci1 = Ai1(B11) +Ai2(B21) +Ai3(B31) +Ai4(B41)

Ci2 = Ai1(B12) +Ai2(B22) +Ai3(B32) +Ai4(B42)

Ci3 = Ai1(B13) +Ai2(B23) +Ai3(B33) +Ai4(B43)

Ci4 = Ai1(B14) +Ai2(B24) +Ai4(B33) +Ai4(B44)

(1)

Taking advantage that only one row of Matrix A is needed
to calculate one row of Matrix C, the matrix addition module
only needs a four element input and a four element output.
If Matrix A row 1 is the input, then Matrix C row 1 is the
output; if Matrix A row 2 is the input, then Matrix C row 2
is the output, etc. This module basically implements (1) with
Ai1, Ai2, Ai3, and Ai4 as the inputs; and Ci1, Ci2, Ci3, and
Ci4 as the outputs.

This approach would require four steps to output a single
matrix. Even though this affects the throughput, this approach
was used for two main reasons. The first reason is that the
area would be one fourth of the area if the circuit calculated
all 16 elements of Matrix C at the same time. This will help
the performance of the circuit. The second, and main reason,
is that fetching the elements of Matrix A from BRAM is
a bottleneck. The BRAM can only output a limited number
of Matrix A elements at a time. Therefore, to access all 16
elements of Matrix A form BRAM will take multiple clock
cycles. Therefore, it is vital to start calculating Matrix C as
soon as the required elements are available. In this case, the
first four elements of Matrix C can be calculated when the
first four elements of Matrix A are available, the second four
elements of Matrix C can be calculated when the second four
elements of Matrix A are available, etc. This strategy just
matches the throughput of the BRAM, since the BRAM cannot
access all 16 elements of Matrix A at the same time, with the
added benefit of reducing area.

D. Fetch Routine

A separate fetch module is designed in order to incorporate
pipeline concept to our system. As described above, the matrix
multiplication is performed for each row at a time. Each
element in each row of Matrix A needs to be fetched, then
multiplication and addition are performed after awards. With-
out the pipeline design, this process is performed repetitively
in a sequence. In other words, the system will perform fetch,
calculation, fetch, calculation, and so on in a sequence. This is
a not optimal because the fetch module is not doing any work
while the calculations are being performed, and vice versa.
The pipeline in our design is explained more thoroughly in
section III.

We used a dual BRAM to fetch values for Matrix A. Since
the matrix multiplication is performed for one row at a time,
four values need to be fetched from the dual BRAM while a
dual BRAM outputs two values at a time. In order to have
four values to be fetched, the fetch module has four sets of
intermediate registers and four sets of output registers. Let’s

assume that the BRAM outputs the following sequence of
integer value sets: (16, 15), (14, 13), (12, 11), (10, 9), (8,
7), (6, 5), (4, 3), (2, 1). Two sets of intermediate registers,
namely X1 and X2, alternate with the other two sets, namely
X3 and X4, to store the outputs of the BRAM. Thus, the first
output values 16 and 15 are each stored in X1 and X2. After
one clock cycle, the next output values 14 and 13 are each
stored in X3 and X4. Then these values in X1, X2, X3, and
X4 are stored in the output register sets, namely R1, R2, R3,
and R4, respectively. This alternating storing of the values
is controlled by a 1-bit register named count, which flips its
value every cycle to indicate which register sets must store the
BRAM output. Such process is well shown in figure 3.

Figure 3. Fetch Module Testbench Waveform

As shown, whenever count is 1, the BRAM outputs are
stored into X1 and X2. Whenever count is 0, the outputs are
stored into X3 and X4. However, this is not true until the first
rising edge of count. Because the BRAM output values are 16
and 15 until the second rising edge of clk after a reset (rst),
incorrect values will be stored in X3 and X4. Such problem
is resolved with a register named erase to make sure the value
storing process waits until the second rising edge of clk after
the reset. Another problem is the delay of BRAM, which
results in storing of incorrect values. Another register named
en resolved this problem.

III. IMPLEMENTATION

Figure 4. System Block Diagram

The separate modules are placed together as shown in
Figure 4. The fetch routine cycles through the dual BRAM
and outputs four elements of Matrix A at a time. After two

clock cycles the fetch block outputs the first four elements of
Matrix A, after two more clock cycles the fetch block outputs
the next four elements of Matrix A, etc. The output of the fetch
block feeds into the binary multiplier block. Each element is
multiplied by four different constants (Matrix B). There are 16
outputs after the multiplier block that are fed to a summation
block. The output of the summation block is a row of output
Matrix C.

The system forms a pipeline from the BRAM block to
the output of the summation block. When the output of the
summation block is Matrix C row 1, Matrix C row 2 is in
the summation phase, Matrix C row 3 is in the multiplier
phase, and Matrix C row 4 is in the fetching phase. Pipelining
increases latency, but reduces the critical path delay between
registers. A lower critical delay path allows for faster clock
frequencies. However, adding more in between registers, to
reduce critical path delay, increases the circuit area. There is
a balance needed with pipelining between clock speed and
area. This is explored during optimization.

IV. OPTIMIZATION

A. Performance

Performance =
throughput

area
(2)

The first step to improved performance is to improve the
bottleneck that is accessing BRAM. Equation (2) defines
performance and throughput is the number of output matrices
per second. The single output BRAM requires 16 clock cycles
to access all 16 elements of Matrix A. However, using a dual
output BRAM allows two elements of Matrix A to be read
per clock cycle. This doubles the throughput as now only 8
clock cycles are needed to access all 16 elements of Matrix
A. Implementing a dual output BRAM rather than using a
single output BRAM adds minimal area as the dual BRAM
still counts as 1 BRAM. Thus, using the dual output BRAM
is greatly preferred over the single output BRAM to improve
throughput.

Figure 5. Three Stage Summation Pipeline

Throughput can also be improved by decreasing the mini-
mum clock period. Additional pipeline registers can be used
to reduce the critical path delay to reduce the minimum clock

period. Figure 5 shows a proposal to add addition pipeline to
a four input adder using three stages. In the first stage, input
A1 and A2 are added. In the second stage, input A3 is added
to the result of stage one. In the third stage, A4 is added to
the result of stage two. Each stage is separated by sequential
logic registers. This differs from the initial design of one stage
pipeline summation block with only registers at the output.

The initial 11 bit output design with only one stage summa-
tion block had a minimum clock period of 3.46ns. This allows
a throughput of 3.612× 107 matrices per second. The area is
calculated by adding all the registers, LUTs, and BRAM. Two
types of LUTS were calculated: Slice LUTs and LUT flip-flop
pairs. This area was calculated to 551. The performance with
one stage summation block is 6.5567× 104.

Replacing one stage summation block with a three stage
summation block lowered the minimum period to 3.078ns.
This increases the throughput to 4.061 × 107 matrices per
second. However, the area increased to 894. The performance
reduces to 4.542 × 104 for the three stage summation block.
Even though increasing the pipeline registers speed up the
system, the increase in area makes the three stage summation
block unattractive. Performance also goes down using a two
stage summation block. Therefore, the initial one stage sum-
mation block was kept. After this exercise, it was determined
that increasing the pipelines within the system blocks would
not improve performance as the area increases more than
the throughput increases. Therefore, additional performance
improvements would have to reduce area instead of increasing
throughput.

In order to reduce the area, the number of registers, LUTs,
and LUT flip-flop pairs need to be reduced. The most no-
ticeable type of device among these in the verilog code is
registers because the registers are usually declared in the code
in spite of Xilinx’s optimization of the number of registers
during synthesis process. The initial design of fetch routine
had larger area because it had extra intermediate registers to
deal with the BRAM delay and the resulting incorrectness
explained in section II-D above.

The algorithm used in the fetch module also changed. The
initial design used data stream concept. Three sets of registers
are placed to hold output values from each output port of
the dual BRAM. Figure 6 shows this process. The output of
port a is first stored in XA3. During the next clock cycle, the
value in XA3 is stored in XA2 while the new output of port
a overwrites the value in XA3. Similarly, the value in XA2 is
stored in XA1 during the next clock cycle and the value in
XA3 overwrites the value in XA2 while the new output of port
a overwrites the value in XA3. XA1 and XA2 are connected
to the output registers. The port b output values are fetched in
the identical way.

The new fetch algorithm described in section II-D will
not only reduce the area but also increase the speed. While
the initial fetch design has value assignment to each of
the intermediate register every clock cycle, the new design
alternates the value assignment to two sets of register. Thus,
a new value is assigned to each of the intermediate registers

Figure 6. The Initial Design of Fetch Routine

once every two clock cycles. Nonetheless, the number of clock
cycles taken to generate the output of the fetch routine stay the
same. Less number of value assignment increases the speed
of the fetch routine.

B. Accuracy

[C] =


47.25 109.29675 63.408333 85.75
34.25 78.243902 47.041667 61.75
21.25 47.191057 30.675 37.75
8.25 16.138211 14.308333 13.75


Figure 7. Matrix C Result in Double Format

% error = 100%× 1

16

16∑
i=1

|V alfix − V aldouble|
V aldouble

(3)

The last optimization effort was regarding the binary multi-
plication. As describe in section II-A, more bits are chosen
to have better estimate of 7/15 and 140/123. With 13 bit
output, 6 bits are used to represent fractional bits. Therefore,
7/15 ≈ 0.011101 and 140/123 ≈ 1.001000. The percent error
for 13 bit solution is 0.0982% calculated using (3) and would
receive a accuracy grade of 0.3. The ideal Matrix C is shown
in Figure 7 and was calculated using Matrix A of 16 down to
1. 13 bits was chosen over the initial 11 bits because the 11
bits error would received a grade of zero for accuracy, with
error of 0.173%. Increasing the output bit size to 14 bit would
increase the accuracy to grade 0.7 (error of 0.0411%), but
would decrease performance by 12% because of increase in
area. Since performance is weighted more, the 13 bit solution
was chosen.

To represent the values of the resulting matrix elements
with fairly good accuracy, 13 bits are more than needed.
Therefore, using 13 bits just to have better estimate of these
two numbers does not seem to be reasonable. Instead of
declaring all values as 13 bit binary, intermediate registers
can be declared to estimate these number and multiply with
better accuracy. For instance, the module that multiplies the
input with 7/15 can have 19-bit intermediate register for the
multiplication. The least significant six bits are truncated from
the 19-bit multiplication result, which is stored in the output
registers. Therefore, there is an improvement of accuracy
while maintaining the same number of bits used to represent

the binary values. However, this slightly more complicated
multiplication algorithm requires more registers, LUTs, and
LUT flip-flop pairs.

In order to reduce the area, the number of bits can be
reduced. With the new binary multiplication algorithm, it is
possible to have fairly good accuracy with less number of
bits. 10-bit and 11-bit are chosen for testing. 10-bit results
in .0705% error and 11-bit result in .06% error. Since error
between .05% and .1% gives the same accuracy score, 10-
bit seems to be the better design. After synthesis process,
however, Xilinx throws in more registers and LUTs than
expected. The resulting area wasn’t reduced and hence the
performance did not improve. Therefore, the design is reverted
to the one before this optimization without intermediate 19 bit
registers. All multiplication registers will have 13 bits.

V. RESULTS

[B′] =


1 0.125 3 0.25

0.75 1.5 0.375 2
0.5 5 0.453125 3
1 1.125 0.25 0.75


Figure 8. Matrix B Estimation with 13 Bit Output

[C ′] =


47.25 109.125 63.21875 85.75
34.25 78.125 46.90625 61.75
21.25 47.125 30.59375 37.75
8.25 16.125 14.28125 13.75


Figure 9. Matrix C Estimation with 13 Bit Output

64× [C ′] =


3024 6984 4046 5488
2192 5000 3002 3952
1360 3016 1958 2416
528 1032 914 880


Figure 10. Shifted Matrix C Estimation with 13 Bit Output

The 13 bit output design has 7 bits to represent integer
values and 6 bits to represent fractional values. The estimation
matrix B′ is shown in Figure 8. Only values B′

33 and B′
42

needed to be estimated. However, these two estimation values
in Matrix B′ propagate throughout the resulting Matrix C’
shown in Figure 9. The simulation tool only displays the binary
number seen at the output as it is oblivious to the fixed point
notation. Since the fractional bit width is 6 bits, shifting Matrix
C ′ 6 bits to the left (or multiplying by 64) will return the
unsigned decimal value. Figure 10 shows the resulting shifted
matrix for simulation verification.

The 13 bit output design has a minimum clock frequency of
3.323ns as generated by the post place and route timing report.
See Figure 11 for post-place and route static timing screenshot.
One matrix is outputted every 8 clock cycles, therefore the
throughput is 3.7617 × 107 matrices per second. Figure 12
shows the device utilization summary for this design. This
design uses 158 Slice Registers, 145 Slice LUTs, 199 LUT

Figure 11. PAR Timing

Flip-Flop Pairs, and 1 BRAM. When counting both Slice
LUTs and LUT Flip-Flop Pairs as different LUTs the total
area is 552. This calculates to a performance of 6.8146×104.
The design summary also states that there are 54 bonded IOs.
This corresponds to the 52 outputs (4×13) and 2 inputs (rst
and clk).

To verify the design, the post place and route simulation
model was generated. Figure 13 shows the simulation results
with a clock frequency of 3.4ns. There is a latency from when
reset goes high to when the circuit outputs the first values.
However, this is a one-time latency due to initial pipelining
and is ignored in the throughput calculation. The first stable
output at around 126ns is the first row of Matrix C with R1 =
C11, R2 = C12, R3 = C13, and R4 = C14. After two clock
cycles the next stable output is the second row of Matrix C
with R1 = C21, R2 = C22, R3 = C23, and R4 = C24. As
follows, the next two rows of Matrix C are the next two stable
outputs. This simulation results match the expected estimation
matrix shown in Figure 10. The fetch routine then loops back
to the first address of BRAM and the output repeats outputting
Matrix C indefinitely.

The simulation uses a clock frequency of 3.4ns, which is
2% within the minimum clock frequency generated by the
post place and route timing report. The design successfully
works at the desired minimum frequency. The two markers in
Figure 13 show the beginning of a matrix and end of a matrix
and are separated by 27.2ns. This is 8 clock cycles and verifies
that a matrix is outputted every 8 clock cycles.

VI. CONCLUSION

The goal of the FPGA matrix multiplier design was to
achieve the optimal accuracy and performance, which are
measured with the area and the throughput. The trade off
among these criteria introduced the main challenge of finding a
balance for optimal result. In the overall system level, pipeline
concept is used to achieve high throughput. Optimization pro-
cess involved inspection of accuracy and performance change
with respect to the number of bits used for the fixed point
notation and the number registers declared in each module’s
algorithm. Different number of pipeline levels are tested and
the optimal level is chosen. 10-bit, 11-bit, 13-bit, 14-bit
designs are implemented to find the optimal number of bits to
represent the binary values in fixed point notation. Different
algorithms for fetch routines and binary multiplication are
designed and tested for the best result. According to the test
results, the design with the optimal result used one pipeline

Figure 12. Device Utilization

Figure 13. Simulation Results

from the BRAM block to the output of the summation block,
13-bit representation of binary values, shifting and addition to
replace multipliers, and an inexpensive fetch module.

ACKNOWLEDGMENT

The authors would like to thank Prof. Lei He, Tianheng Tu,
and Zhuo Jia.

REFERENCES

[1] LogiCORE IP Block Memory Generator v7.1, 2012.
[2] H. So. (2006, Feb. 28). Introduction to Fixed Point Number Representa-

tion [Online]. Availible:
https://inst.eecs.berkeley.edu/ cs61c/sp06/handout/fixedpt.html

[3] D. K. Tala (2014 Feb. 9). Verilog Tutorial - World of Asic [Online].
Availible:
http://www.asic-world.com/verilog/veritut.html

