
RESEARCH ARTICLE Neural Circuits

Considerations in using recurrent neural networks to probe neural dynamics

Jonathan C. Kao1,2

1Department of Electrical and Computer Engineering, University of California, Los Angeles, California; and 2Neurosciences
Program, University of California, Los Angeles, California

Submitted 9 July 2018; accepted in final form 7 October 2019

Kao JC. Considerations in using recurrent neural networks to
probe neural dynamics. J Neurophysiol 122: 2504–2521, 2019. First
published October 16, 2019; doi:10.1152/jn.00467.2018.—Recurrent
neural networks (RNNs) are increasingly being used to model com-
plex cognitive and motor tasks performed by behaving animals. RNNs
are trained to reproduce animal behavior while also capturing key
statistics of empirically recorded neural activity. In this manner, the
RNN can be viewed as an in silico circuit whose computational
elements share similar motifs with the cortical area it is modeling.
Furthermore, because the RNN’s governing equations and parameters
are fully known, they can be analyzed to propose hypotheses for how
neural populations compute. In this context, we present important
considerations when using RNNs to model motor behavior in a
delayed reach task. First, by varying the network’s nonlinear activa-
tion and rate regularization, we show that RNNs reproducing single-
neuron firing rate motifs may not adequately capture important pop-
ulation motifs. Second, we find that even when RNNs reproduce key
neurophysiological features on both the single neuron and population
levels, they can do so through distinctly different dynamical mecha-
nisms. To distinguish between these mechanisms, we show that an
RNN consistent with a previously proposed dynamical mechanism is
more robust to input noise. Finally, we show that these dynamics are
sufficient for the RNN to generalize to tasks it was not trained on.
Together, these results emphasize important considerations when
using RNN models to probe neural dynamics.

NEW & NOTEWORTHY Artificial neurons in a recurrent neural
network (RNN) may resemble empirical single-unit activity but not
adequately capture important features on the neural population level.
Dynamics of RNNs can be visualized in low-dimensional projections
to provide insight into the RNN’s dynamical mechanism. RNNs
trained in different ways may reproduce neurophysiological motifs
but do so with distinctly different mechanisms. RNNs trained to only
perform a delayed reach task can generalize to perform tasks where
the target is switched or the target location is changed.

artificial neural network; motor cortex; neural computation; neural
dynamics; recurrent neural network

INTRODUCTION

Recurrent neural networks (RNNs) have been employed to
model computation in neurophysiological tasks (Chaisang-
mongkon et al. 2017; Hennequin et al. 2014; Lukashin et al.
1996; Mante et al. 2013; Michaels et al. 2016; Miconi 2017;
Remington et al. 2018; Song et al. 2016, 2017; Stroud et al.

2018; Sussillo et al. 2015; Yang et al. 2019). In these studies,
the RNN is trained to perform tasks and reproduce empirically
observed behavior. Examples include an animal’s kinematics
or electromyography during a motor task or its psychometric
curve during a decision-making task. Furthermore, the RNN
can be trained so that its artificial neurons reproduce key
statistics of neurons recorded from experiments, both on the
single unit and population level. Training techniques to achieve
this include regularizing the network to avoid complex patterns
(Sussillo et al. 2015), introducing architectural constraints such
as Dale’s law (Song et al. 2016), and utilizing biologically
plausible learning rules, including those based on reinforce-
ment learning (Miconi 2017; Song et al. 2017). RNNs that
reproduce the behavior and key statistics of the neural popu-
lation have then been analyzed to propose mechanisms for how
recurrent computation occurs in cortical circuits (Chaisang-
mongkon et al. 2017; Mante et al. 2013; Sussillo and Barak
2013). RNNs may also generate hypotheses that can be tested
in future neurophysiological experiments (Chandrasekaran
2017).

The existence of a diversity of RNN training approaches,
hyperparameters, regularizations, and architectures that mean-
ingfully change artificial neuron motifs raises several ques-
tions. If these RNNs are to provide insight into neurophysiol-
ogy, it is important to consider how design considerations
affect their single-unit and population responses. For example,
how do hyperparameters, architectural constraints, and input
configuration affect the network’s neural population activity?
Can a variety of RNNs, each trained in a different way but
nevertheless bearing qualitative resemblance to empirical neu-
ral activity, employ different dynamical mechanisms? By “dy-
namical mechanism,” we are referring to dynamical properties
of the RNN, including attractors (also known as equilibrium or
fixed points) that change the RNN’s artificial unit activations to
produce a correct output (Chaisangmongkon et al. 2017; Mante
et al. 2013; Remington et al. 2018; Sussillo and Barak 2013).
What are key design considerations in using RNNs as in silico
models of cortical circuits?

We address these questions by varying commonly encoun-
tered design variables for RNNs on motor tasks. We then
assess how these changes affect the RNN’s single-unit activity,
population activity, and dynamics. Of the many design vari-
ables that may be considered, we vary 1) the nonlinear activa-
tion of the RNN, 2) rate and parameter regularization, 3)
network architecture to incorporate excitatory and inhibitory
units and Dale’s law, and 4) task input configuration. We chose

Address for reprint requests and other correspondence: J. C. Kao, 56-147H
Engineering IV Building, 420 Westwood Plaza, Box 951594, Los Angeles,
CA, 90095 (e-mail: kao@seas.ucla.edu).

J Neurophysiol 122: 2504–2521, 2019.
First published October 16, 2019; doi:10.1152/jn.00467.2018.

2504 0022-3077/19 Copyright © 2019 the American Physiological Society www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.

http://doi.org/10.1152/jn.00467.2018
mailto:kao@seas.ucla.edu


these design variables because they vary across prior literature.
We perform these comparisons for RNNs trained on a common
motor neuroscience task: the delayed reach task. We chose this
task because prior work in motor systems neuroscience has
proposed a concrete dynamical mechanism in the motor cortex
for this task (Afshar et al. 2011; Ames et al. 2014; Churchland
et al. 2006; Kaufman et al. 2014). Therefore, we are able to
make comparisons to neurophysiological results at the level of
single units, neural population activity, and dynamics.

In this work, we first make contributions in considering how
design choices affect the RNN’s ability to reproduce key

behavioral and neural features from experiments. From this, we
find that it is important to capture both single-unit and popu-
lation motifs. That is, it is possible to find artificial neurons that
resemble single-unit peristimulus time histograms (PSTHs) but
do not capture key population features in the neurophysiolog-
ical data. Furthermore, we show that distinct RNNs can resem-
ble neurophysiological data while using fundamentally differ-
ent dynamical mechanisms. We illustrate this idea in Fig. 1,
B–D, where similar neural population activity evolving in two
dimensions may arise from different dynamics (denoted by the
flow fields). We visualize the RNN’s dynamical equations and

A

B C D

E F G

Fig. 1. Illustration of sampling recurrent neural network (RNN) dynamics. A: toy example of an RNN with 3 example units. The units’ firing rate through time,
r(t), is plotted as a trajectory (blue) in 3 dimensions, but it largely evolves in a 2-dimensional plane indicated in red, defined by the vectors u1 and u2. B: inputs
may drive the trajectory slowly along a line attractor. Red dots denote stable attractors. C: dynamics may be strong and cause the trajectory to be strongly driven
to a stable attractor. D: trajectory may be driven along regions of bistability, with slow unstable attractors denoted by blue dots. E: for a given basis, defined
by u1 and u2, it is possible to project the RNN dynamics into a given plane. Here, we show a sampling rule where the values in orthogonal dimensions are set
to the trajectory values. An obstacle is that the trajectories sampled at 2 different times, t1 and t2, may have very different dynamics, indicated by the flow field
arrows in the red and green planes. F: if the dynamics are relatively smooth, 1 strategy to address this obstacle is to ensure the sampling planes, shown in red
and green, are close to each other. This is achieved by sampling the principal components. G: another approach is to sample dynamics in ‘dynamics relevant’
manifolds, where the views of the dynamics may not change as drastically depending on the sampling.

2505CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



attractors, finding that RNN input design can modify the
network’s dynamical mechanisms. A key contribution of this
work is to show that two RNNs, differing only in input design,
may both capture key features of empirical neural population
activity but do so with distinct dynamical mechanisms. To
distinguish between these distinct mechanisms, we assess the
robustness and generalizability of these RNNs.

MATERIALS AND METHODS

Description of RNN and training. An RNN is composed of N
artificial neurons (or units) that receive input from Nin time-varying
inputs u(t) and produce Nout time-varying outputs z(t). The RNN
defines a network state, given by x(t)��N; the ith element of x(t) is
a scalar describing the “currents” of the ith artificial neuron. The
network state is transformed into the artificial neuron firing rates (or
network rates) through the transformation:

r�t� � f�x�t��, (1)

where f(·) is an activation function applied elementwise to x(t). The
activation function is typically nonlinear, endowing the RNN with
nonlinear dynamics and expressive capacity. In this work, we consider
the activation functions:

• f (x) � tanh(x).
• f (x) � max(x, 0), also known as the rectified linear unit or relu(·).
• f (x) � max(x, �x), with � � 0.01 in this work. This is also

known as the leaky relu.
• f (x) � log[1 � exp(x)], also known as the softplus function,

which is a smooth and differentiable function that resembles relu.
In the absence of noise, the continuous time RNN is described by

the equation

�ẋ�t� � �x�t� � Wrecr�t� � Winu�t� � brec, (2)

where � is a time constant of the network, Wrec��N � N defines how
the artificial neurons are recurrently connected, brec��N defines a
constant bias, and Win��N�Nin maps the RNN inputs onto each
neuron. We note that Eq. 1 can also be used to calculate the dynamics
of the network rates, ṙ(t). This quantity is useful because it describes
how the network rates evolve through time. In neurophysiological
studies, this is equivalent to calculating the dynamics of the
recorded neuron firing rates (Churchland et al. 2012; Kao et al.
2015).

The output of the network is given by a linear readout of the
network rates, i.e.,

z�t� � Woutr�t�, (3)

where Wout��Nout�N maps the network rates onto the network out-
puts. We trained the RNN to minimize the mean-square error between
its output, z(t), and a desired output, zdes(t). In addition to this
objective, we included several regularizations to improve training. In
particular, we regularized the L2-norm (Euclidean norm) of Win, Wrec,
and Wout to penalize larger weights. We also regularized the L2-norm
of r(t) across all time, as was done in Michaels et al. (2016) and
Sussillo et al. (2015) to penalize larger rates, which are not encoun-
tered in biological neurons due to their refractory period. We later
report that this regularization has an important impact on firing rates
during movement preparation. Finally, we incorporated gradient clip-
ping and the regularization proposed by Pascanu and colleagues
(2013) to ameliorate vanishing gradients. Training was performed
using gradient descent, with gradients calculated using backpropaga-
tion through time. For gradient descent, we used the Adam optimizer,
which is a first-order optimizer incorporating adaptive gradients and
momentum (Kingma and Ba 2015). In some simulations, we also
incorporated an 80:20% ratio of excitatory-to-inhibitory neurons that
followed Dale’s law, using the technique described in Song et al.

(2016). Finally, because reaching behavior is highly stereotyped, we
allowed training to continue until the coefficient of determination in
kinematic reconstruction on validation data exceeded R2 � 0.997.

Analyzing RNN dynamics. The RNN’s dynamics are fully observed
and described by Eq. 2. Therefore, we have an equation that precisely
describes how the network’s state evolves over time, enabling us to
quantify dynamical properties of the RNN. In this work, we focus on
quantifying the RNN’s attractors, which are the network states, x, for
which ẋ(t) � 0 for all t. That is, we aim to solve

�x � Wrecr � Winu � brec � 0,

for a particular input configuration u and with r � f (x) (dropping the
time index). RNNs may have multiple attractors; furthermore, the
relationship between ẋ and x is nonlinear, in general precluding an
analytical solution. We identify the attractors through numerical
optimization over vectors x, �, �N using the technique described in
Sussillo and Barak (2013). That is, we identify attractors by first
solving the following optimization problem:

min
x

q(x), (4)

where we define

q(x) �
1

2
� ẋ(t)�2

for convenience. We designated the minimizer, x, of q(x) to be an
attractor if q(x) was below a small threshold value to account for
numerical considerations. This small threshold varied on RNN anal-
ysis. We trained two classes of RNNs in this work, described later.
‘Sustained RNNs’ utilized a threshold less than 2 � 10�8, and ‘pulsed
RNNs’ utilized a threshold less than 5 � 10�8. Because these values
are not zero, we do not call these fixed points but utilize the
terminology ‘attractor’ to refer to an RNN state, characterized by slow
dynamics, that the RNN converges to. For example, we later describe
a preparatory RNN attractor during the delay period of the trained
task. When we extended the delay period to be much longer (e.g., 100
s, two orders of magnitude longer than any delay period in training),
the RNN stays at the same attractor region, and the output does not
change (data not shown).

The optimization problem in Eq. 4 is equivalent to

min
x

1

2
��x � Wrecr � Winu � brec�

2.

These attractors are calculated over epochs within a task (e.g., delay
or movement epoch) under that epoch’s corresponding inputs, u. We
solved this unconstrained minimization problem using a Newton
conjugate gradient algorithm, also known as a truncated Newton
method (Nocedal and Wright 2006). To ameliorate the curse of
dimensionality in searching a large volume in �N, we initialized the
optimization in regions of interest. These regions are in the neighbor-
hood of x(t) when simulating the network with typical training inputs.
We performed this optimization 1,000 times for each attractor anal-
ysis, each time initializing x to one of 1,000 different sampled x(t)
PSTHs over the course of many trials. After determining an attractor,
x, we assessed whether the attractor was stable following the heuristic
of Sussillo and Barak (2013). That is, we determined an attractor to be
stable if, after repeated optimizations, RNN network states empiri-
cally converged to these attractor regions. We denote these stable
attractors as red circles. If attractors were not stable, then we denoted
them with blue circles; this could refer to saddle points or repellers.

Visualizing RNN dynamics. The RNN’s dynamics are fully de-
scribed by Eq. 2. Thus, one may qualitatively assess the RNN’s
dynamics by visualizing this equation and considering the RNN’s
attractors. However, in most scenarios, the RNN is composed of a
relatively large number of neurons, N (e.g., typically N � 100). By

2506 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



treating each artificial neuron as an independent dimension, this
implies that ṙ(t) is N-dimensional and therefore not trivial to visualize.
One way to address this problem is to consider that in many scenarios,
not unlike what is observed in neural population activity in motor
cortex (Cunningham and Yu 2014; Yu et al. 2009), the dimensionality
of the N-artificial neurons is correlated and can thus be adequately
described in a D-dimensional subspace, where D � N. Hence, al-
though the dynamics implemented by the RNN cannot be visualized
in a straightforward manner if N is large, it may be possible to do so
if the dynamics can be appropriately sampled in D � 1–3 dimensions.

There are important considerations in visualizing dynamics in a
low-dimensional subspace. The primary consideration is that the
dynamics in any D-dimensional projection will differ depending on
the activity in the remaining N�D dimensions. Hence, depending on
the values the network rates take on in the remaining N�D dimen-
sions, the visualized dynamics may differ in a minor or significant
way. To illustrate this concept, consider the three-dimensional exam-
ple shown in Fig. 1A. As shown in Fig. 1A, we can measure the firing
rates of each artificial neuron for a given input and plot the trajectory
of r(t) in 3 dimensions, where each dimension is defined by the
activity of one artificial neuron.

In Fig. 1E, we introduce the notion of projecting the RNN dynam-
ics into a given subspace. Consider an orthonormal basis given by
U3 � [u1 u2 u3], where each ui��N and U3

TU3 � I. We can define a
two-dimensional trajectory by projecting the network rates into the
subspace spanned by U2 � [u1 u2]. The low-dimensional trajectory in
this subspace is given by

s(t) � U2
T�r�t� � �� , (5)

where � is the mean of r(t) across time, and its dynamics can be
calculated as

ṡ(t) � U2
Tṙ(t) (6)

�U2
T f�x�t� � ẋ�t� 	t� � f�x�t��

	t
. (7)

However, this sampling rule is naïve in the following way: in Fig. 1E,
we consider the trajectory at times t1 and t2, denoted by r(t1) in red
and r(t2) in green, respectively. If the trajectory r(t) has significant
variance along u3, the dynamics may be very different (e.g., at time t2,
illustrated by the green plane). This is because

ṙ(t) � U2ṡ�t� � u3u3
Tṙ�t�;

thus, the low-dimensional dynamics embedded in the high-dimen-
sional space (given by U2ṡ(t) and plotted as the flow-field trajectories
in Fig. 1E) may change if u3

Tṙ(t) is large. We note that it is possible to
sample the dynamics accurately at any single time point t because the
component of r(t) in the orthogonal complement of UD is known.
Hence, it is possible to visualize local dynamics over time in a movie
by resampling the low-dimensional dynamics at every time t for a
given UD; such a movie is shown in Supplemental Movie S1 (see
https://doi.org/10.5281/zenodo.3422566).

To address the changing dynamics, we propose two heuristics to
find the low-dimensional subspace, UD (where D is the number of
dimensions), to sample RNN dynamics. We wish to find a matrix UD

with D-orthonormal columns so that UD
T UD � I. UD defines the

subspace where we will visualize the network rates r(t) as well as their
dynamics ṙ(t). With this definition,

PD � UDUD
T

is a projector matrix into the subspace spanned by UD. To create a
meaningful dynamical portrait from which it may be possible to glean
intuition as to how the RNN performs a given task, the subspace
should capture meaningful variance in the data as well as a faithful

view of the dynamics. We enumerate the following two heuristics to
sample these dynamics:

1. Intuitively, the components of r(t) along the remaining N�D
dimensions should not change dramatically. In this manner, the
sampled D-dimensional subspace is approximately the same
across time. In the context of Fig. 1F, this corresponds to the red
and green subspaces being relatively close to each other. As-
suming a smoothness in the RNN dynamics, if this separation is
sufficiently small, the dynamics will not change drastically. This
smoothness assumption is valid for the hyperbolic tangent (tanh)
and softplus nonlinearities, but not for the relu or leaky relu
nonlinearity at x(t) � 0. This projection has the added benefit of
finding the projection that maximizes the projected data vari-
ability UD

T r(t). Formally, this projection can be found by maxi-
mizing the variance of UD

T r(t). The solution of this optimization
is called principal components analysis, where UD corresponds
to the first D left singular vectors of [r(1) r(2) . . . r(T)], with T
being the horizon of the data.

2. Intuitively, the projected dynamics in ‘dynamics relevant’ di-
mensions ought to be oriented in similar directions over the
course of the epoch. This reflects that the dynamics will not vary
significantly over the course of the epoch, as illustrated in Fig.
1G. This may be achieved by optimization of an appropriate loss
function over Stiefel manifolds. We have included one example
of such an optimization to demonstrate the application of this
technique, although for this work, we find heuristic 1 sufficient.
In this example, in addition to minimizing a change in dynamics,
we constrain the projection to capture a significant proportion of
the PSTH variance. We constrained the manifold to capture at
least 0.4 of the PSTH variance. For convenience, we let 	
denote the covariance matrix of the PSTHs, so that Tr(	) is the
total PSTH variance. In optimization, we first normalized all
projected dynamics, i.e., we calculated

y�t� �
UD

T ṙ�t�
�UD

T ṙ�t��
.

The task we trained on has a delay, move, and hold epoch
(described further below), where dynamics may differ. If we
define tdelay � {t: t � delay epoch} and analogous definitions
for tmove and thold, then the optimization problem we solved
is:

min
UD

�� max
i,j�tdelay,i
j

y�i�Ty� j� � max
i,j�tmove,i
j

y�i�Ty� j�
� max

i,j�thold,i
j
y�i�Ty� j��

subject to

UD
T UD � I

Tr�UD
T � UD� � 0.4Tr�� �

This is an optimization over Stiefel manifolds, which we
performed using the pymanopt toolbox (Townsend et al.
2016). We incorporated the constraint into the objective via
the log-barrier method (Boyd and Vandenberghe 2004). In
this manner, these dimensions minimize the largest angles
between dynamics within each epoch, so that within each
epoch the dynamics are similar in the projected manifolds. We
show an example of this projection in Fig. 7, E–H.

In this work, we found that heuristic 1, projection along principal
components, was sufficient for our analyses. Although we also per-
formed an optimization under heuristic 2, we found that this did not
affect any conclusions. After finding UD, we visualized the network
rates and their dynamics by using Eqs. 5 and 6 (and substituting UD

for U2), respectively.
We note that visualizing RNN activity in low-dimensional projec-

tions primarily provides intuition regarding the RNN’s dynamics. It is

2507CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.

https://doi.org/10.5281/zenodo.3422566


also worth noting that when we compute attractors, we do not do this
in the low-dimensional space. Rather, we optimize to find attractors in
the full-dimensional space and subsequently project the attractor
location into the low-dimensional space to visualize it.

RNN task and training. We trained the RNN on a variant of the
delay task used by Ames and colleagues (2014). This study proposed
a specific dynamical mechanism that we sought to probe with RNNs.
In this task, a monkey is instructed to hold a center target. After
holding the center target for 700–1,100 ms, a peripheral target is cued
in one of 8 locations uniformly spaced on a circle, 45° apart beginning
at 0°. The monkey continues to hold the center target while planning
to reach to the cued target. After a random delay period, ranging from
0�900 ms, the monkey is given a go cue and is allowed to perform
a reach to the prompted target. Upon reaching the target, the monkey
then holds the target for a 500-ms hold time to successfully acquire
the target, ending the trial. This task is diagrammed in Fig. 2A.

The RNN inputs were the target’s x-position, the target’s y-posi-
tion, and a go cue signal. Because we were interested in assessing the
effect of inputs on mechanism, we trained with two different go cue
configurations. In the sustained RNN (Fig. 2B, orange), the go cue
was encoded with a sustained signal indicating whether to withhold
movement (signal high) or not (signal low) as in prior studies
(Michaels et al. 2016; Sussillo et al. 2015). In the pulsed RNN, the go
cue was encoded as a transient pulse (decreasing from 1 to 0, then
increasing back to 1, as depicted in Fig. 2B), indicating that movement
could occur. This go pulse could correspond to when the animal is
cued that he may move by a transient cue (e.g., a brief and temporary
visual cue). This pulse may also be interpreted as reflecting that the
state of the task has changed so that the animal may now make a

reach, analogous to a signal that triggers movement (Erlhagen and
Schöner 2002; Kaufman et al. 2016). An additional motivation for
using the pulse is that prior tasks have used transient cues, such as
networks trained to process a transient movement instruction (Hen-
nequin et al. 2014) or a pulse (Remington et al. 2018). The RNN
transformed these inputs into four outputs: the x- and y-positions and
the x- and y-velocities of a desired trajectory. In this manner, the input
was three-dimensional, u(t) � �3, and the output was four-dimen-
sional, z(t) � �4. Our trained networks had 100 artificial neurons, so
that x(t), r(t) are 100-dimensional vectors, x(t), r(t) � �100.

Like in the study by Ames and colleagues (2014), we trained the
network with reaches having delay periods ranging from 0�900 ms
after a 700�1,100 ms center-hold period. After each delay period, we
had the network produce a reach following a fixed reaction time of
150 ms. After the reach transient, the network was then trained to
generate zero x- and y-velocities and appropriate final positions for a
hold period. Instead of a static 500-ms hold period used by Ames and
colleagues (2014), we allowed the hold period to be from any length
from 500–1,500 ms so that the network did not learn specific timings
(i.e., to use a region of slow dynamics for only 500 ms). We trained
the network to produce reaches to 8 targets uniformly spaced on a
circle. The targets were 45° apart beginning at 0°. In addition to these
delayed reaches, on 10% of trials, we introduced ‘catch trials’ to the
RNN where a target may not have appeared, or if it appeared, the go
cue was never given. In both instances, the network had to sustain
zero output.

In the task by Ames and colleagues (2014), there were also
occasional switch trials, where the target was switched on 20% of

A

B

Fig. 2. Delayed reach task and recurrent neural network (RNN) training. A: schematic of the RNN task used by Ames and colleagues (2019). For RNN training,
the hold time was allowed to be variable for anywhere from 500–1,500 ms so that the RNN did not learn to stay in a particular state for a specific time. B: example
(and representative) target inputs and outputs of the RNN. The RNN was trained until it achieved a coefficient of determination, R2 � 0.997, on the task. The
RNN outputs both a desired position trajectory and velocity profile. The sustained RNN encodes the go cue as a signal to withhold movement (1) or to allow
movement (0), whereas the pulsed RNN encodes the go cue as a transient cue that indicates a change in the state of the task (i.e., that the monkey can now execute
his planned reach).

2508 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



trials. After this target switch, the monkey was given a second delay
period ranging from 0�900 ms before the go cue was delivered. We
explicitly did not train on this task because we were interested in
assessing how the RNN would generalize to it. We also incorporate
trials to assess RNN generalization when the target is at an interme-
diate location [i.e., its radius is multiplied by a value � � (0, 1)].

Finally, we also quantified how closely artificial unit activity
resembled activity from real data recorded while macaques per-
formed a delayed reach task (Churchland et al. 2012). We note that
this delayed reach task incorporated more conditions than the eight
we trained on. First, for each artificial neuron, we report
rpm � �prep/�move, where �prep is the unit rate in the preparatory
epoch across all eight target conditions, and �move is the mean rate
in the movement epoch across all eight target conditions. This quan-

tifies the ratio between mean preparatory and mean movement activ-
ity; a larger value indicates that the network has more preparatory
activity. Second, we report rprep � �prep/�prep, where �prep is the
standard deviation of the preparatory epoch rates across all conditions.
This is a unitless quantity that is related to Fano factor (with standard
deviation, instead of variance, in the numerator). It quantifies the
variability in preparatory activity across conditions, normalized by the
mean activity. Third, we report the entropy of the distribution of
preferred directions over time in a preparatory epoch (200 ms pre-
ceding the go cue, Hprep) and the movement epoch (400 ms after the
go cue, Hmove). To calculate this entropy, for each artificial neuron,
we first approximated its preferred direction in every 10-ms bin across
the chosen epoch. This approximate preferred direction is the condi-
tion with the highest firing rate. We then determined the empirical
distribution of these approximate preferred directions, enabling us to
calculate the distribution’s entropy. In real neural data, Hprep is
relatively low entropy because preferred directions are largely static
across time in the preparatory period. On the other hand, Hmove is
relatively high entropy because neuron firing rates during the move
period are multiphasic, causing changes in preferred direction
(Churchland and Shenoy 2007; Churchland et al. 2010; Michaels et al.
2016).

RESULTS

Before delving into design choices, we found that it was
possible to train an RNN to capture key features of the neural
activity in a delayed reach task, as reported in prior studies
(Michaels et al. 2016; Sussillo et al. 2015). The hyperparam-
eters for this network are listed in Table 1. Figure 3A shows
PSTHs of artificial neurons for delayed reaches to eight dif-
ferent directions. These PSTHs plateau during the delay period
(Churchland et al. 2010; Michaels et al. 2016; Sussillo et al.
2015; Tanji and Evarts 1976; Weinrich et al. 1984), have

Table 1. Parameters used for RNN training

RNN Parameters Values

No. of units 100
Time constant (�) 50 ms
Discretization bin width 10 ms
L2 regularizer for Win (in) 1 � 10�3

L2 regularizer for Wout (out) 1 � 10�3

L2 regularizer for Wrec (rec) 1 � 10�3

L2 regularizer for r(t) (r) 1.9 � 10�3


 regularizer 2
Activation function tanh(·)
Initial learning rate (Adam) 1 � 10�4

Maximum gradient norm 0.2

The 
 regularizer is described further in the study by Pascanu et al. (2013)
as well as Song et al. (2016). This regularization term approximately preserves
the ratio of the backpropagated loss with respect to xt and xt�1, ameliorating
the vanishing gradients problem. Its value was chosen through a heuristic
hyperparameter search.

A B

C D E

Fig. 3. Sample peristimulus time histograms (PSTHs) and population trajectories of the recurrent neural network (RNN). A: example PSTHs of artificial neurons
in the RNN, where each color denotes one of the 8 reach conditions. The PSTHs achieve a stable firing rate in the preparatory period, followed by multiphasic
activity during perimovement. The condition with the highest firing rate may also change through time. B: proportion of variance captured by the principal
components. Five principal components (PCs) capture 90.8% of the PSTH variance, and 10 PCs capture 98.2% of the variability. C: PC1, capturing 43.7% of
the signal variance, demonstrates properties consistent with the condition-independent signal proposed by Kaufman and colleagues (2016). It is the largest
response component of the RNN rates but largely does not reflect movement type (until well after the go cue has been delivered). D: RNN rate trajectories in
the PC2 and PC3 axis with a delay period. For each reach condition, the trajectories reach a stable set of neural states before go-cue delivery. These are indicated
by the trajectory locations at the green dot. Adjacent conditions are topographically organized (0°: red, 45°: dark orange, 90°: orange, 135°: light orange, 180°:
yellow, 225°: light green, 270°: green, 315°: dark green). The gray part of the trajectory represents the baseline activity. E: trajectories (in bold) when the RNN
performs the task without a delay period. We also show preparatory trajectories from D, denoted by dotted lines. This shows that the preparatory neural states
are not obligatory, consistent with the findings of Ames and colleagues (2014). a.u., arbitrary units.

2509CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



substantial heterogeneity and multiphasic activity during peri-
movement (Churchland and Shenoy 2007; Churchland et al.
2010; Sergio et al. 2005), and change preferred directions over
time (Churchland and Shenoy 2007; Michaels et al. 2016),
reflected by the fact that the condition with the highest firing
rate is not the same across the entire trial. Figure 3, B–E, shows
that the artificial neural population also captures qualitative
observations from neurophysiologically recorded neural popu-
lations. We found that only 5 principal components (PCs) were
required to capture more than 90% of the PSTH variance, as
shown in Fig. 3B, demonstrating that the population is low
dimensional (Ames et al. 2014; Cunningham and Yu 2014;
Gallego et al. 2017; Gao and Ganguli 2015; Kao et al. 2015;
Sadtler et al. 2014; Yu et al. 2009). We also found that PC1,
capturing 43.7% of the PSTH variance, strongly resembled a
high variance condition-independent signal (Kaufman et al.
2016) (Fig. 3C), that artificial neural population activity had
topographic organization in the PCs (Santhanam et al. 2009)
(Fig. 3D), and that the neural population achieved a prepare-
and-hold state attractor (Churchland et al. 2006) (Fig. 3D), but
that this attractor was not obligatory (Ames et al. 2014)
because the trajectories (for trials with no delay period) do not
pass through the stable preparatory attractor (Fig. 3E).

Rate regularization and activation function affect prepara-
tory activity. Prior studies using RNNs to model motor cortex
use the hyperbolic tangent (tanh) activation function (Michaels
et al. 2016; Sussillo et al. 2015) or a variant of it (Hennequin
et al. 2014; Stroud et al. 2018). Recent studies have also used
the rectified linear unit (relu) nonlinearity to model various
decision-making tasks (Song et al. 2016, 2017). We note the
relu nonlinearity has proliferated in several engineering appli-
cations, in part due to the faster training times and that the
gradient of the relu is either zero or one, which is favorable for
backpropagation (He et al. 2016; Krizhevsky et al. 2012;
Szegedy et al. 2015). We found that the choice of activation
function impacts population preparatory activity during the
delay period. Preparatory activity captures a significant pro-
portion of neural variance. Typically, preparatory activity pla-
teaus to a stable level before movement onset (Churchland et
al. 2010; Michaels et al. 2016; Sussillo et al. 2015; Tanji and
Evarts 1976; Weinrich et al. 1984). In a dynamical systems
framework, the population preparatory activity evolves to a
subspace called the ‘prepare-and-hold’ state that is beneficial
for the upcoming reach (Afshar et al. 2011; Ames et al. 2014;
Churchland et al. 2006).

Given its prior use in RNN models of motor cortex, we first
considered the hyperbolic tangent nonlinearity. Interestingly,
we found that rate regularization (weighted by r) was impor-
tant for achieving population preparatory activity that was
qualitatively consistent with neurophysiological data. When
rate regularization was relatively small, we found that artificial
neurons in the RNN had little population preparatory activity
(Fig. 4A, leftmost panel). This can be observed by recognizing
that population activity at the time of the go cue essentially
overlapped with population activity at target onset. This solu-
tion is not unreasonable because the RNN’s outputs remain
zero during both the baseline and preparatory epochs. Al-
though target information is available to the RNN in the
preparatory period, it does not necessarily have to act (i.e.,
change its state) upon this information until the go cue is given.

The RNN can therefore delay processing target information
until the go cue is given and still successfully perform the task.

We found that, for the hyperbolic tangent nonlinearity,
increasing rate regularization increased the amount of popula-
tion preparatory activity in the network. This is shown for
several values of r in the remaining panels of Fig. 4A and
summarized by Fig. 4B, which shows the ratio of lengths
between the preparatory trajectory and the movement trajec-
tory. The trajectory ratios are calculated in the high-dimen-
sional artificial neuron activity space and not in the low-
dimensional PCs. By observing the PSTHs of the activity at
different levels of regularization (Fig. 4E), we find that rate
regularization causes the rates to achieve 1) smaller overall
peak values and 2) intermediate activations in the preparatory
epoch. In this manner, rate regularization causes the tanh RNN
to have stronger preparatory dynamics, effectively partitioning
computation into two segments: preparatory dynamics (driving
the activity to a attractor, denoted by the green dots in Fig. 4A)
followed by movement dynamics (trajectory after the green
dot). This is most apparent in the rightmost panel of Fig. 4A.
This population activity is consistent with what is qualitatively
observed in motor cortex (Afshar et al. 2011; Ames et al. 2014;
Churchland et al. 2006).

We found that increasing rate regularization does not always
result in more population preparatory activity. In fact, when we
used the relu activation, we observed that the network finds a
solution that has little preparatory activity on the population
level, irrespective of r (Fig. 4C; trajectory lengths summa-
rized in Fig. 4D). We note that this was not because rate
regularization was not ‘active’ due to other regularizations
dominating the optimization cost; in fact, when we removed all
regularization except rate regularization, the networks still had
units with very little population preparatory activity across 4
orders of magnitude (from r � 10�3 to r � 1). PSTHs of the
tanh and relu RNNs are shown in Fig. 4, E and F. For relu
RNNs in Fig. 4F, we observe that although the maximum rate
may decrease as r increases, the preparatory activity does not
appear to increase in across-condition variability relative to
movement activity. Furthermore, we point out that it was not
the case that units with preparatory activity were absent in the
relu network. Rather, Fig. 4F demonstrates that it was pos-
sible to find relu units that had preparatory activity. How-
ever, when quantifying the degree of preparatory activity in
tanh units, relu units, and real data, we observed that relu
units were skewed toward having less preparatory activity
relative to movement activity (rpm, Fig. 5A). Next, when
quantifying the amount of preparatory variance across con-
ditions (rprep), we found that tanh units more closely
matched the real data distribution, whereas relu units had a
longer tailed distribution, reflecting low firing rate units
(Fig. 5B). Finally, when analyzing the preferred directions
of the units across time, we found that the tanh network had
stable preferred directions in the preparatory period and
changing preferred directions in the movement period, as
observed in empirical data (Churchland and Shenoy 2007;
Churchland et al. 2010). This was not the case for relu units,
which had variable preferred direction in the preparatory
epoch as a result of low firing rates. Both the tanh and relu
units demonstrated high preferred direction entropy in the
movement epoch, consistent with real data.

2510 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



Together, these results suggest that the relu RNNs do
worse than the tanh RNNs at capturing key features in the
neurophysiological activity at both the single-unit and pop-
ulation levels. Furthermore, we stress that when considering
RNNs to model neurophysiological tasks, it is important not
only to find single-unit examples that resemble physiologi-
cal activity, but also to capture population-level features.

Some relu RNN units had preparatory activity, but relu RNN
units on the population level did not capture key features of
preparatory activity.

Effects of other hyperparameters on RNN preparatory
activity. Given the effect of rate regularization on the RNN’s
activity, we also considered how other regularizations, ac-
tivation functions, and training constraints affected the net-

A B

DC

E

F

Fig. 4. Rate regularization increases population preparatory activity in hyperbolic tangent (tanh) but not rectified linear unit (relu) RNNs. A: population
trajectories of tanh recurrent neural networks (RNNs) in principal components (PCs) 2 and 3 (analogous to Fig. 3D) for different values of r, which weights
the L2 norm penalty on the rates. As r increases, the preparatory trajectory becomes larger relative to the movement trajectory. B: ratio of the preparatory
trajectory length (in all N-dimensions, not only in selected PCs) divided by the movement trajectory length. As r increases, the preparatory trajectory length
becomes relatively larger. Error bars are standard deviations across 8 separate RNNs trained at each value of r. C: same as A but for relu. As r increases, there
is not a noticeable increase in population preparatory activity. D: same as B but for relu. E: peristimulus time histograms (PSTHs) for the same neuron in a tanh
RNN across 7 different levels of regularization for a tanh RNN. The region highlighted in gray corresponds to preparatory activity. The neuron is the ‘same’
across all networks in the sense that we initialized the networks in the exact same way, with the same random seed, and they only differed in the amount of rate
regularization. We found that each unit across the different RNNs shared similar motifs under this training process. In general, as rate regularization increases,
the units have more preparatory activity relative to movement activity. F: PSTHs for the same neuron in an RNN across 8 different levels of regularization for
a relu RNN. In general, even as rate regularization increases, the units have similar levels of preparatory and movement activity. We note that several relu units
do have significant preparatory activity (e.g., third row).

2511CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



work’s preparatory activity. First, we varied the L2 regular-
ization strength for Win (given by in), Wrec (rec), and Wout
(out) in tanh RNNs. Over 6 orders of magnitude, we saw
that modifying in, rec, and out did not have a substantial
effect in increasing the RNN’s population preparatory ac-
tivity, except when in was on the order of 1 (Fig. 6A). Thus,
it may be possible to use a large in to achieve larger
preparatory trajectories. It is worth noting that when we
used in � 1, there was noticeable degradation in the RNN’s
performance in producing desired outputs. Overall, we

found that the L2 parameter regularization did not have as
strong an effect on the network’s preparatory activity as
varying r. Second, although studies have primarily used
either the tanh (Chaisangmongkon et al. 2017; Mante et al.
2013; Sussillo et al. 2015), a variant of tanh (Hennequin et
al. 2014; Michaels et al. 2016; Stroud et al. 2018; Sussillo et
al. 2015), or the relu activation function (Song et al. 2016,
2017), we assessed whether other activation functions used
in deep learning, in particular the leaky relu and the softplus
(Yang et al. 2019) activation functions, would achieve

A B

C D

Fig. 5. Hyperbolic tangent (tanh) units have preparatory activity more consistent with data. A: rpm histograms for a tanh recurrent neural network (RNN) (green)
and a rectified linear unit (relu) RNN (red). We also calculated rpm for real data shown in the blue line. The real data has a longer tailed distribution than the
relu, which has a majority of cells without substantial preparatory activity. The tanh network, on the other hand, does achieve intermediate rpm more consistent
with the real data. B: rprep histograms. The tanh RNN more closely resembles the distribution of the real data compared with the relu network. C: preferred
directions over time for the tanh network. Each row corresponds to a neuron, and the x-axis represents time relative to the go cue (in ms). Each color corresponds
to 1 of the 8 unique target reach conditions, and the color shown is the condition whose firing rate is highest. We observe large stability in the firing rates before
the go cue (low entropy), but shortly after, we see preferred directions changing (high entropy). The reported entropies are averaged across all artificial units.
This is consistent with prior results. D: same as C but for the relu network. Prior to the go cue, the preparatory periods are changing (in part because preparatory
firing rates are very low for some units in relu networks), resulting in a high preparatory entropy.

C DBA

Fig. 6. Effects of selected hyperparameters on preparatory activity. A: for a hyperbolic tangent (tanh) recurrent neural network (RNN), varying the L2

regularization strength for Wrec, Wout, and Win does not substantially increase population preparatory activity in the network, except for when Win is regularized
very strongly (in � 1). B: varying the rectified linear unit (relu), leaky relu, and softplus activation function across different r does not substantially increase
population preparatory activity in the network. We note that at r � 1 for the softplus activation, there was a noticeable degradation in the network’s trained
performance (R2 � 0.89). C: trajectories for a tanh RNN trained with a constrained architecture having 80% (20%) excitatory (inhibitory) units and obeying
Dale’s law. The average preparatory-to-movement ratio is 0.074, significantly less than for the unconstrained networks. D: same as C but for a relu RNN. The
average preparatory to movement ratio is 0.026, significantly less than for the unconstrained networks.

2512 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



increasing preparatory activity with varying r. As shown in
Fig. 6B, we found that when sweeping r over a large range,
the leaky relu and the softplus networks did not have
substantially more preparatory activity with increasing r.
This behavior resembles relu RNNs and contrasts tanh
RNNs.

We also trained networks incorporating 80% excitatory units
and 20% inhibitory units, following Dale’s law (Song et al.
2016). We did not constrain the weights of Win and Wout to be
strictly positive. This is because there are several stages of
processing between task inputs to the motor cortex, as well as
between motor cortex and kinematics. For example, it need not
be the case that all excitatory neurons in the RNN decrease
their activity in response to the go cue. Rather, a study found
that putative excitatory and inhibitory neurons in motor cortex
both increase or decrease their firing rate following the go
cue (Kaufman et al. 2013). We found that these constrained
architectures had less preparatory activity in the population
than the unconstrained architectures across both tanh and
relu activity. The average ratio of trajectory lengths between
preparatory and movement activity, for r � 1.9 � 10�3,
was 0.074 in tanh RNNs and 0.026 in relu RNNs, both of
which are smaller than that of unconstrained networks (Fig. 6,
C and D). We found that constrained tanh RNNs still had more
preparatory activity than constrained relu RNNs. We also
found that the dimensionality of the constrained RNN was
smaller than the unconstrained, with 5 (10) dimensions captur-
ing 96% (98.9%) of the PSTH variance in the tanh network.
These results suggest that even though we are incorporating
additional information about excitatory and inhibitory units
and Dale’s law into the RNN’s architecture, the RNN does not
necessarily increase its preparatory activity. For the rest of this

work, we analyze RNNs with unconstrained architecture, using
the parameters in Table 1. These RNNs utilize the tanh acti-
vation with rate regularization r � 1.9 � 10�3 because it
achieves excellent behavior and resembles neural population
activity observed in motor cortex.

RNN dynamics in the sustained RNN during a delayed reach
task. We next visualized the dynamics of the RNN (see
MATERIALS AND METHODS) as displayed in Fig. 7. We also
visualized the stable attractor regions of the dynamics by using
the approach of (Sussillo and Barak 2013). We emphasize that
these attractors were computed in the N-dimensional RNN
state-space and subsequently visualized via projection into the
low-dimensional subspace (see MATERIALS AND METHODS). We
do not calculate attractors in a low-dimensional space; in
general, these do not correspond to attractors of Eq. 2. We
found that the RNN implemented a mechanism that can be
interpreted as a composition of input-dependent dynamics to
single stable attractor regions. These single stable attractor
regions were the only attractor regions found by our optimi-
zation procedure (see MATERIALS AND METHODS). Key features of
this mechanism were proposed by Ames and colleagues (2014)
to describe neural population activity during a delayed reach
task. In particular, Ames and colleagues (2014, 2019) proposed
two principal dynamical systems: a ‘preparatory’ dynamical
system implicated in planning a reach to a desired target, and
a ‘movement’ dynamical system corresponding to the execu-
tion of the reach after the go cue is delivered. The preparatory
dynamical system has a stable attractor corresponding to each
prompted target. The neural state converges to this attractor,
the prepare-and-hold state, during the delay period. This state
is a favorable initial condition for the subsequent movement
(Afshar et al. 2011; Churchland et al. 2006). When the go cue

A B C D

E F G H

Fig. 7. Composition dynamical mechanism. A: delay period trajectory in principal components (PCs) 2 and 3. The gray portion of the trajectory corresponds to
the baseline period of the task. The blue portion of the trajectory corresponds to the delay period of the task. The state converges along essentially linear dynamics
to a stable attractor (shown as a red dot). B: movement dynamics 200 ms after go cue onset. The green portion of the trajectory corresponds to the post go-cue
period of the task. The dynamics are strongly driven toward a single stable attractor region. There appear to be nonzero dynamics overlapping the attractor
because the trajectory is not in the same plane as the attractor (in orthogonal dimensions). C: movement dynamics 400 ms after go cue onset. The dynamics have
changed due to trajectory movement in the orthogonal dimension. D: approaching the hold period, we see that the dynamics converge on the stable attractor.
E–H: same as A–D but using heuristic 2 (see METHODS AND MATERIALS) to determine a ‘dynamics relevant’ projection. This projection has dynamics that have
consistent orientation in the movement epoch (F and G).

2513CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



is given, the movement dynamical system is engaged, causing
neural population trajectories associated with movement
generation.

We visualized the RNN’s dynamical equations to provide
qualitative intuition for how the RNN uses nonlinear dynamics
to perform the task. We found that during the delay period, the
RNN implemented dynamics analogous to the preparatory
dynamical system. Upon target presentation, the trajectories
were driven to a single stable attractor region, found by our
full-dimensional RNN attractor optimization, as in Fig. 7A.
This stable attractor location was target dependent. The
RNN achieved different preparatory attractors and dynamics
for a given target because the network’s dynamics at a given
time, ṙ(t), are modified by an input-dependent additive
factor, Winu(t). This input modifies the overall RNN dy-
namics, ṙt, and therefore the trajectory. This enables the
network to, before the go cue, instantiate different stable
attractor regions and preparatory dynamics for each
prompted target.

When the go cue was delivered, the changing input consid-
erably modified the dynamics. We found that these dynamics
drove the RNN state to a different stable attractor region,
analogous to the movement dynamical system. These dynam-
ics caused the RNN’s rate trajectories to move at relatively
high speeds, as shown in Fig. 7, B and C. In this manner, the
mechanism is not integration along slow points on a line
attractor (Mante et al. 2013), but rather abrupt transitions from
stable attractor to stable attractor. A video of these dynamics is
shown in Supplemental Movie S1. We also have included, in
Fig. 7, E–H, the same projections visualized using heuristic 2
in the MATERIALS AND METHODS (see Visualizing RNN dynamics).
In particular, the projections in Fig. 7, F and G, which corre-
spond to different times during the movement epoch, are more

similarly oriented than in the PC visualization of Fig. 7, B and
C. These types of strong dynamics that drive the network state
to stable attractors, illustrated in Fig. 1C, have been observed
in another study (Chaisangmongkon et al. 2017). An increase
in the speed of neural trajectories following the go cue is
consistent with experimental observations from dorsal premo-
tor cortex (PMd) and M1 (Afshar et al. 2011) (their Fig. 3C).
Note that when target presentation is simultaneous with the go
cue so that there is no delay period, the movement epoch
dynamics are immediately engaged and trajectories are driven
to its single stable attractor region. Because the preparatory
epoch dynamics have not been engaged for enough time, the
trajectories do not achieve the preparatory attractor, a phenom-
ena also observed in neurophysiological data (Ames et al.
2014).

RNNs qualitatively capturing neurophysiological motifs may
utilize different dynamical mechanisms. We next wondered if
task design considerations could produce RNNs that, while
looking qualitatively similar to neurophysiological data, utilize
distinct dynamical mechanisms. To assess distinct dynamical
mechanisms, we computed the stable attractor regions of the
full-dimensional RNN and subsequently visualized the RNN
dynamics to gain qualitative insight. We trained the pulsed
RNN described earlier to perform a delayed reach task using
the same hyperparameters as the sustained RNN. Our goal was
to assess whether the sustained and pulsed RNNs utilize the
same dynamical mechanisms. In the training set, the pulsed go
cue was delivered for 150 ms. This pulse may also be inter-
preted as reflecting that the state of the task has changed
(Remington et al. 2018) so that the animal may now make a
reach, analogous to a signal that triggers movement (Erlhagen
and Schöner 2002; Kaufman et al. 2016). We are not suggest-
ing that this pulse length would be reasonable for experiments;

A B C

D E F

Fig. 8. Principal components analysis for recurrent neural network (RNN) trained to perform a delayed reach task with a pulsed go cue. A: variance captured
by dimension. The first 5 principal components (PCs) capture 91.8% of the peristimulus time histogram (PSTH) variance and the first 10 PCs capture 98.6%
of the PSTH variance. B: PC1 of the RNN rates. PC1 contains a substantial amount of condition dependent information. C: PC2 of the RNN rates. D: PC3 of
the RNN rates. This dimension captures a large transient signal that is largely condition independent after the go cue. E: projection of PC2 and PC3 with a delay
period. The trajectories in the delay period reach a target-dependent stable region in state space and subsequently are strongly driven along trajectories associated
with movement production. F: projection of PC2 and PC3 shows that the delay period is not obligatory. The dotted traces are trajectories with a delay period,
and the solid traces are trajectories without a delay period.

2514 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



although we chose to use 150 ms, this pulse length can be
varied. The RNN was capable of performing the pulsed go-cue
task at the same level as the single attractor RNN (training
terminated when R2 � 0.997 on validation data, example
output trajectory shown in dark blue in Fig. 9A). Its recurrent
computation was similarly low dimensional, with 5 PCs cap-
turing 91.8% of the PSTH variance (Fig. 8A). This RNN also
bore hallmarks of neurophysiological responses, including
neural activity being organized topographically (Fig. 8E), the
trajectories achieving a ‘prepare-and-hold’ state in the delay
period (Fig. 8E), and that these states were not obligatory (Fig.
8F). We do note that condition-independent variance, although
present, appeared to be smaller in this network, with a large
proportion appearing in PC 3 (Fig. 8, B–D).

In this task design, the input during the delay period is the
same as the input during the movement period post go pulse.
Because the RNN’s parameters are fixed and the inputs are
equal, the attractors in the delay period (pre go pulse) and
movement period (post go pulse) are the same. Therefore, this
RNN cannot use a composition of dynamics to single stable

attractor regions. Doing so would imply that the delay and
movement periods must converge to the same stable attractor,
and hence the delay and movement periods would converge to
the same output under this mechanism. Such an RNN would be
unable to adequately perform this task. We note that although
we have chosen a pulsed go cue, a similar conclusion holds for
RNNs that use transient cues, such as the networks trained by
Hennequin and colleagues (2014) with a movement instruction
cue. Analogously, this network produced two different output
transients (prepreparatory and postmovement) for the same
input.

Although the trajectories in condition-relevant dimensions
demonstrate qualitatively similar trajectories to neurophysio-
logical data, how does the RNN dynamically achieve this, if
not by the mechanism used by the sustained RNN? To answer
this question, and recognizing that the RNN must be capable of
achieving two steady-state outputs, we pulsed the go cue to
determine what duration of go cue was required for the pulsed
RNN to settle to the correct final kinematics as opposed to
returning to the preparatory state kinematics (i.e., zero posi-

A B C

D E F

Fig. 9. A recurrent neural network (RNN) trained to perform a delayed reach task with a transient go cue. A: example output for an RNN that was trained on
a pulsed go cue task to make a reach to the target at 315°. The output is shown for pulsing the go cue at different lengths, denoted by different colors. When
the go cue is pulsed for greater than 85 ms, the RNN eventually outputs the correct final x- and y-positions. When the go cue is pulsed for 85 ms or less, the
RNN decays to incorrect final zero x- and y-positions. B: neural trajectories for the reach to the target at 315° for different length go pulses. The trajectories either
decay back to the preparatory state (left attractor region) or eventually converge to the stable attractor associated with movement generation (right attractor
region). Red circles denote stable slow regions of state space; blue circles denote unstable slow regions of state space. C: dynamics at the point of bistability.
A putative bistable axis, from inspecting dynamics, is illustrated in light purple. Left of the axis, dynamics drive the trajectory to decay back to the preparatory
attractor. Right of the axis, dynamics drive the trajectory to the attractor associated with the correct final output. D: the y-axis denotes the normalized final position
error (normalized so that the final position is 1). The x-axis denotes the standard deviation of independent zero-mean Gaussian noise added to the inputs. The
dotted line represents the performance of the pulsed RNN, and the solid line represents the performance of the sustained RNN. As input noise increases, the pulsed
RNN has worse final position performance. *Significant differences in the mean (bootstrap, 1,001 shuffles, P � 0.01). E: final positions to the 8 targets for RNNs
of both mechanisms when the input noise standard deviation is 0.1. Each dot represents the final position on a single trial. Both RNNs still generate relatively
accurate outputs. F: when the input noise standard deviation is increased to 0.2, the pulsed RNN has several trials where the final position decays back to the
center target, which is the kinematic output corresponding to the preparatory attractor. The hold time was increased to 2,000 ms to show this slow decay. Trials
that end at intermediate locations may reflect trajectories in slow regions of decay back to the preparatory attractor, as well as variable end points due to large
input noise. PC, principal component.

2515CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



tions and velocities). We delivered different input pulses, as
shown in Fig. 9A, and found that when the pulsed go cue was
delivered for less than 85 ms, the pulsed RNN produced
transient kinematics that decayed back to zero. However, when
the go cue was delivered for greater than 85 ms, the pulsed
RNN produced the correct final kinematic output correspond-
ing to the prompted reach. We note that this pulse length is
model dependent; training with a different pulse length would
also change the maximum pulse length for which the model
decays back to zero.

The pulsed RNN sets up two stable attractor regions. Our
full-dimensional RNN attractor optimization did not identify
any other attractors, suggesting that the pulsed RNN imple-
ments a bistable dynamical system. We visualized the trajec-
tories and dynamics, as shown in Fig. 9, B and C. One stable
state is associated with the preparatory period, analogous to the
prior RNN, where the RNN rates converge to during the delay
period. The second stable state is the region associated with
making a movement to the prompted target. In Fig. 9C, we
were able to visualize bistable dynamics associated with the
task. These bistable dynamics could be viewed in the projec-
tions of PCs 2 and 3. For intuition, we illustrate a putative
bistable axis, around which dynamics diverge in opposing
directions. The go-cue pulse drives the trajectory to this region
of bistability, and depending on the trajectory’s location, it will
either settle back to the preparatory state (with zero kinematic
output, i.e., left of the illustrated bistable axis) or settle to the
state associated with the correct kinematic output (i.e., right of
the illustrated bistable axis).

These results demonstrate that for trajectories having qual-
itative similarities to neurophysiologically observed data, dif-
ferent dynamics may be at play. We found that the employed
mechanism differed substantially from task input design (i.e.,
strongly driving trajectories to single attractors vs. implement-
ing a region of bistability). To evaluate these mechanisms, we
asked which mechanism was more robust to input noise, as
could occur from suboptimal processing of the task inputs. We
added independent zero-mean Gaussian noise to the inputs and
assessed the RNN’s performance as a function of the standard
deviation of the Gaussian noise.

We found that increasing the input noise affects the network
in at least two distinct ways. First, for both RNNs, because the
stable attractor region is input dependent, noisier inputs cause
the stable attractor region to be variable, resulting in greater
neural trajectory end-point variability and hence kinematic
end-point variability. We observed this effect, as end point
deviation increased with the standard deviation of Gaussian
noise, shown in Fig. 9D. Interestingly, however, we did not
observe a significant difference in performance between the
sustained and pulsed RNNs when the standard deviation was
less than or equal to � � 0.1, which is ~10% of the input signal
(P � 0.69, bootstrap with 1,001 shuffles). These variable
end-point positions, for � � 0.1, are shown in Fig. 9E. The
effect of input noise varying attractor location was similar in
both networks. Second, we found that for the pulsed RNN,
input noise may result in final positions closer to zero. For
sufficient noise, the RNN state may not cross the bistable axis,
resulting in eventual relaxation to the preparatory attractor. As
shown in Fig. 9D, when the standard deviation increased
beyond � � 0.15, the pulsed RNN had worse final end-point
performance than the single attractor RNN (P � 0.01, boot-

strap with 1,001 shuffles). By visualizing kinematic end points
when � � 0.15, we found that the RNN outputs are closer to
the (0, 0) output center position, consistent with relaxation to
the preparatory attractor. This demonstrates that in the pres-
ence of noise, RNN task performance will similarly degrade
until the point where noise causes the pulsed RNN’s state to
converge to the incorrect attractor. This suggests that for the
purposes of performing a delayed reach task, the sustained
RNN is more robust under input noise.

RNN generalization to new tasks. Finally, we assessed the
extent to which a qualitative understanding of the RNN’s
dynamics could inform task generalization. We believe this
is an important line of questioning for future RNN studies.
In particular, by constraining what tasks the RNN is trained
on, it is possible to comment on what dynamical mecha-
nisms are sufficient to carry out certain tasks. As an exam-
ple, can an RNN using the composition of preparatory and
movement dynamics generalize to perform a target switch
task? The target switch task is diagrammed in Fig. 10A. We
hypothesized this should be possible; indeed, Ames and
colleagues (2014) used a qualitatively similar dynamical
mechanism to describe how motor cortex performs a target
switch task. By training an RNN to only perform a delayed
reach task, we can assess whether this dynamical mecha-
nism is sufficient to enable the network to perform related
tasks it was not trained on. We considered three variants of
a target switch task, where the target switches at different
times: 1) before the go cue, 2) simultaneous with the go cue,
and 3) after the go cue. The first two were considered in
Ames et al. (2014), and the third was considered in Ames et
al. (2019).

Consider first the sustained RNN. When the target switch is
delivered before the go cue, the preparatory dynamical system
is changed from that associated with the before-switch target to
that of the after-switch target. As a result, the preparatory
stable attractor changes when the target is switched, and the
RNN’s rates will converge to the single stable attractor asso-
ciated with the switched target. When the go cue is then
delivered, the RNN will execute the reach as it did in a delayed
reach task. We found this was the case, as illustrated in Fig. 10,
B–E, mimicking the experimental results presented in Ames et
al. (2014). When the go cue is given simultaneously with the
target switch, this is analogous to performing a delayed reach
from a suboptimal initial condition. The network will achieve
the correct end behavior because when the go cue is delivered,
it must settle to the single stable attractor region of the
movement dynamical system, as shown in Fig. 10, F–I. How-
ever, there is the potential for initial aberrant kinematic activity
from initiating the movement dynamical system from the
attractor of an incorrect target plan. We found that this was not
the case, and indeed the RNN was able to carry out the target
switch task with no additional delay period, illustrated by
representative examples in Fig. 11A. Thus, the mechanism used
by the RNN to perform the delayed reach task generalizes to
perform two variants of the target switch task, even though it was
not trained on it. Analogous arguments apply to the pulsed RNN.
We found that, like the sustained RNN, the pulsed RNN also
generalized to the target switch task when the switch was deliv-
ered either at the same time or preceding the go cue, as shown in
Fig. 11A.

2516 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



We also considered a task when the target is switched after
the go cue. This task comprises an online corrective compo-
nent, where feedback of the arm’s kinematics play an impor-
tant role in updating motor commands to reach to a new target.
Although we did not account for this corrective component, we
nevertheless found that the open-loop RNN could reasonably
perform the task. This is shown in Fig. 11, B and C, where for
different lengths of time after the go cue, a target switch is
delivered in the middle of the trial. The RNN converges to the
correct final output, as expected, because it will converge to the
stable attractor location corresponding to the switched target
input. We found that even though there was not a corrective
feedback component and the target was abruptly changed, the
RNN made a smooth and reasonable trajectory between
targets.

For target switches after go cue, we found that the pulsed
RNN had poorer generalization in the presence of input and

recurrent noise. Recurrent noise is directly added to the net-
work’s state. We incorporated input noise and recurrent noise
into RNNs as they performed a task where the target switched
200 ms after the go cue. We found that, in general, the pulsed
RNN had poorer robustness to both input noise and recurrent
noise (Fig. 12, A and B) across varying levels of noise. In
particular, we found that the pulsed RNN especially performed
worse when the target switch was maximal at 180° (purple
lines in Fig. 12, A and B). The sustained RNN adequately
performed this task, being able to make diagonal corrections,
as shown in Fig. 12C. However, we found that the pulsed RNN
was not able to consistently perform this task (example trajec-
tories in Fig. 12D). One reason for poorer performance is that
on several occasions, the output trajectories began to correct in
the right direction but relaxed back to the zero position. This is
consistent with the RNN state not crossing the bistable axis and
relaxing back to the preparatory state attractor. These results

A

B C D E

F G H I

Fig. 10. Recurrent neural network (RNN) dynamics during a target switch task. A: schematic of the target switch task when the go cue is delivered either with
a delay or contemporaneously with the go cue. B–E: RNN dynamics during a target switch task, with an additional delay period to reprepare. B: preparatory
dynamics during the delay period (blue trajectory). C: dynamics during the switch period (red trajectory). The new target changes the stable attractor region, and
the dynamics drive the trajectory to this attractor. D and E: dynamics following the go cue, resembling the trajectory seen in Fig. 7, C and D. F–I: same as B–E
but when the go cue is given contemporaneously with the target switch.

2517CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



suggest that although both the sustained and pulsed RNNs are
capable of using their dynamical mechanisms to generalize to
target switch tasks, the sustained RNN has more robust gen-
eralization in the presence of noise.

Lastly, we also consider generalization to generate trajecto-
ries to targets that were not presented in the training set. To do
so, we scaled the radius of the targets by a scale factor, � � (0,
1), so that presented targets were closer than those in the
training set. Even when trained on targets of only one radius,
we found that both the sustained and pulsed RNNs were able
to scale down their output position and velocities, although
they tended to overestimate the desired output, as shown in Fig.
13, A and B. These results are consistent with the inputs
modifying the location of the target-dependent stable attractor,
enabling the network state to achieve a scaled down final
position and velocity profile. Interestingly, we also noticed that
the sustained RNN had superior generalization to the pulsed
RNN when the target radius was decreased, as shown in Fig.
13C. In particular, when the target radius decreased signifi-
cantly, we observed increased vacillation in the pulsed RNN
outputs. This observation is consistent with the two stable
attractors of the pulsed RNN becoming relatively close, so that

the network state moves around two adjacent regions of slow
dynamics. Together with the target switch task, these simula-
tions demonstrate that the sustained RNN generalizes more
effectively and is more robust to noise than the pulsed RNN.

DISCUSSION

RNNs, being an in silico circuit model that is fully observed,
are a promising tool to investigate mechanisms underlying
motor behavior (Hennequin et al. 2014; Michaels et al. 2016;
Sussillo et al. 2015), decision making (Chaisangmongkon et al.
2017; Mante et al. 2013; Song et al. 2017), and other neuro-
physiological tasks (Song et al. 2016). However, there are
important considerations when using RNNs to make conclu-
sions about cortical computation. Our results highlight two key
points: 1) it is not sufficient to demonstrate that RNNs have
artificial neurons that only capture key motifs at the single
neuron level, and 2) even networks that capture both single
neuron and population motifs in the data may use fundamen-
tally distinct mechanisms.

First, we found that even when some RNN units resemble
single neuron motifs, they may not faithfully reproduce popu-
lation level motifs in the data. This is clear in the choice of

A

B C

Fig. 11. Example behavior for the recurrent neural networks (RNNs) generalizing to perform the target switch task. A: both RNNs discussed generalize to the
target switch task when the target switch occurred either before or at the same time as the go cue. Both RNNs had a coefficient of determination R2 � 0.99 in
reconstructing the output kinematics despite not being trained on the target switch task explicitly. B: RNN output positions during a target switch task, where
the switch is delivered after the go cue. Here, we show 4 target switch conditions, when switches occur to adjacent targets. This output corresponds to the RNN
trained to perform the sustained go-cue delayed reach task. Different shades correspond to output trajectories when the target was switched some amount of time
following the go cue (legend between A and B). C: same as B: but for the pulsed RNN trained on the pulsed go-cue delayed reach task.

2518 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



activation function to train RNNs. In RNNs trained with the
relu activation, it was possible to find artificial neurons with
preparatory activity, but these RNNs did not capture prepara-
tory activity across the population. Furthermore, finer quanti-
tative metrics on the single neuron level could identify mis-
matches across the population in comparison with real data
(Fig. 5). For relu RNNs, preparatory trajectories were rela-

tively short compared with movement trajectories (Fig. 4C),
which is inconsistent with empirical results. Furthermore,
even for the tanh activation function, we found that it was
important to regularize the network rates to capture prepa-
ratory variability in the population. This would not have
been straightforward if only qualitatively comparing single-
neuron PSTHs.

A

C

B

D

Fig. 12. A: normalized error in the final position as a function of the standard deviation of Gaussian noise added to the input. The final position was measured
at 1,200 ms after go-cue onset, when the trials were terminated. The position errors are normalized so that the target position has a distance of 1. Solid lines
correspond to the performance of the sustained RNN trained on the delayed reach task when performing the target switch after go cue task, and dotted lines
correspond to the performance of the pulsed recurrent neural network (RNN). Black lines denote the error across all switch conditions. Purple lines denote the
error for switch conditions where the switched target was 180° away from the preswitch target, and green lines correspond to the error for switch conditions where
the switched target was �90° away from the preswitch target. *Significant difference in the means at the level P � 0.01 (bootstrap, 1,001 shuffles). Error bars
are standard error of the mean. In general, the pulsed RNN has poorer robustness under additive input noise. B: same as A but for recurrent noise added to each
artificial neuron. In general, the pulsed RNN has poorer robustness under additive recurrent noise. C: example output kinematics of the sustained RNN for target
switch trials for 2 conditions, where the target switch is diagonal. The lighter target corresponds to the initially prompted target, and the darker target corresponds
to the switched target. To make the task harder, noise was injected into the inputs. The RNN arrives at the correct final behavior, as would be expected by its
dynamical mechanism. D: same as C but for the pulsed RNN trained to perform the pulsed go cue delayed reach task. One can observe that the RNN fails to
perform the task adequately, achieving an incorrect final position.

A B C

Fig. 13. Generalization to closer targets. A: example trial for the sustained recurrent neural network (RNN), outputting a desired trajectory to a target at half the
radius of the training set targets. The desired output is in red, and the RNN’s output is shown in gray. The RNN achieves a larger final position and peak velocity
than desired. B: same as A but for the pulsed RNN. Its generalization is noticeably worse than the sustained RNN. C: as the target radius decreases, the sustained
RNN considerably outperforms the pulsed RNN in reconstructing the desired output.

2519CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.



Second, we saw that two distinct RNNs could both capture
key hallmarks of neurophysiological activity, but do so with
fundamentally different mechanisms. In this manner, even if an
RNN reproduces both single neuron and population level
motifs, careful consideration should be given as to how the
RNN dynamically performs the task. Our results showed that
by varying how the task inputs are designed, the RNN can use
distinct mechanisms with important consequences on general-
ization in the presence of noise. Our results also demonstrate
that in addition to regularizations (e.g., Sussillo et al. 2015),
architectures (e.g., Song et al. 2016), and training rules (e.g.,
Miconi 2017; Song et al. 2017), task input design can have an
important effect on how the RNN’s computations are per-
formed. It may be possible for future experiments to be
designed in such a way as to provide evidence in favor of a
particular mechanism by assessing robustness in the presence
of noisy inputs and generalization.

As task design can affect the dynamical mechanisms em-
ployed by the RNN, so too may other hyperparameters and
training paradigms. It will be appropriate to consider how RNN
architectures and parameters affect dynamical mechanisms,
their robustness to noise, and generalization. For example,
Song and colleagues (2016) demonstrated that it is possible to
design RNNs that obey biological constraints such as Dale’s
law. They demonstrated that in these networks, one could
find single artificial neurons consistent with empirical re-
cordings. We found that implementing an 80:20% popula-
tion of excitatory-to-inhibitory units following Dale’s law
caused the RNN to have less preparatory data, suggesting
that these architectural constraints may not always cause the
network to more strongly resemble recorded neurophysio-
logical activity. Nevertheless, these constraints are impor-
tant to consider thoughtfully in RNN design. For example, a
different study we performed also identified that incorpo-
rating multiple area computation into RNN architectures is
important to faithfully reproduce neurophysiological activ-
ity in PMd during a perceptual decision-making task (Klein-
man et al. 2019).

It will also be important to consider how different training
rules affect dynamical mechanisms. For example, Miconi
(2017) demonstrated that networks can be trained with biolog-
ical learning rules. These learning rules, which reproduce
neurophysiological features of the data, may affect the network
dynamics. Assessing the extent to which important features of
the employed dynamical mechanisms change through intro-
ducing biological constraints and learning may play an impor-
tant role in proposing mechanisms for cortical computation and
making concrete predictions for future experiments.

Interrogating an RNN’s dynamics also has consequences for
what type of dynamics may be sufficient to carry out a class of
tasks. In our work, we found that an RNN trained to only
perform a delayed reach task was capable of generalizing to
target switch tasks, even though it was not trained on these
tasks. This shows that the mechanism employed by the RNN to
perform a delayed reach task endows the network with the
capability of performing the target switch task. An interesting
line of future work may assess how the RNN’s dynamics
change as it is trained to perform a wider assortment of tasks
(Yang et al. 2019). This may describe how many and what
classes of tasks are necessary to provide an RNN with the
capability of performing a different set of tasks. Furthermore,

insofar as the capability to perform a variety of tasks changes
the dynamical mechanisms of the network, this may help to
narrow the set of plausible mechanisms used to perform a
given task. For example, if we trained the networks in this
work to perform motor tasks with perturbations to the arm
(e.g., Nashed et al. 2012; Omrani et al. 2014), does the network
cease to employ a bistable mechanism? Another line of inquiry
is to visualize the dynamics of RNNs that fail to generalize and
determine what deficiencies result in poor generalization.

The trained RNN outputs were desired feedforward kine-
matics. Although prior work modeling a delayed reach task has
also used these outputs (Michaels et al. 2016), studies have also
modeled electromyographic outputs (Hennequin et al. 2014;
Stroud et al. 2018; Sussillo et al. 2015). The output of the
RNN may significantly impact the computations it performs.
Furthermore, RNNs to date do not model the reaction time
of movements. Rather, RNNs typically output kinematics or
electromyographics associated with a corresponding target
at a fixed reaction time (Hennequin et al. 2014; Michaels et
al. 2016; Stroud et al. 2018; Sussillo et al. 2015). Even with
these output limitations, we nevertheless observed resem-
blance between the RNN’s artificial activity and neural
population responses from motor cortex. Although this work
assessed how RNN inputs affect its dynamics, future work
should assess how RNN outputs may impact RNN dynam-
ical mechanisms.

ACKNOWLEDGMENTS

We thank Chandramouli Chandrasekaran and Krishna Shenoy for helpful
discussions. We also thank Mark Churchland, Matt Kaufman, and Krishna
Shenoy for permission to use the data set associated with the jPCA toolbox
(Churchland et al. 2012). To train RNNs, we used pycog (https://github.com/
xjwanglab/pycog/) with modifications for task design, architecture, and opti-
mization.

GRANTS

We gratefully acknowledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research. This work was also
supported by a UCLA Computational Medicine Amazon Web Services award.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author.

AUTHOR CONTRIBUTIONS

J.C.K. conceived and designed research; performed experiments; analyzed
data; interpreted results of experiments; prepared figures; drafted manuscript;
edited and revised manuscript; approved final version of manuscript.

REFERENCES

Afshar A, Santhanam G, Yu BM, Ryu SI, Sahani M, Shenoy KV.
Single-trial neural correlates of arm movement preparation. Neuron 71:
555–564, 2011. doi:10.1016/j.neuron.2011.05.047.

Ames KC, Ryu SI, Shenoy KV. Neural dynamics of reaching following
incorrect or absent motor preparation. Neuron 81: 438–451, 2014. doi:10.
1016/j.neuron.2013.11.003.

Ames KC, Ryu SI, Shenoy KV. Simultaneous motor preparation and execu-
tion in a last-moment reach correction task. Nat Commun 10: 2718, 2019.
doi:10.1038/s41467-019-10772-2.

Boyd S, Vandenberghe L. Convex Optimization. Cambridge, UK: Cambridge
University Press, 2004.

Chaisangmongkon W, Swaminathan SK, Freedman DJ, Wang XJ. Com-
puting by robust transience: how the fronto-parietal network performs

2520 CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.

https://github.com/xjwanglab/pycog/
https://github.com/xjwanglab/pycog/
https://doi.org/10.1016/j.neuron.2011.05.047
https://doi.org/10.1016/j.neuron.2013.11.003
https://doi.org/10.1016/j.neuron.2013.11.003
https://doi.org/10.1038/s41467-019-10772-2


sequential, category-based decisions. Neuron 93: 1504–1517.e4, 2017.
doi:10.1016/j.neuron.2017.03.002.

Chandrasekaran C. Computational principles and models of multisensory
integration. Curr Opin Neurobiol 43: 25–34, 2017. doi:10.1016/j.conb.2016.
11.002.

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian
P, Ryu SI, Shenoy KV. Neural population dynamics during reaching.
Nature 487: 51–56, 2012. doi:10.1038/nature11129.

Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, Shenoy KV.
Cortical preparatory activity: representation of movement or first cog in a
dynamical machine? Neuron 68: 387–400, 2010. doi:10.1016/j.neuron.
2010.09.015.

Churchland MM, Shenoy KV. Temporal complexity and heterogeneity of
single-neuron activity in premotor and motor cortex. J Neurophysiol 97:
4235–4257, 2007. doi:10.1152/jn.00095.2007.

Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV. Neural
variability in premotor cortex provides a signature of motor preparation. J
Neurosci 26: 3697–3712, 2006. doi:10.1523/JNEUROSCI.3762-05.2006.

Cunningham JP, Yu BM. Dimensionality reduction for large-scale neural
recordings. Nat Neurosci 17: 1500–1509, 2014. doi:10.1038/nn.3776.

Erlhagen W, Schöner G. Dynamic field theory of movement preparation.
Psychol Rev 109: 545–572, 2002. doi:10.1037/0033-295X.109.3.545.

Gallego JA, Perich MG, Miller LE, Solla SA. Neural manifolds for the
control of movement. Neuron 94: 978–984, 2017. doi:10.1016/j.neuron.
2017.05.025.

Gao P, Ganguli S. On simplicity and complexity in the brave new world of
large-scale neuroscience. Curr Opin Neurobiol 32: 148–155, 2015. doi:10.
1016/j.conb.2015.04.003.

He K, Zhang X, Ren S, Sun J. Identity mappings in deep residual networks.
In: European Conference on Computer Vision: Lecture Notes in Computer
Science, edited by Leibe B, Matas J, Sebe N, Welling M. Cham, Switzer-
land: Springer, 2016, p. 630–645.

Hennequin G, Vogels TP, Gerstner W. Optimal control of transient dynam-
ics in balanced networks supports generation of complex movements.
Neuron 82: 1394–1406, 2014. doi:10.1016/j.neuron.2014.04.045.

Kao JC, Nuyujukian P, Ryu SI, Churchland MM, Cunningham JP,
Shenoy KV. Single-trial dynamics of motor cortex and their applications to
brain-machine interfaces. Nat Commun 6: 7759, 2015. doi:10.1038/
ncomms8759.

Kaufman MT, Churchland MM, Ryu SI, Shenoy KV. Cortical activity in
the null space: permitting preparation without movement. Nat Neurosci 17:
440–448, 2014. doi:10.1038/nn.3643.

Kaufman MT, Churchland MM, Shenoy KV. The roles of monkey M1
neuron classes in movement preparation and execution. J Neurophysiol 110:
817–825, 2013. doi:10.1152/jn.00892.2011.

Kaufman MT, Seely JS, Sussillo D, Ryu SI, Shenoy KV, Churchland MM.
The largest response component in motor cortex reflects movement timing
but not movement type. eNeuro 3: ENEURO.0085-16, 2016. doi:10.1523/
ENEURO.0085-16.2016.

Kingma DP, Ba J. Adam: a method for stochastic optimization. International
Conference on Learning Representations. San Diego, CA, May 7–9, 2015.

Kleinman M, Chandramouli C, Kao J. A multi-stage recurrent neural
network better describes decision-related activity in dorsal premotor cortex
(Poster). 2019 Conference on Cognitive Computational Neuroscience. Ber-
lin, Germany, September 13–16, 2019.

Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep
convolutional neural networks. In: Proceedings of the 25th International
Conference on Neural Information Processing Systems, edited by Pereira F,
Burges CJC, Bottou L, Weinberger KQ. Lake Tahoe, NV: Curran Associ-
ates, p. 1097–1105, 2012.

Lukashin AV, Wilcox GL, Georgopoulos AP. Modeling of directional
operations in the motor cortex: a noisy network of spiking neurons is trained
to generate a neural-vector trajectory. Neural Netw 9: 397–410, 1996.
doi:10.1016/0893-6080(95)00138-7.

Mante V, Sussillo D, Shenoy KV, Newsome WT. Context-dependent com-
putation by recurrent dynamics in prefrontal cortex. Nature 503: 78–84,
2013. doi:10.1038/nature12742.

Michaels JA, Dann B, Scherberger H. Neural population dynamics during
reaching are better explained by a dynamical system than representational
tuning. PLOS Comput Biol 12: e1005175, 2016. doi:10.1371/journal.pcbi.
1005175.

Miconi T. Biologically plausible learning in recurrent neural networks repro-
duces neural dynamics observed during cognitive tasks. eLife 6: e20899,
2017. doi:10.7554/eLife.20899.

Nashed JY, Crevecoeur F, Scott SH. Influence of the behavioral goal and
environmental obstacles on rapid feedback responses. J Neurophysiol 108:
999–1009, 2012. doi:10.1152/jn.01089.2011.

Nocedal J, Wright S. Numerical Optimization. New York: Springer, 2006.
Omrani M, Pruszynski JA, Murnaghan CD, Scott SH. Perturbation-evoked

responses in primary motor cortex are modulated by behavioral context. J
Neurophysiol 112: 2985–3000, 2014. doi:10.1152/jn.00270.2014.

Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent
neural networks. 30th International Conference on Machine Learning. At-
lanta, GA, June 16–21, 2013.

Remington ED, Narain D, Hosseini EA, Jazayeri M. Flexible sensorimotor
computations through rapid reconfiguration of cortical dynamics. Neuron
98: 1005–1019.e5, 2018. doi:10.1016/j.neuron.2018.05.020.

Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC,
Yu BM, Batista AP. Neural constraints on learning. Nature 512: 423–426,
2014. doi:10.1038/nature13665.

Santhanam G, Yu BM, Gilja V, Ryu SI, Afshar A, Sahani M, Shenoy KV.
Factor-analysis methods for higher-performance neural prostheses. J Neu-
rophysiol 102: 1315–1330, 2009. doi:10.1152/jn.00097.2009.

Sergio LE, Hamel-Pâquet C, Kalaska JF. Motor cortex neural correlates of
output kinematics and kinetics during isometric-force and arm-reaching
tasks. J Neurophysiol 94: 2353–2378, 2005. doi:10.1152/jn.00989.2004.

Song HF, Yang GR, Wang XJ. Training excitatory-inhibitory recurrent
neural networks for cognitive tasks: a simple and flexible framework. PLOS
Comput Biol 12: e1004792, 2016. doi:10.1371/journal.pcbi.1004792.

Song HF, Yang GR, Wang XJ. Reward-based training of recurrent neural
networks for cognitive and value-based tasks. eLife 6: e21492, 2017.
doi:10.7554/eLife.21492.

Stroud JP, Porter MA, Hennequin G, Vogels TP. Motor primitives in space
and time via targeted gain modulation in cortical networks. Nat Neurosci 21:
1774–1783, 2018. [Erratum in Nat Neurosci 22: 504, 2019.] doi:10.1038/
s41593-018-0276-0.

Sussillo D, Barak O. Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural Comput 25: 626–649,
2013. doi:10.1162/NECO_a_00409.

Sussillo D, Churchland MM, Kaufman MT, Shenoy KV. A neural network
that finds a naturalistic solution for the production of muscle activity. Nat
Neurosci 18: 1025–1033, 2015. doi:10.1038/nn.4042.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D,
Vanhoucke V, Rabinovich A. Going deeper with convolutions. 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2015:
1–9, 2015. doi:10.1109/CVPR.2015.7298594.

Tanji J, Evarts EV. Anticipatory activity of motor cortex neurons in relation
to direction of an intended movement. J Neurophysiol 39: 1062–1068, 1976.
doi:10.1152/jn.1976.39.5.1062.

Townsend J, Koep N, Weichwald S. Pymanopt: a Python toolbox for
optimization on manifolds using automatic differentiation. J Mach Learn
Res 17: 1–5, 2016.

Weinrich M, Wise SP, Mauritz KH. A neurophysiological study of the
premotor cortex in the rhesus monkey. Brain 107: 385–414, 1984. doi:10.
1093/brain/107.2.385.

Yang GR, Joglekar MR, Francis Song H, Newsome WT, Wang XJ. Task
representations in neural networks trained to perform many cognitive tasks.
Nat Neurosci 22: 297–306, 2019. doi:10.1038/s41593-018-0310-2.

Yu BM, Cunningham JP, Santhanam G, Ryu SI, Shenoy KV. Gaussian-
process factor analysis for low-dimensional single-trial analysis of neural
population activity. J Neurophysiol 102: 614–635, 2009. doi:10.1152/jn.
90941.2008.

2521CONSIDERATIONS IN USING RNNs TO PROBE NEURAL DYNAMICS

J Neurophysiol • doi:10.1152/jn.00467.2018 • www.jn.org

Downloaded from journals.physiology.org/journal/jn at Univ of California Los Angeles (149.142.026.227) on August 22, 2020.

https://doi.org/10.1016/j.neuron.2017.03.002
https://doi.org/10.1016/j.conb.2016.11.002
https://doi.org/10.1016/j.conb.2016.11.002
https://doi.org/10.1038/nature11129
https://doi.org/10.1016/j.neuron.2010.09.015
https://doi.org/10.1016/j.neuron.2010.09.015
https://doi.org/10.1152/jn.00095.2007
https://doi.org/10.1523/JNEUROSCI.3762-05.2006
https://doi.org/10.1038/nn.3776
https://doi.org/10.1037/0033-295X.109.3.545
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1016/j.conb.2015.04.003
https://doi.org/10.1016/j.conb.2015.04.003
https://doi.org/10.1016/j.neuron.2014.04.045
https://doi.org/10.1038/ncomms8759
https://doi.org/10.1038/ncomms8759
https://doi.org/10.1038/nn.3643
https://doi.org/10.1152/jn.00892.2011
https://doi.org/10.1523/ENEURO.0085-16.2016
https://doi.org/10.1523/ENEURO.0085-16.2016
https://doi.org/10.1016/0893-6080(95)00138-7
https://doi.org/10.1038/nature12742
https://doi.org/10.1371/journal.pcbi.1005175
https://doi.org/10.1371/journal.pcbi.1005175
https://doi.org/10.7554/eLife.20899
https://doi.org/10.1152/jn.01089.2011
https://doi.org/10.1152/jn.00270.2014
https://doi.org/10.1016/j.neuron.2018.05.020
https://doi.org/10.1038/nature13665
https://doi.org/10.1152/jn.00097.2009
https://doi.org/10.1152/jn.00989.2004
https://doi.org/10.1371/journal.pcbi.1004792
https://doi.org/10.7554/eLife.21492
https://doi.org/10.1038/s41593-018-0276-0
https://doi.org/10.1038/s41593-018-0276-0
https://doi.org/10.1162/NECO_a_00409
https://doi.org/10.1038/nn.4042
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1152/jn.1976.39.5.1062
https://doi.org/10.1093/brain/107.2.385
https://doi.org/10.1093/brain/107.2.385
https://doi.org/10.1038/s41593-018-0310-2
https://doi.org/10.1152/jn.90941.2008
https://doi.org/10.1152/jn.90941.2008

