
 

 

 

Abstract— Mirror neurons, which fire during both the 

execution and observation of movement, are believed to play an 

important role in motor processing and learning.   However, 

much work still remains to understand the similarities and 

differences in how these neurons compute in the motor cortex 

during movement execution and observation. Here, we 

performed experiments where a monkey both executes and 

observes a center-out-and-back task within the same 

experimental session.  By recording from putatively the same 

neural population, we were able to analyze and compare single 

neuron statistics between movement execution and observation. 

We found that a majority of neurons in the primary motor 

cortex (M1) and dorsal premotor cortex (PMd) have 

statistically different firing rate statistics between movement 

execution and observation. As a result of this difference, we 

then wondered if neurons during movement observation 

exhibited a similar characteristic to those during movement 

execution: changing of preferred directions as a function of 

movement speed. Interestingly, we found that while observed 

movement speed is encoded in the neural population, it only 

alters a small proportion of the neuron’s firing rate statistics.  

These results suggest that neural populations in M1 and PMd 

process information related to movement differently between 

execution and observation. 

I.  INTRODUCTION 

The observation of movement is believed to play an 

important role in motor processing and learning.  For 

example, observing movement is a key component of action 

understanding (e.g., [1], [2]) and imitation [3]. Further, 

evidence suggests that motor learning can be aided by 

mentally rehearsing a movement [4]-[7]. Several studies 

have suggested that “mirror neurons” found in the ventral 

premotor cortex (PMv) [6], [8], dorsal premotor cortex 

(PMd) [9] and primary motor cortex (M1) [10] of both 

monkeys [8] and humans [11], play an important role in 

motor processing and internalization during observation 

[12]. These mirror neurons are active during the observation 

and execution of goal-directed movements [13] and are 

thought to reflect motor processing and sensory 

consequences of actions that we perform or that are 

performed by others [13], [14].  Further, the activity of 

mirror neurons has been reported to be largely “congruent” 

between observation and execution in M1 and PMd. These 

congruent mirror neurons have similar statistics irrespective 

of whether the monkey is passively observing a movement 

or executing it [9]. In a prior study, where preferred 

direction was the key statistic of interest, congruent neurons 

were reported to constitute approximately 70% of M1 

neurons and 60% of PMd neurons. Amongst these neurons, 

the mean preferred direction differences were small, 

averaging less than 15 degrees.  We note that in this study, 

reaches were executed with a KINARM [9]. 

We wondered if mirror neuron congruence is also 

characteristic in a center-out-and-back task where the 

monkey moves his native arm freely to acquire targets in a 

virtual environment, as opposed to with a KINARM [15].  

Further, we were interested in assessing if the preferred 

directions of neurons exhibited similar behavior when reach 

statistics changed.  In particular, Churchland and colleagues 

reported that movement speed may change preparatory and 

reach preferred directions [16]. If neurons during movement 

observation behave congruently to neurons during 

movement execution, we would expect to see changes in 

preferred direction when movement observation speed 

changes. However, if this is not the case, it suggests that 

motor cortex may perform computation related to reach 

execution and observation differently. 

To address these questions, we recorded the same 

neural population from M1 and PMd within the same 

experimental session while a monkey was instructed to 

execute and observe movement.  We performed single 

neuron analyses to assess consistencies and differences 

between neural activity during movement execution and 

observation. We found that, for the center-out-and-back task, 

most neurons have different single neuron firing rate 

statistics between movement execution and observation. In 

addition, we found that at a single neuron level, the speed of 

the observed movement does not substantially alter neurons’ 

firing rate statistics, in contrast to results in movement 

execution [16].  
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II. METHODS 

A.  Neuron recording  

    All procedures and experiments were approved by the 

Stanford University Institutional Animal Care and Use 

Committee (IACUC). Experiments were conducted with an 

adult male rhesus macaque (J), implanted with two 96 

electrode Utah arrays (Blackrock Microsystems Inc., Salt 

Lake City, UT) using standard neurosurgical techniques. 

Monkey J was implanted 56 months prior to the 

experiments. One electrode array was implanted in M1 and 

the other in PMd, as estimated visually from local 

anatomical landmarks. 

The monkey was trained to make point-to-point reaches 

to targets in a 2D plane with a virtual cursor controlled by 

the contralateral arm or by a neural decoder [17].  The 

virtual cursor and targets were presented in a 3D 

environment (MSMS, MDDF, USC, Los Angeles, CA) 

described in [18]. Hand position data were measured with an 

infrared reflective bead tracking system (Polaris, Northern 

Digital, Ontario, Canada). Behavioral control and neural 

decode were run on separate PCs using the Simulink/xPC 

platform (Mathworks, Natick, MA).  Eye positions were 

recorded via ISCAN (ISCAN, Inc., MA) Neural data were 

initially processed by the Cerebus recording system 

(Blackrock Microsystems Inc., Salt Lake City, UT) 

according to specifications described in [18]. Spike events 

were detected by setting a threshold value to -4.5 times the 

RMS voltage of the channel.   

After thresholding the activity, we spike sorted the data 

via MKsort (https://github.com/ripple-neuro/mksort). We 

incorporated a criterion for determining single neurons based 

on interspike interval (ISI) violations, since sorting spike 

waveforms incorporates a subjective component. Our 

criterion was based on prior studies [19], [20] that only 

counted neurons that had ISI violations (< 3ms) more than 

3% of the time.  We also performed all analyses with less 

stringent ISI requirements (< 2ms more than 3% of the time, 

or no ISI requirements), and found no change in any 

conclusions. 

B. Trial selection during movement observation 

It is possible that during movement observation, the 
monkey ceases to pay attention to the moving cursor.  We 
addressed this in two ways.  First, the experimenter observed 
the monkey’s eye position throughout the duration of the 
experiment, and stopped the task if the monkey disengaged.  
Second, we only chose trials that met the following criteria: 
(a) the angle between the monkey’s eye position vector and 
cursor movement vector was less than 45º, (b) the length of 
monkey’s eye position vector was larger than half of the 
length of cursor movement vector.  Together, these selection 
criteria resulted in trials selected where the monkey’s eye 
movements were consistent with cursor movement. 

C. Bootstrap hypothesis test 

To test for significant differences in single neuron firing 

rate statistics, we performed a bootstrap hypothesis test. We 

first resampled the firing rate for a given direction, then fit a 

tuning curve using across all reach directions [21]. Suppose 

the two resampled data vectors are 𝑥  and 𝑦 , and we are 

interested in whether they have the same mean (null 

hypothesis, ℎ = 0 ).  We achieve this with the following  

method [22]: 

1. Mean subtraction: �̂� = 𝑥 − �̅�, �̂� = 𝑦 − �̅� 

2. Concatenation: 𝑐 = [�̂�, �̂�] 
3. Sample vectors 𝑚𝑖𝑥𝑥 and 𝑚𝑖𝑥𝑦 from 𝑐 with 

replacement; each vector comprises 1000 samples.   

4. Compute mean-centered bootstrap statistic: 

𝛥𝑐𝑡𝑟𝑙 = 𝑚𝑖𝑥𝑥 − 𝑚𝑖𝑥𝑦 , 𝛥𝑐 = 𝛥𝑐𝑡𝑟𝑙 − ∆̅𝑐𝑡𝑟𝑙 

5. Sample vectors 𝑟𝑒𝑎𝑙𝑥 and 𝑟𝑒𝑎𝑙𝑦  from 𝑥 and 𝑦 

respectively with replacement; each vector 

comprises 1000 samples.   

6. Compute statistic: 𝛥𝑟𝑒𝑎𝑙 = 𝑟𝑒𝑎𝑙𝑥 − 𝑟𝑒𝑎𝑙𝑦 

7. Calculate p-value: 𝑝 =
#(∆̅𝑟𝑒𝑎𝑙<𝛥𝑐)

1000
 

8. If 𝑝 < 0.05, then reject the null hypothesis (ℎ = 1) 

arguing for 𝑥 and y having different means, else do 

not reject the null hypothesis (ℎ = 0). 

D. Generative model to predict the reaching speed 

To decode reach speed from movement observation 

activity, we performed PCA on the high-dimensional neural 

firing rates 𝑦 = [𝑦1, 𝑦2, . . . 𝑦𝑛]  to avoid dimensions with 

low variability. Such dimensions may bias the classifier 

without appropriate regularization. The low dimensional 

data (which we refer to as the PC scores) is 𝒔 =
 [𝑠1, 𝑠2, . . . 𝑠𝑚], with 𝑚 < 𝑛, and the generative model is  

 

𝑘𝑟𝑒𝑠 = 𝑚𝑎𝑥𝑘  𝑃𝑟(𝑐 = 𝑘|𝒔) 

         = 𝑚𝑎𝑥𝑘  𝑝(𝒔|𝑐 = 𝑘)𝑃𝑟(𝑐 = 𝑘)        (𝟏) 

 

In this model, 𝑐 is a random variable denoting speed. The 

term 𝑝(𝒔|𝑐 = 𝑘)  is the density of the PC scores given a 

reach speed, and is assumed to obey a multivariate Gaussian 

distribution.  Its parameters (mean and covariance) are 

estimated by maximizing the likelihood of the observed PC 

scores, which corresponds to the empirical mean and 

covariance respectively.  We assume the covariance is 

diagonal and shared between classes.  

 
Figure 1. Behavioral task. (A) In execution of movement, the monkey 

controls the cursor with his hand. (B) In observation of movement, the 
monkey observes the cursor moving to each target while both arms are 

restrained. 
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III.  RESULTS 

We carried out experiments where a rhesus macaque 

performed a center-out-and-back task, as shown in Fig. 1. 

There were two conditions: either the monkey controls the 

cursor with his hand (execution) or observes the cursor 

moving while both of his arms are restrained (observation). 

To ensure the monkey was engaged in the observation task, 

we monitored his eye position during observation trials and 

only used trials where the monkey’s eye positions were 

consistent with the cursor’s start and end points.  During 

execution, the monkey performed reaches in the space in 

front of him with the cursor position tied to his hand 

position; the targets were perceived in the space in front of 

him as they were presented via a Wheatstone stereograph 

configuration, previously described (e.g., [17], [18]).  We 

recorded single neuron spiking activity from two Utah 

electrode arrays, implanted in M1 and PMd respectively. 

We recorded both observation and execution conditions in 

the same experimental session so that the recorded units 

were putatively the same between movement execution and 

observation.  After spike sorting, we recorded anywhere 

from 70 to 82 single units between experimental sessions.  

The following sections describe the single unit analyses and 

statistics of the neurons between observation and execution. 

A. A majority of neurons have different firing rate statistics 

between movement execution and observation 

As we recorded from the same putative population 
between movement execution and observation, we first 
analyzed the degree of consistency in the neurons’ firing 
rate statistics between conditions. In particular, we were 
interested in the extent to which the cosine tuning statistics 
were consistent in M1 and PMd activity during these tasks. 
It is worth noting that Tkach and colleagues studied a 
similar question in a random target pursuit task using a 
KINARM exoskeleton [15] and reported largely congruent 
activity during execution and observation [9]. Our task was 
different in that the monkey’s arm is free to move in the 
space in front of him. 

For each neuron recorded during movement execution 
and observation, we fit a cosine tuning model to the 

recorded neural activity during the center-out-and-back task 
[21]. We analyzed three statistics from the cosine tuning 
model: the neuron’s (1) mean firing rate, (2) modulation 
depth, defined as the maximum possible range of firing rates 
from the tuning curve model and (3) preferred direction, 
defined as the direction at which the tuning curve reaches its 
maximum firing rate. We then compared these statistics for 
the same neuron between movement execution and 
observation.  

Interestingly, we found that a large proportion of 
neurons had significantly different preferred directions 
between the observation and execution conditions in M1 and 
PMd. Concretely, 49.5% of neurons in putative M1 and 
60.0% of neurons in putative PMd had significantly 
different preferred directions (p < 0.05, bootstrap with 1000 
resamples, see Methods). Histograms of the preferred 
direction changes are shown in Fig. 2A. The average 
magnitude change in preferred direction was 105.1 degrees 
amongst these neurons, indicating that statistically 
significant changes in preferred direction could also be very 
large in magnitude. We did not find that PMd had 
substantially more congruent mirror neurons than M1, as 
may be expected because PMd is anatomically closer to 
PMv Area F5, an area reported to contain a substantial 
proportion of mirror neurons [23]. These results show that 
the proportion of mirror neurons with congruent activity is 
approximately half of the population. Our observations are 
less than what was previously reported in M1 and PMd, 
although this may be related to task differences [9]. 

Apart from preferred directions, we also observed that 
most neurons had different modulation depths ( 𝛥 ) and 
baseline firing rates (𝑟0 ).  We observed that modulation 
depth during observation was smaller than during execution 
(p < 0.05, bootstrap).  Across all neurons, the average 
modulation depth was 3.79 spikes/s less for movement 
observation than movement execution in putative M1, and 
3.54 spikes/s in putative PMd. These results are shown in 
Fig 2B. We found that these changes were statistically 
significant in 62.8% of neurons in putative M1 and 65.4% of 
neurons in putative PMd. We similarly found that 88.6% of 
neurons in putative M1 and 76.3% of neurons in putative 
PMd had statistically significant changes in baseline firing 
rate, with the average difference in baseline firing rate being 
4.86 spikes/s less for observation than execution across all 

 
Figure 2. (A) A polar histogram of the difference in preferred direction (PD) between movement execution and observation.  The 

grayscale indicates the proportion of neurons with a significant change in PD, with the color scale on the right. (B) Change in modulation 

depth. (C) Change in base firing rate.  
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Figure 3. (A) Classification of observation speeds, using all 

neurons.  Results are shown as a confusion matrix. (B) 

Classification using neurons without a significant change in 

preferred direction. (C) The polar histogram for the difference in 

preferred direction between different observation speeds. (D) The 

histogram for the difference in modulation depth(spikes/s) 

between different observation speeds. 

 

A Decoded speed

A
c

tu
a

l 
s
p

e
e
d

D

B

C
90

180

-90
0

0.2

0.4

0.6

0.8

1

Difference

P
ro

p
o

rt
io

n

0

0.1

0.2

0.3

0.4

0.5

0

-10 -5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0

0.2

0.4

0.6

0.8

1

neurons, as shown in Fig. 2C. Similar trends also held for 
the differences in variance and Fano factor between 
conditions, where 69.0% in M1 and 67.2% in PMd had 
significant changes in firing rate variance, and 43.2% in M1 
and 49.0% in PMd had significant change in Fano factor. 
Across all neurons, the firing rate variance was smaller and 
the Fano factor was larger for observation condition. 

B. Firing rate statistics during observation do not change 

substantially for different cursor speeds 

Churchland and colleagues found that preparatory 

preferred directions were modulated by movement speed  in 

a task where the monkey reached at two distinct speed 

ranges [16].  In the preparatory stage, around 32% of 

neurons in M1 and PMd had statistically significant changes 

in PD, with a mean of 39 degrees. Along these lines, we 

wondered if the neuron tuning statistics changed as a 

function of cursor speed during movement observation. If 

the mirror neuron system mimics the behavior of neurons 

during reaching, we may expect preferred directions to 

change across different observed movement speeds.  Thus, 

we performed an additional experiment where the cursor 

speed was varied across five different levels, with speeds 

ranging from 4.62 cm/s to 6.53 cm/s. The different speeds 

were presented in separate experimental blocks, each 

comprising approximately 150 total center-out trials. 

We first assessed if cursor speed was encoded in the 

firing rates of M1 and PMd during observation.  To decode, 

we used a Gaussian generative model on the principal 

components of the neural activity (see Methods).  We found 

that it was possible to decode the cursor speed far above 

chance from the neuron firing rates (Fig. 3A).  In particular, 

we decoded the correct speed 34.6% of the time (chance 

20%). These results indicate that the recorded neurons in M1 

and PMd encode the speed of the observed cursor. 

We next asked if this information was present in the 

single neuron firing rate statistics. Interestingly, when 

varying the cursor movement speed, we found that most 

neurons do not change their preferred directions (Fig. 3C).  

In particular, we found that 10.4% of neurons in M1 and 

8.6% of neurons in PMd had significant changes in preferred 

direction for different cursor movement speeds. Among 

these neurons, the maximal average change in preferred 

directions (across any two speeds) was 39.7 degrees.  These 

trends were similar for the modulation depth, where 10.4% 

of neurons in M1 and 7.1% of neurons in PMd had 

significantly different modulation depth. The average change 

in modulation depth was 0.72 spikes/s.  

This indicates that while observation speed information 

is indeed encoded in the neural population, it is not readily 

apparent at the single neuron level. As an additional control 

to ensure that the approximately 10% of neurons changing 

their preferred directions were not solely responsible for the 

speed encoding, we decoded movement observation speed 

after removing the neurons that significantly changed their 

preferred directions (no matter during which speeds pairs) 

and observed that we could still reliably decode movement 

speed.  In particular, when only considering neurons that do 

not changed their preferred direction, we decoded the correct 

speed 29.5% of the time (change 20%), as shown in Fig. 3B. 

This decoded speed is relatively modest due to a small 

proportion of neurons. However, population decoding results 

are often robust even when recording multi-units.  Although 

we still used sorted units, we also performed this decoding 

analysis using units with less stringent ISI violation 

requirements.  Concretely, in this population, the proportion 

of neurons with ISI violations less than 2ms more than 3% 

of the time is approximately 2% of the neurons.  With this 

population, we found that the decoded speed was with these 

sorted units was 43.5% and when considering neurons that 

did not change their preferred direction, was 38.2%.  These 

results indicate that speed is still strongly encoded, even 

amongst units that do not significantly change their firing 

rate statistics between movement observation and execution. 

Together, these results demonstrate that the behavior of 

single neurons during movement observation is qualitatively 

different than during execution. Single neurons have smaller 

changes in tuning curve statistics than what may be expected 

from their behavior during execution.  However, information 

about cursor speed is still encoded in the population.  These 

results argue that the behavior of the mirror neurons differs 

qualitatively between movement execution and observation. 

 

IV.  DISCUSSION 

Our results show that while neurons have a degree of 

congruent activity between movement execution and 

observation as previously reported, the activity of motor 

cortical neurons during the execution and observation of 

movement may differ in important ways. First, we found that 

a large proportion of neurons have statistically significant 
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changes in tuning curve parameters, including preferred 

direction and modulation depth. Given the Utah array’s 

random sampling of neurons, as well as its 400-micron 

electrode separation, this suggests congruent mirror neurons 

do not make up a majority of cells in layer 3 / 4 motor 

cortical circuits. Rather, many neurons behave incongruently 

between conditions. Another qualitative difference in 

activity between movement execution and observation is that 

cursor movement speeds during movement observation do 

not substantially alter firing rate statistics. This contrasts 

with prior observations during movement execution, where 

preferred directions change in greater proportion. 

These results have implications on the design of brain-

machine interfaces (BMIs) in how training sets are collected.  

In pilot clinical trials, human participants are instructed to 

imagine making reaching movements (e.g. [24]-[26]).  It is 

possible that the motor commands during imagination may 

have produced movement in the absence of motor injury. 

However, animal models used to develop algorithms for 

BMIs typically use able-bodied monkeys (e.g. [27]-[31]). In 

some instances, decoders are trained via movement 

execution and in others, via movement observation [32].  It 

is worth noting that our results contribute to a growing 

literature that decoders trained under these two paradigms 

may differ. While a limitation of animal models using 

movement execution incorporate proprioceptive feedback 

not present in a typical human BMI participant [33], activity 

during movement observation may differ substantially from 

imagined movements. For example, imagined movements 

may have produced muscle activity (as in movement 

execution) and have been shown to exhibit similar dynamics 

to macaque motor cortex during reaching [34].  

To this end, future work should analyze neural 

population dynamics underlying movement execution and 

movement observation.  For example, how do the dynamics 

of neural populations in M1 and PMd differ between 

movement execution and observation?  Several studies have 

assessed the dynamics of neural populations, which describe 

how the neural population modulates itself through time in 

lawful ways through its recurrent connectivity.  Recent work 

has resulted in concrete models of these dynamics [35]-[39]. 

In the motor system, these dynamics are predictive of 

movement generation [40]-[44]. For example, the dynamics 

describe how quickly one may make a reach [40] as well as 

if the reach was prepared or not [41]. 
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