
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020 2145

Deep Learning Neural Encoders for
Motor Cortex

Ken-Fu Liang , Student Member, IEEE, and Jonathan C. Kao , Member, IEEE

Abstract—Intracortical brain-machine interfaces (BMIs)
transform neural activity into control signals to drive a
prosthesis or communication device, such as a robotic arm
or computer cursor. To be clinically viable, BMI decoders
must achieve high accuracy and robustness. Optimizing
these decoders is expensive, traditionally requiring animal
or human experiments spanning months to years. This is
because BMIs are closed-loop systems, where the user
updates his or her motor commands in response to an
imperfectly decoded output. Decoder optimization using
previously collected “offline” data will therefore not cap-
ture this closed-loop response. An alternative approach to
significantly accelerate decoder optimization is to use a
closed-loop experimental simulator. A key component of
this simulator is the neural encoder, which synthetically
generates neural population activity from kinematics. Prior
neural encoders do not model important features of neural
population activity. To overcome these limitations, we use
deep learning neural encoders. We find these models sig-
nificantly outperform prior neural encoders in reproducing
peri-stimulus time histograms (PSTHs) and neural popula-
tion dynamics. We also find that deep learning neural en-
coders better match neural decoding results in offline data
and closed-loop experimental data. We anticipate these
deep-learning neural encoders will substantially improve
simulators for BMIs, enabling faster evaluation, optimiza-
tion, and characterization of BMI decoder algorithms.

Index Terms—Brain-machine interfaces, neural en-
coders, neural networks, motor cortex, deep learning.

I. INTRODUCTION

G ENERATING neural activity has wide implications in
systems neuroscience and neural engineering. Neural en-

coding models (encoders) have produced insight into compu-
tations in early visual processing stages (e.g., [1]–[4]). Recent
work has applied deep learning, specifically convolutional neu-
ral networks (CNNs), to model retinal activity. Analysis of
these CNNs revealed roles for feedforward inhibition, recurrent

Manuscript received July 31, 2019; revised October 3, 2019; accepted
November 13, 2019. Date of publication November 25, 2019; date of
current version July 17, 2020. This work was supported by a UCLA
Hellman Fellowship (J.C.K.), a UCLA Dean’s Scholarship and Living
Spring Fellowship (K.L.), and a UCLA Computational Medicine Amazon
Web Services grant. (Corresponding author: Jonathan C. Kao.)

K.-F. Liang is with the Department of Electrical and Computer Engi-
neering, University of California-Los Angeles.

J. C. Kao is with the Department of Electrical and Computer Engi-
neering, and the Neuroscience Program, University of California-Los
Angeles, Los Angeles, CA 90095 USA (e-mail: kao@seas.ucla.edu).

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TBME.2019.2955722

lateral connections, and noise in explaining empirical neural
responses [5]–[7]. Neural encoders have been used to argue that
the motor cortex does not represent movement, but is rather a dy-
namical system (e.g., [8], [9]). In engineering applications, neu-
ral encoders are proposed to augment memory function through
modeling hippocampal activity [10] and deliver realistic sensory
sensation through stimulation of sensory cortices [11]–[13].
Finally, motor cortical neural encoders are a critical component
for simulating motor brain-machine interfaces (BMIs) [14].

We focus on building motor cortical neural encoders for
intracortical motor BMI simulation, with the goal of substan-
tially accelerating clinical translation. For people with motor
neurological disease and injury, such as amyotrophic lateral
sclerosis (ALS) and spinal cord injury [15]–[17], BMIs aim
to recover lost motor function and communication [18]–[22].
The ultimate goal is to improve quality of life for people with
paralysis by providing direct neural control of prosthetic arms
or computer cursors. These prostheses are guided by a control
signal decoded from motor regions of the brain (e.g., [21],
[23], [24]) as illustrated in Fig. 1(a). In clinical trials, these
neural decoders are trained with recorded neural signals during
imagined (or intended) movements [20]. While considerable
research over the past 15 years has led to important BMI demon-
strations [19]–[22], [25]–[31] several challenges remain towards
achieving clinically viable BMI systems.

To be clinically viable, intracortical BMIs must achieve high
performance at a level justifying neurosurgery [32]. The perfor-
mance of these systems is heavily impacted by the BMI decoder.
Recent efforts have produced novel algorithms to increase BMI
performance and robustness by utilizing feedback control [33],
[34], neural population dynamics [35]–[37], latent factors [38]–
[44], and deep learning [45]. Yet, BMI development remains
relatively slow. An important reason is that the most reliable
test of BMI decoder performance are closed-loop experiments,
which are expensive and time-consuming. In particular, BMIs
are unique in that a user interacts with the system, adjusting
his/her motor commands in response to observing the BMI
decoder output. When the decoded output does not match user
intent, the user updates his/her motor commands. This may cause
the statistics of the neural activity to be different to previously
collected open-loop experimental data (“offline evaluation”)
used to train the decoder [46]–[49]. It is therefore possible for
decoders optimized through offline evaluation to be suboptimal
in closed-loop experiments [14], [50], [51].

Yet, closed-loop experiment also face challenges. They have
greater costs per tested algorithm than offline decoding, being

0018-9294 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5386-5073
https://orcid.org/0000-0002-9298-0143
mailto:kao@seas.ucla.edu

2146 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

Fig. 1. BMI system and neural encoder. (a) Neural activity is recorded from electrode arrays implanted in motor cortex. A decoder transforms
neural activity into control signals which guides a motor prosthesis. The BMI user receives visual and potentially sensory feedback, adjusting his
or her control policy in response to observing the decoded movement. (b) A neural encoder takes user hand movement kinematics and produces
synthetic neural activity. A good encoder reproduces single electrode activity, neural population dynamics, and decoded movement decoded from
real neural activity. Here, we compare (1) the PSTHs and neural dynamics of recorded and synthetic neural activity, and (2) decoded movements
from real and synthetic neural activity.

more time-consuming and financially expensive [14]. Further,
closed-loop experiments incorporate sources of variation in-
cluding animal behavior and motivation. While this variance
can be beneficially used to increase decoder robustness [45],
this variation may also increase the time and data required to
demonstrate statistically significant differences. Finally, closed-
loop experiments are difficult to compare across laboratories
due to variations in recording technology, animal training, and
task design. These obstacles are largely not faced by offline
decoding and evaluation, where decoders are trained and tested
on previously recorded motor cortical data. Offline evaluation,
in contrast, allows for the same dataset to be used for algorithm
development, has reduced variability from animal motivation,
and can be performed at time scales that are orders of magnitude
smaller than closed-loop experiments. Offline evaluation can
therefore play an important role as stepping stones to closed-loop
experiments, producing insight into what algorithms are most
promising to evaluate in available closed-loop experiments.
However, it is important to emphasize that offline decoding
does not capture the closed-loop nature of BMI systems [14],
[50]–[53].

In contrast to closed-loop animal experiments and offline
decoding, prior work introduced a middle ground: neural activity
can be simulated to more rapidly perform experiments that
incorporate the closed-loop nature of BMI systems. This online
prosthetic simulator (OPS) [14] enables faster decoder evalua-
tion incorporating closed-loop feedback control policies without
requiring intracortical recordings from the brain. Cunningham
and colleagues showed using OPS that BMI performance should
increase with smaller bin width, an empirical result they and
another study confirmed [34]. In the OPS, spike trains were
synthesized via an inhomogeneous Poisson process whose rate
was described by a speed-modulated tuning curve model [54].
We call this model the Poisson Process Velocity Tuning (PPVT)
model. Several studies have demonstrated that this model does
not reproduce complex heterogeneity in neuron firing rates,
including changing preferred directions with time [55], nonlin-
ear structure in the neural population activity [56], and neural
population dynamics (e.g., [9], [57]).

In this work, we introduce deep learning (DL) based neural en-
coders for synthesizing motor cortical neural population activity

from kinematic behavior. We chose to use DL due to its success
in a variety of research areas including, but not limited to, com-
puter vision [58]–[60], object detection [61]–[64], neural signal
denoising [56], early visual representations modeling [65], and
sensory cortex modeling [7]. We trained DL encoders in a su-
pervised fashion using data collected while a monkey performed
a reaching task. We demonstrate that DL encoders can better
reproduce single neuron PSTH variability, neural population
dynamics, and neurally decoded movements. Further, we show
that these models more faithfully reproduce closed-loop BMI
kinematics decoded from a monkey experiment. We anticipate
that DL encoders will be a key component in developing BMI
simulators. Together, with offline decoding experiments, closed-
loop simulation may substantially accelerate the evaluation and
optimization of BMIs.

II. METHODS

A. Experimental Setup

All surgical and animal care procedures were performed in
accordance with National Institutes of Health guidelines and
were approved by the Stanford University Institutional Animal
Care and Use Committee. Experiments were conducted with two
adult male rhesus macaques (Monkeys J and L). Monkey J (L)
was implanted with two (one) 96 electrode Utah arrays (Black-
rock Microsystems Inc., Salt Lake City, UT) using standard
neurosurgical techniques. Monkey J’s arrays were implanted in
dorsal premotor cortex (PMd) and primary motor cortex (M1)
as visually estimated from local anatomical landmarks, while
Monkey L’s array was implanted around the PMd/M1 border.
Monkey J’s (L’s) arrays were implanted 75 (94) months prior to
data collection for this work. The monkeys made point-to-point
reaches in a 2D plane with a virtual cursor controlled by the
contralateral arm or by a BMI. The experimental setup has been
previously described (e.g., [14], [66]). The virtual cursor and
targets were presented in a three-dimensional (3D) environment
(MusculoSkeletal Modeling Software (MSMS), Medical Device
Development Facility (MDDF), USC, Los Angeles, CA). Hand
position data were measured with an infrared reflective bead
tracking system (Polaris, Northern Digital, Ontario, Canada).
Spike counts were collected by applying a single threshold,

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

LIANG AND KAO: DEEP LEARNING NEURAL ENCODERS FOR MOTOR CORTEX 2147

set to −4.5× the root-mean-square of the high-pass filtered
spike voltage per electrode [67]. Behavioral control and neural
decode were run on separate PCs using Simulink/xPC platform
(Mathworks, Natick, MA) with communication latencies of
3 ms. This enabled millisecond timing precision for all com-
putations. Neural data were initially processed by the Cerebus
recording system (Blackrock Microsystems Inc., Salt Lake City,
UT) and were available to the behavioural control system within
5 ± 1 ms. Visual presentation was provided via two LCD
monitors with refresh rates at 120 Hz, yielding frame updates of
7 ± 4 ms. Two mirrors visually fused the displays into a single
3D percept for the user, creating a Wheatstone stereograph. All
tasks presented in this study were restricted to a two-dimensional
plane. We report results from Monkey J in the main manuscript.
All analyses described were reproduced and confirmed in Mon-
key L, which is shown in the supplementary material.

B. Tasks

We used recordings from when monkeys performed a center-
out-and-back reaching task. In this task, eight targets were
placed with uniform spacing on the circumference of a 12-cm
radius circle. The monkey acquired the center target followed
by one of the eight (randomly chosen) radial targets. Each target
had to be acquired within 2 seconds, or the trial was counted
as a failure. After successful acquisition of a radial target, or
following the failure to acquire any radial target, the center target
was prompted. Each target had a 4-by-4 cm acceptance window
centered around the target. For every target selection, the subject
had to hold the cursor within the acceptance window for 500
contiguous milliseconds.

In open-loop experiments, the cursor position was the mon-
key’s hand position. In closed-loop (BMI) experiments, the
cursor’s movements were decoded by a Recalibrated Feedback
Intention-Trained Kalman Filter (ReFIT-KF) decoder [33] with
neural spikes summed in 10 ms bins. The monkey’s arm was
free to move during BMI experiments [49], [68]. The ReFIT-KF
decoder uses kinematic intention estimation and closed-loop
adaptation to better estimate decoded velocity [46]. In open- and
closed-loop experiments, we recorded monkey’s hand positions
and neural signals for training neural encoders. Open-loop data
and closed-loop data were recorded on the same day to minimize
neural variation and allow a direct comparison of closed-loop
decoding from real data versus simulated data. In total, we used
approximately 500 successful trials from open-loop experiments
and 150 successful trials from closed-loop experiments to train
and test neural encoders.

C. Training and Testing Data

When evaluating neural encoders on open-loop data, the
training set comprised approximately 80% of open-loop trials;
the remaining open-loop trials comprised the testing set. Trials
were randomly chosen to be training or testing set trials. We
repeated experiments with different training and testing data
splits. No conclusions of the paper were affected based on how
the training and testing data were split. We also performed
experiments evaluating neural encoders on closed-loop data. In

these experiments,the training set comprised the open-loop data
and the test set comprised the closed-loop data.

D. Comparison Metrics

1) Pearson Correlation Coefficient (PCC) of PSTH: We
report the PCC between electrode and synthetic PSTHs. The
PSTH is the average firing rate for reaches to each of eight
reach conditions. This was calculated by averaging spike counts
across all trials within a condition, aligned to target onset. We
concatenated the PSTH for each of eight reach conditions into
a vector. The data were binned at intervals of 25 ms; each reach
condition comprised 32 bins, or 800 ms of activity. Hence, each
vector comprised 256 data points. We then calculated the PCC
between these vectors for real and synthetic PSTHs.

2) Mean Squared Error (MSE) of Neural Trajectories: We
report the MSE of neural trajectories between real and syn-
thetic neural population activity. The neural trajectory pro-
vides a low-dimensional and compact representation of the
high-dimensional recorded activity through time [69]–[72]. We
first calculated the principal components (PCs) of real neural
population activity. Subsequently, we projected both real and
synthetic neural population into the top 7 PCs, which captured at
least 90% of the variance. We then calculated the MSE between
these trajectories.

3) Normalized Mean Squared Error of Decoded Position:
We computed MSE between positions decoded from the real and
synthetic neural activity. We subsequently normalized the MSE
(NMSE) by dividing by the variance of decoded position from
real neural data. We evaluated NMSE for common decoders
in the literature, including the optimal linear estimator (OLE)
(e.g., [36], [73]), Wiener filter (WF) (e.g., [20], [36], [74]), and
Kalman filter (KF) (e.g., [22], [33], [66], [75], [76]). Briefly, the
OLE is the least-squares mapping from neural data to kinemat-
ics; the WF is the least-squares mapping from a history of neural
activity to kinematics; and the KF models a linear dynamical
system where the states are kinematics and the observations are
neural activity.

E. Dimensionality Reduction

1) Principal Component Analysis (PCA): We used PCA
to reduce the dimensionality of data and compare neural trajec-
tories. PCA is an orthogonal transformation of the neural data
that maximizes the variability of the data in low-dimensional
projections. We performed PCA on neuron PSTHs to emphasize
across-condition variability over single-trial variability. When
comparing neural trajectories, we projected both real and syn-
thetic neural population activity into the PCs found from real
data.

2) jPCA: jPCA, a rotation of the top PCs, finds an orthonor-
mal basis that reveals rotational structure in data [8]. We applied
jPCA after finding the top six PCs, since we found that 7
PCs capture over 90% of the PSTH variance. This comprised
finding a skew symmetric matrix least-squares mapping from
the position of the neural trajectory to its velocity. We report
R2

skew, which is the variance explained in predicting the neural
trajectory velocity from its position. A higher R2

skew indicates

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

2148 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

that the system is better described by rotational dynamics. We
also report R2

skew/R
2
best, where R2

best is the variance explained
using unconstrained least-squares [57]. This indicates how well
rotational dynamics describe data relative to unconstrained lin-
ear dynamics.

F. Encoding Models

Neural encoders transform kinematics, xt, into binned spike
counts, yt. All presented models generate a neural firing rate.
Neural encoders were trained to reproduce the empirical binned
spike counts recorded from multi-unit threshold crossing activ-
ity. We did not reproduce single unit activity since decoding
threshold crossings achieves similar performance compared to
decoding after spike sorting [77], [78] and may be more ro-
bust [67]. Further, BMI clinical trials largely decode multiunit
activity [18], [21], [22], [66], [75]. We calculated binned spike
counts by treating the neural encoder firing rate as the rate of
an inhomogeneous Poisson process. We evaluated several linear
tuning models, including a preferred direction (PD) model, a
Poisson process velocity tuning (PPVT) model, and generalized
linear models (GLMs). We subsequently evaluated DL neural
encoders, including a multilayer perceptron (MLP), a MLP with
historical inputs (MLPh), and a recurrent neural network (RNN).

Below, unless otherwise stated, all DL models were trained
in a supervised manner with recorded kinematics comprising
2D position and velocity (inputs) and neural activity (outputs)
during the center-out-and-back task. Unless otherwise stated,
kinematics and binned spike counts were evaluated at 25 ms
bin width resolution. Networks were trained to optimize a
maximum-likelihood cost function, described further below.
This loss function was optimized with stochastic gradient de-
scent, using the Adam optimizer [79]. All DL models were
initialized with the Xavier uniform initializer [80]. We did not
otherwise constrain the models; in particular there were no
constraints on reproducing neural population dynamics.

1) Preferred Direction (PD) Model: The PD model is based
on a tuning curve model where each neuron’s firing rate is
explained as a function of the reach angle, with the angle eliciting
the highest firing rate called the “preferred direction” (PD) [54].
The PD model calculates firing rate based on a cosine tuning
curve. Subsequently, binned spike counts, yt, are generated by
treating the PD model firing rate as the underlying rate of an
inhomogeneous Poisson distribution. The equations to generate
binned spike counts are:

λt = λo + (λmax − λo) cos(θt − θmax) (1)

ŷt|λt ∼ Poisson (max(0, λt)) , (2)

where: λt is the neural firing rate, yt is the binned spike counts, θt
is the reach angle, θmax is the PD, and λo is an offset firing rate.
The neuron’s modeled firing rate, λt, ranges from 2λo − λmax

(when the reach angle is opposite to the PD) to λmax (reach angle
aligned to the PD). The model parameters were found using the
technique of [54], where firing rates were averaged from 200 ms
to 500 ms after trial initiation. Because neural firing rates cannot
be negative, we draw spike counts with rates lower bounded by
0, i.e., with rate max(0, λt).

2) Poisson Process Velocity Tuning (PPVT) Model: The
PPVT model extends the PD model by incorporating reach speed
into the neural encoder. This was the model used by Cunningham
and colleagues [14]. Here, the firing rate is linearly scaled based
on the speed of the reach. Firing rate is calculated as,

λt = λo + (λmax − λo) cos(θt − θmax) · st. (3)

In this equation, st is the scaled movement speed at time t.
We scale st so that the firing rates, when decoded, produce
reasonable trajectories. This scaling is subject dependent, since
different subjects may reach with different vigor. We generate
binned spike counts using equation (2).

3) Generalized Linear Models (GLMs): The GLM model is
a flexible generalization of ordinary linear regression [81]–[83].
In its most basic form, we calculate the rates as:

λt = k · xt + noise, (4)

where k is a vector of weights and xt are the kinematic inputs.
Unless otherwise stated, xt is the 2D position and velocity of
the hand at time t. The GLM can be extended to incorporate
different noise distributions and a link function relating inputs to
the rates. In total, we evaluated: (1) Linear Gaussian GLM, with
Gaussian noise and identity link function; (2) Linear Gaussian
GLM with 4 bins of kinematic input history, so that the input was
(xt, xt−1, . . . , xt−4) (GLMh), (3) a Poisson GLM with a log link
function, and (4) a Binomial GLM with a logistic link function.
We performed maximum likelihood estimation through itera-
tively reweighted least squares. In the main manuscript, GLM
and GLMh refer to linear Gaussian GLMs.

4) Multilayer Perceptron (MLP) Model: The multilayer
perceptron (MLP) model is a nonlinear, fully connected feed-
forward neural network, as shown in Fig. 2(a). As a feedforward
network, it does not model any firing rate dynamics but enables
a data-driven, nonlinear approach to predict firing rates from
kinematics. The MLP is a universal function approximator and
has higher capacity than the linear neural encoders [84]. The
MLP model takes kinematics, xt, and generates firing rates, λt.
We denote an MLP layer as

ht = MLPf
N (xt) (5)

= f(Wxt + b), (6)

where f is activation function, N is the number of neurons,
W ∈ RN×dim(xt), b ∈ RN , and ht ∈ RN . We used the sigmoid
activation function, i.e., f(x) = σ(x) = 1

1+exp(−x) in all hidden
layers. Because firing rates are non-negative and not bounded
by 1, we used an exponential nonlinear activation function in
the final layer, i.e., f(x) = exp(x). The overall neural encoder
we tested is:

λt = MLPexp
192(MLPσ

128(MLPσ
64(MLPσ

32(xt)))), (7)

with spikes generated according to equation (2). To optimize the
model, we maximized the log-likelihood of the empirical data
by assuming that empirical binned spike counts, yt, were Pois-
son distributed and conditionally independent given the firing
rate, λt. Optimization was performed in batches of trials. The

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

LIANG AND KAO: DEEP LEARNING NEURAL ENCODERS FOR MOTOR CORTEX 2149

Fig. 2. (a) Multilayer perceptron (MLP) architecture. The MLP consists of an input layer, three hidden layers, and an output layer. The nodes
are fully connected. (b) MLP with history (MLPh). The MLPh processes a history of inputs with a larger input layer but otherwise has the same
architecture as the MLP. (c) Recurrent neural network (RNN) model. The RNN processes an input history, but incorporates recurrent dynamics. Its
output is passed to MLP layers.

log-likelihood function is,

L =
∑

i

∑

t

(
yit log λt − λt

)
, (8)

where i is iterating over trials in a batch, t is iterating over the
time in trial i, and yit is the binned spike counts at time t on
trial i.

5) MLP With Kinematics History (MLPh) Model: While
the MLP is a nonlinear approach, it does not incorporate any
historical kinematics into its predictions. Without kinematic
history, the MLP generates neural activity from only positions
and velocities at that time. For example, the MLP will produce
the exact same neural activity with the exact same input at
time t, irrespective of past data. Neural population activity
from motor cortex is dynamical, having structure over time.
To account for temporal structure, we tested an MLP model
inputting a history of kinematics. We call this encoder MLPh,
with the h denoting historical inputs. The MLPh model inputs the
vertical concatenation of the kinematics, (xt, xt−1, . . . , xt−m),
and outputs firing rate, λt. We chose m = 4 through heuristic
optimization over several values of m. We used the same activa-
tion function structure as in the MLP model. Hence, firing rates
were generated via the following equation:

λt = MLPexp
192(MLPσ

128(MLPσ
64(MLPσ

32([xt−m:t])))), (9)

with spikes generated according to equation (2). Like in the MLP,
we performed optimization by maximizing the log-likelihood
of the observed binned spike counts. The MLPh is illustrated in
Fig. 2(b).

6) RNN Model: The MLPh enables temporal structure by
processing a history of inputs, but does not explicitly incorporate
a dynamical model. To model dynamics, we trained an RNN
model to process the inputs, xt, and generate firing rates, λt.
The RNN incorporates history by maintaining a hidden state,
ht. We use RNNf

N to denote the RNN architecture, Concretely,

zt = RNNf
N (xt) (10)

= Woht + bo (11)

ht = f(Wfxt +Wrht−1 + bh), (12)

where Wf ∈ RN×dim(xt) maps the inputs to the hidden state,
ht ∈ RN ,Wr ∈ RN×N captures the RNN’s recurrent dynamics,
Wo ∈ RN×N linearly reads out the hidden state, zt ∈ RN is the
output of the network, and bh ∈ RN and bo ∈ RN are learned
biases. we ran the RNN for 32 time-steps to seed the hidden
state, ht, then evaluated the log-likelihood of the model for
training. In experiments, we found that additional nonlinearity
at the output increased performance. In the reported results, we
therefore added MLP layers to the RNN output. The complete
RNN neural encoder is:

λt = MLPexp
192(MLPσ

192(MLPtanh
192 (RNNtanh

192 (xt)))) (13)

with spikes generated according to equation (2). The RNN was
trained by maximizing the log-likelihood of the observed binned
spike counts under the assumption that they follow Poisson
statistics. The RNN architecture as illustrated in Fig. 2(c).

III. RESULTS

We found that deep learning (DL) models outperformed
representational tuning models (PD, PPVT) and GLM models
(GLM, GLMh) in reproducing recorded single electrode activity,
neural population activity, and decoded kinematics. Importantly,
we decoded closed-loop data to demonstrate generalization of
neural encoders to closed-loop BMI data it was not trained on.
Here, we detail these analyses and comparisons.

A. DL Encoders Better Reproduce PSTHs

We first evaluated how each encoding model reproduced every
electrode’s PSTHs. We also calculated PSTHs for synthetic
spike trains for each encoding model. We subsequently evaluated
the similarity between recorded and synthetic electrode PSTHs
by calculating the PCC (also denoted Pearson’s r, see Methods).
A model’s overall Pearson’s r is the average of the Pearson’s r
across all 192 (96) electrodes for Monkey J (L).

Fig. 3 illustrates a representative example, with the recorded
PSTHs shown in panel (h) and neural encoder PSTHs shown
in other panels. As has been previously described, the PSTHs
have a condition-independent increase in activity followed by
heterogeneous activity that may be multiphasic [85]. The PD and
PPVT models fail to reproduce these characteristics. We found

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

2150 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

Fig. 3. PSTHs and spike rasters of recorded and synthetic neural activity. The PSTHs are of: (a) PD, (b) PPVT, (c) GLM, (d) GLMh, (e) MLP. (f)
MLPh, (g) RNN, (h) a randomly chosen electrode from empirical recordings. (a)-(g) show the corresponding neural encoder outputs in reproducing
electrode activity in (h). Each color shows the average firing rate to one of eight center-out reach condition over time, with eight different colors
corresponding to eight reach conditions. In (h), the vertical bars denote 50 spikes/s, and the horizontal bar denotes 100 ms. The average PCC
across all neurons and average MSE of PSTH (spikes2/s) for each encoding model are shown in each panel. We also show spike rasters in each
panel. The PCC for single-trial binned spike counts for PD, PPVT, GLM, GLMh, MLP, MLPh and RNN were 0.016, 0.011, 0.020, 0.024, 0.103, 0.135,
and 0.137, respectively. Their respective MSEs were 53.60, 52.99, 41.65, 41.51, 39.62, 38.90, and 40.77 spikes2/s.

that the PD model achieved relatively static firing rates (Fig. 3(a),
Pearson’s r = 0.23, MSE = 9.78 spikes2/s). This is expected
because the PD model’s firing rates only vary with reach angle.
The PPVT incorporates speed modulation, causing the PSTHs to
resemble the speed profile. However, consistent with prior work,
the PPVT encoder does not capture heterogeneity, including
multiphasic behavior, in PSTH activity [8], [9], [55]. The PPVT
achieves comparable performance to PD (Fig. 3(b), Pearson’s
r = 0.22, MSE= 9.50 spikes2/s, not significantly different from
PD model, Wilcoxon rank-sum test over repeatedly trained
models).

We next evaluated GLM models, which incorporate position
and velocity. We found that these models achieved constant firing
rates while approaching targets. (Fig. 3(c), Pearson’s r = 0.27,
MSE = 8.74 spikes2/s, not significantly different from PPVT
model). When evaluating GLMh, which incorporates history of
kinematics, we saw multiphasic PSTHs (Fig. 3(d), Pearson’s
r = 0.31, MSE = 8.57 spikes2/s).

In contrast to representational tuning models and GLM mod-
els, we found that DL models better reproduced empirically
recorded PSTHs. The MLP was capable of reproducing a
condition-independent increase and qualitative motifs in the
original PSTH, including the relative ordering of condition firing
rates. However, it does not capture all multiphasic activity, such
as the biphasic activity of the green PSTH (Fig. 3(e), Pearson’s
r = 0.80, MSE = 2.20 spikes2/s, better than representational
models, both p < 10−7, Wilcoxon rank-sum test). As discussed
in the Methods, we reasoned that a key limitation of tuning and
MLP models is that they do not incorporate history over the
inputs, i.e., kinematics. (It is worth noting that PSTHs from
the MLP model would be symmetric if only provided with

symmetric velocity inputs, as is the case for center-out reaches;
providing position information enables the MLP to capture
richer and non-symmetric PSTHs.) We therefore evaluated the
MLPh model, incorporating 4 time bins of kinematic history,
and observed that MLPh better reproduced PSTHs (Fig. 3(f),
Pearson’s r = 0.83, MSE = 1.46 spikes2/s, better than MLP
model, both p < 10−7, Wilcoxon rank-sum test).

Finally, a more general and effective method to model dy-
namics in neural population activity is through an RNN [9],
[86], [87]. The RNN can generate different outputs for the same
input depending on its internal hidden state, which is a function
of past inputs and the RNN’s own internal dynamics. We found
that an RNN achieved better performance than the MLPh model
(Fig. 3(g), Pearson’s r = 0.86, MSE = 0.63 spikes2/s, compar-
ison to the MLPh model, both p < 10−7, Wilcoxon rank-sum
test). Together, these results demonstrate that DL models better
reproduce single electrode firing rates.

B. DL Models Better Reproduce Neural
Population Motifs

As DL models better reproduce empirical firing rates, we
next wondered how well DL models reproduce neural popu-
lation activity [8], [88]. It is worth noting that related work has
demonstrated that RNNs trained to process task inputs (such
as a go cue and target location) to produce either kinemat-
ics [9] or EMG [86], [87] exhibit low-dimensional and rotational
dynamics, a motif also found in premotor and primary motor
cortex [57], [89]. In our models, rather than evaluating the neu-
ral network’s artificial activity, we evaluated neural population
structure in the network output, i.e., firing rates, given kinematic
inputs.

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

LIANG AND KAO: DEEP LEARNING NEURAL ENCODERS FOR MOTOR CORTEX 2151

Fig. 4. Projections of PSTHs on PCs found from real neural data. The projections are of (a) PD, (b) PPVT, (c) GLM, (d) GLMh, (e) MLP, (f) MLPh,
(g) RNN, (h) empirically recorded neural population activity. Each color shows the neural trajectory of one of eight center-out reach conditions over
time. We calculate the MSE and PCC of neural trajectories in the top 7 PCs.

To quantify neural population activity, we performed PCA
on empirically recorded and synthetically generated PSTHs
(see Methods). When performing PCA on recorded PSTHs, we
found 7 dimensions were required to capture over 90% of the
recorded neural variance. Tuning models were overly simplistic,
demonstrating a smaller dimensionality. When performing PCA
on synthetic neural population activity generated by the PD and
PPVT outputs, we found that only 2 PCs are required to capture
nearly 100% variance. GLM requried 3, and GLMh required
4 dimensions to capture over 90% of the neural variance. On
the other hand, we found that MLP, MLPh and RNN required
5 or 6 dimensions to capture over 90% of the neural variance, as
shown in Fig 5. Together, these results demonstrate that DL
models more closely match the dimensionality of real data,
reflecting relatively greater variability in the neural population
response compared to tuning and linear models.

How similar are neural population trajectories in these low-
dimensions? We compared low-dimensional projections via
PCA on the synthetic versus recorded neural population. We
projected synthetic and neural activity onto the PCs found by
performing PCA on the real data Fig. 4. We found that tuning
models had very different projections in comparison to real
data (compare Fig. 4(a),(b),(h)). Tuning model low-dimensional
variance primarily resided on a 1-dimensional axis, reflecting
a large degree of covariation. To quantify these results, we
compared the mean PCC and MSE of PC trajectories in the
top 7 dimensions (capturing greater than 90% of the variance)
between synthetic and real neural activity. Tuning and GLM
models had relatively modest PCCs less than 0.5. On the other
hand, DL models more closely reproduced neural trajectories,
achieving PCCs above 0.85. This demonstrates that DL models
better reproduced empirical neural population motifs.

Another way to measure neural population structure is to
compare rotational dynamics in the neural population via jPCA
(e.g., [9], [14], [57], [89], see Methods). We applied jPCA and

Fig. 5. Dimensionality of recorded and synthetic PSTHs. Only 2 PCs
were needed to capture almost 100% variance of PD and PPVT activity.
To capture over 90% of recorded neural variance, we required 3 PCs for
GLM, 4 PCs for GLMh, and 5 or 6 PCs for DL models. The real data
required 7 PCs.

found that neither the PD, PPVT or GLM activity could be
well described by rotational dynamics (R2

skew < 0.01 for PD,
R2

skew < 0.01 for PPVT, and R2
skew = 0.05 for GLM; real data

R2
skew = 0.35, as shown in Fig. 6(a),(b),(c),(h)), as reported

previously [9], [57]. We observed that GLMh showed stronger
rotational dynamics (R2

skew = 0.28), as shown in Fig. 6(d)). This
is not entirely surprising, since models where neuron firing rate
peaks occur at different times, with multiphasic activity, demon-
strate rotational dynamics [9]. Interestingly, though the MLP
model does not have internal dynamics or utilizes any historical
data, we found that its generated PSTH exhibited a degree of
rotational dynamics (R2

skew = 0.22, Fig. 6(e)). This implies that,
only considering the position and velocity at a time point t, a

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

2152 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

Fig. 6. jPCA projections of the population responses. Each plot shows the jPCA projection of eight center-out reach conditions (different colors).
The jPCA projections are of: (a) PD, (b) PPVT, (c) GLM, (d) GLMh, (e) MLP, (f) MLPh, (g) RNN, (h) empirically recorded neural population activity.
We show the R2

skew in the jPCs as well as R2
skew/R

2
best (Skew ratio) for each encoding model (see Methods).

neural network can still generate neural population activity that
exhibits rotational structure. We found that the degree of rota-
tional dynamics in the encoding model output increased as the
model was able to consider historical inputs; the MLPh exhibited
more rotational dynamics than the MLP (R2

skew = 0.25, Fig. 6(f),
comparison to the MLP model, p < 10−4, Wilcoxon rank-sum
test). This was further improved by using RNN (R2

skew = 0.32,
Fig. 6(g), comparison to the MLPh model, p < 10−7, Wilcoxon
rank-sum test). These results demonstrate that DL models not
only better reproduce single electrode PSTHs, but also better
reproduce neural population motifs. Together, the data generated
by DL models appears to be a more faithful representation of
neural population activity in the motor cortex.

C. Kinematics Decoded From DL Generated Neural
Activity Better Match Open-Loop Decoded Kinematics

As our motivating application for generating motor corti-
cal neural signals is BMI simulation, we next assessed if DL
synthetic neural data could better match offline decoding of
previously recorded neural data. We therefore decoded neural
data recorded from when monkeys performed a center-out-and-
back reaching task, and compared these to kinematics decoded
from encoding models. Neural activity from a more effective
encoding model can be decoded to produce kinematics that
more closely matched the kinematics decoded from real data.
While DL encoding models more accurately reproduce PSTHs
and population structure, as earlier described, optimal decoding
dimensions may have little overlap with the top PCs of the activ-
ity [90]. Therefore, it is important to assess if neural variance in
these kinematic dimensions is better captured by DL models. We
trained an optimal linear estimator (OLE) [73], a Wiener filter

(WF) [20], [74] and a Kalman filter (KF) [75], [76] to decode
both recorded and synthetic neural activity. We show randomly
chosen decoding trials in Fig. 7. The mean and standard de-
viation of the NMSE across all open-loop testing set trials is
summarized in Fig. 8. We found that, across all decoders, DL
generated neural activity more closely resembled real decodes
when compared to the representational PD and PPVT models, as
well as GLM models. DL models achieved approximately a 20%
reduction in NMSE of decoded positions over tuning models and
linear models (all p < 10−3, Wilcoxon rank-sum test). Hence,
DL models well encode kinematics in a manner that is more
similar to the real neural data than linear encoders.

More specifically, we found that GLMh encoder achieved
significantly better decoding performance than PD, PPVT, and
GLM encoders, suggesting that incorporating kinematic history
is important for reproducing decoding. This result is consistent
with our observations that MLPh and RNN models outper-
formed the MLP, as shown in Fig. 7. As our prior results demon-
strated that models incorporating kinematic history better repro-
duce dynamical aspects of motor cortical activity, this result is
consistent with the observation that dynamical aspects of motor
cortical activity are important for kinematic decoding [35], [36],
[56]. Finally, while RNN models achieved better training loss
and better reproduced PSTHs and population motifs, we did not
find that the RNN model was always better than the MLPh model
when decoding testing data.

D. Kinematics Decoded From DL and GLMh Models
Better Match Closed-Loop Decoded Kinematics

As discussed earlier, BMIs are closed-loop systems where the
user interacts with the decoded output, updating his or her motor

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

LIANG AND KAO: DEEP LEARNING NEURAL ENCODERS FOR MOTOR CORTEX 2153

Fig. 7. Decoded movements from open-loop recorded and synthetic neural activity with three standard decoders (OLE, WF, and KF). For each
direction, one randomly chosen trial is shown. In each panel, red lines represent decoded movements from real neural activity, and blue lines
represent decoded movements from synthetic neural activity. NMSE of decoded positions are shown in each panel. Decoded positions from DL
models have relatively better NMSE compared to tuning and linear models.

Fig. 8. NMSE of positions decoded from recorded neural activity and
those decoded from synthetic neural activity in the open-loop testing
dataset. The red vertical line on each bar is the standard deviation of
NMSE of repeated experiments. DL models achieve lower value than
tuning models across three decoders. *** denotes p < 0.001, Wilcoxon
rank-sum test.

commands in response to visual feedback of the decoded output.
Hence, the statistics of closed-loop neural population activity
may differ from those during naturalistic reaching (e.g., [14],
[24], [50], [51]). We therefore evaluated how well DL models
generalized to reproduce closed-loop data, where monkeys up-
date their motor commands in response to imperfect decoding. If

DL models more faithfully reproduce prior decoded closed-loop
kinematics, this is an additional evidence that they are more
appropriate for closed-loop BMI use.

We trained encoding models on an open-loop center-out-and-
back task performed with the native hand. However, we subse-
quently tested how well these encoding models could generate
neural activity during BMI control from a previously collected
closed-loop BMI dataset. We used the kinematics of the mon-
key’s arm to generate synthetic neural activity, and subsequently
decoded this activity post-hoc using the ReFIT-KF decoder. We
then compared the post-hoc decoded movements to the empirical
movements during closed-loop ReFIT-KF BMI control. These
results are summarized in Fig. 9, demonstrating that even for
closed-loop control, the DL encoding model synthetic activity
could be better decoded to produce kinematics than tuning
models. The DL model achieved a significant reduction (>25%)
in NMSE of decoded positions over PD and PPVT models (all
p < 10−3, Wilcoxon rank-sum test). Interestingly, we found
that the GLMh model performed comparably to DL models,
suggesting that this model may be appropriate for closed-loop
BMI simulation. Together, these results indicate that DL models
reproduce neural population activity better than tuning models
when used in closed-loop settings, even though they were only
trained in open-loop settings.

IV. DISCUSSION

Prior work has demonstrated that motor cortical activity is
heterogeneous, dynamic, and more complex than previously

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

2154 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

Fig. 9. Decoded movements from closed-loop recorded and synthetic neural activity with ReFIT-KF as decoder. In each panel, red lines are
movements decoded from real neural data. Blue lines in each panel are movements decoded from synthetic neural activity of (a) PD, (b) PPVT,
(c) GLM, (d) GLMh, (e) MLP, (f) MLPh, and (g) RNN, respectively. The average NMSE of each encoder is showen in each panel. (e) and (g) are
decoded movements from MLP and RNN models, reflecting key motifs in original decodes and achieving the lowest NMSEs. (h) Normalized mean
squared error (NMSE) between positions decoded from recorded neural activity and those decoded from synthetic neural activity in closed-loop
dataset. *** denotes p < 0.001, Wilcoxon rank-sum test.

TABLE I
SUMMARY OF MONKEY J’S RESULTS

thought [55], [57], [87], [91]. Neural encoders that do not
reproduce neural population statistics will limit the performance
of BMI simulators. To overcome this limit, we employed high
capacity, nonlinear neural network models to better capture com-
plexities in the empirical data. Our results demonstrate that these
models are better than traditional models in (1) reproducing het-
erogeneity in single electrode PSTHs, (2) reproducing nonlinear
structure and dynamic features in the neural population, (3)
matching decoded kinematics in open-loop experiments, and (4)
matching decoded kinematics in closed-loop experiments. We
summarize monkey J’s results in Table I. Standard deviations
are reported in Supplementary Table 1. Monkey L’s results are
summarized in Supplementary Tables 2 and 3. Note that we have
not done an exhaustive search of hyperparameters, and it is likely
that doing so could further improve our results. Future work can
further optimize these hyperparameters.

We found that tuning and linear models significantly un-
derestimated the variability of motor cortical neural activ-
ity. The PD model generated relatively static firing rates be-
cause it only represents the reach angle. The PPVT and GLM
models incorporated kinematics, causing the PSTHs to have

kinematic-resembling activity. In contrast, we found that DL
models incorporating nonlinearity more closely reproduced em-
pirical PSTHs. In addition to this, they also reproduced neural
population motifs, resembling neural trajectories in PCA and
jPCA projections.

When comparing to previously used tuning models, we found
that decoding DL generated neural activity more closely re-
sembled kinematics decoded from recorded activity, both in
open-loop and closed-loop experiments. While DL models were
superior to GLM and GLMh models in open-loop decoding, we
observed that GLMh achieved similar NMSE to DL models in
closed-loop decoding, as shown in Fig. 9. This is interesting,
in light of the fact that GLMh was significantly worse than DL
models in reproducing single electrode, neural population, and
open-loop decodes. These results suggest that for closed-loop
decoding, DL models and GLMh captures important kinematic
variability in the neural activity. Further, this variability can be
captured without accurately reproducing other neural features.

We found that incorporating kinematic history in neural en-
coders could improve neural encoding. A history over the inputs
allows the output to have temporal structure, in that the same

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

LIANG AND KAO: DEEP LEARNING NEURAL ENCODERS FOR MOTOR CORTEX 2155

input at time t can produce a different output at time t based
on the history of inputs at time t− 1, t− 2, and so forth. In
this manner, the generated neural activity can have dynamics,
which is an important and useful property of motor cortical
activity [39], [87], [92]. However, we did find that DL models
were best trained with an intermediate amount of history, or
through an explicit dynamical model as in the RNN. Specifically,
an MLPh model trained with 4 bins of input history performed
better than when trained with 16 or 32 bins of input history.
This suggests that although the MLPh can incorporate history
over the inputs, it is difficult to model longer sequences for
this application. This may be due to the fact that each input
causes a commensurate increase in the number of parameters,
making training more difficult. Hence, while MLPh can help
model temporal structure in the output, it is limited in its ability
to do so. The RNN, by implementing a dynamical system, can
learn longer temporal dependencies. We emphasize though, that
in open-loop data, while RNN models better reproduced PSTHs,
PCA trajectories, and jPCA dynamics, we did not find that
RNN is better than the MLP-based models when generalizing to
closed-loop data (closed-loop NMSE not significantly different).

The input to DL neural encoders were 2D position and ve-
locity. However, motor cortex also encodes additional kine-
matic [11] and kinetic variables including acceleration [93],
[94], time [85], distance [95]–[99], joint angles [100], and
forces [101], [102]. These additional kinematic parameters may
improve neural encoders. To show that different inputs can
impact performance, we trained MLP, GLM, and GLMh models
with only a velocity input, and compared it to the same encoders
trained with position and velocity inputs. We found that across
these architectures, encoders using position and velocity (pv)
generally matched or outperformed encoders using only velocity
(v) as shown in Table I. We also tested DL encoders with accel-
eration as an additional input, but did not find that these encoders
significantly increased performance. We note that, without po-
sition, MLP-v did not perform well. This answer is intuitive
when considering that MLP-v does not incorporate history or
dynamics, and therefore the same velocities will produce the
same synthetic neural activity. When performing straight-line
reaches, similar velocities will be encountered during the ac-
celeration and deceleration of the reach. This causes synthetic
neural activity in MLP-v to appear somewhat symmetric around
the peak velocity, resulting in a neural encoder that does not
capture key features of the neural population activity. Future
work may improve encoding models by measuring and incorpo-
rating additional kinematic and kinetic variables as inputs. An
important limitation of this simulation approach is that if a novel
decoder algorithm incorporates newly discovered mechanisms
or aspects of neural variance not captured by the inputs, then
the simulator may not adequately evaluate this decoder’s per-
formance. This limits the scope of testable decoding algorithms
to ones that operate on neural variability adequately captured by
the available inputs.

The reported GLM models are linear Gaussian. We also tested
a Poisson-GLM and Binomial-GLM, and found these encoders
to perform significantly worse than DL models (data not shown).
The GLM assumes the form of the error distribution between

predicted and observed spike rates; however, these assumptions
may not be valid. Further, GLMs with a nonlinear link function
have nonlinearity at the output, but prior to the output, the model
is linear. These nonlinear link functions have less capacity to
model nonlinear relationships [5], [83] than neural networks.
Therefore, DL models significantly improve upon linear and
tuning methods in reconstructing single electrode and neural
population activity, as well as decoding (except when comparing
to GLMh, described above), showing that nonlinearity is an
important factor in improving encoding models.

To demonstrate that DL models generalize for BMI simula-
tors, we also assessed how well these models generated neural
activity during closed-loop BMI experiments. Closed-loop BMI
data has different statistics than offline testing data. However,
if an encoding model generally captures how kinematics can
be predictive of neural population activity, we would expect
this encoding model to more accurately reproduce closed-loop
BMI decoding performance. In closed-loop BMI decoding,
the user’s kinematics are drastically different; where as offline
data comprises primarily ballistic reaches, closed-loop BMI
decoding incorporates corrective movements, which are typi-
cally smaller in extent and fairly precise. We found that, when
generalizing to closed-loop BMI kinematics, DL models and
GLMh significantly outperformed tuning models, indicating that
they may generalize better for closed-loop experiments. Future
work should assess how these DL models perform in real-time
closed-loop experiments. These experiments would utilize the
neural encoder to generate synthetic neural activity and decode
this activity in real-time.

There is a growing literature using deep learning in neuro-
science. This body of work includes using variational autoen-
coders to denoise intracortical spike trains [56], and model early
visual representations [65], sensory cortex [7], decision-making
tasks [103]–[105], and motor tasks [9], [86], [87]. Prior studies
training RNNs to perform motor tasks have used artificial units
that resemble neurophysiological activity and dynamics [9],
[86], [87]. However, these studies have important differences
to this work. The goal of those studies is to train RNNs that
reproduce animal behavior, so that the artificial RNN can be
further analyzed for neuroscientific insight [104]. Along these
lines, the inputs to these RNNs are task inputs and the outputs
are behavior (such as electromyograms or kinematics). Further,
in these RNNs, it is important for the artificial neurons to re-
semble the activity of empirically recorded neurons. In contrast,
our study aimed to generate neural activity as a function of
kinematics. As such, the inputs to our network are kinematics
(as opposed to task inputs), and the outputs are neural activity
(as opposed to EMG or kinematics). Finally, our work is not
concerned about the activity of the hidden artificial units, as our
goal is to reproduce neural activity at the output.

This work helps to improve BMI simulator tools for modeling
closed-loop aspects of BMI decoding. Ultimately, the goal of
this work is to accelerate the translation and design of BMI
algorithms. Our work simulates monkey neural data, and not
human neural data. We note that our approach could be applied
to experiments with paralyzed participants: kinematics would
correspond to imagined or intended kinematics, which match

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

2156 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

the movements of a cursor on a computer screen or a robotic
arm (e.g., [19]–[21]) with simultaneous neural recordings. It
is worth noting that results from monkey experiments have
been translated to pilot clinical trials (e.g., [66]), showing the
translational feasibility of performing optimization with monkey
experiments.

V. CONCLUSION

Deep learning neural encoders are able to reproduce hetero-
geneous neural activity better than existing tuning models and
GLM models. We showed that deep learning neural encoders
are significantly better than prior neural encoders in reproducing
PSTHs, neural population motifs, and matching decoded kine-
matics in open-loop and closed-loop data. Our results indicate
that these deep learning neural encoders may significantly im-
prove the fidelity of BMI simulators. Improving these simulators
may facilitate developing, analyzing, and optimizing neural
decoders to accelerate BMI clinical translation.

ACKNOWLEDGMENT

The authors would like to thank K. Shenoy for provid-
ing intracortical recordings analyzed in this paper; Stephen
Ryu for surgical expertise; M. Risch, M. Wechsler, L. Yates,
R. Steinbach, and S. Smith for surgical assistance and veterinary
care; T. Senate, E. Castaneda, and B. Davis for administrative
support. A GPU used for this research was donated by the
NVIDIA Corporation.

REFERENCES

[1] T. Gollisch and M. Meister, “Eye smarter than scientists believed: Neural
computations in circuits of the retina,” Neuron, vol. 65, pp. 150–164,
Jan. 2010.

[2] A. D. Huberman et al., “Architecture and activity-mediated refinement of
axonal projections from a mosaic of genetically identified retinal ganglion
cells,” Neuron, vol. 59, pp. 425–438, Aug. 2008.

[3] J. W. Pillow et al., “Spatio-temporal correlations and visual signalling
in a complete neuronal population,” Nature, vol. 454, pp. 995–999,
Aug. 2008.

[4] N. C. Rust et al., “Spatiotemporal elements of macaque v1 receptive
fields,” Neuron, vol. 46, pp. 945–956, Jun. 2005.

[5] L. T. McIntosh et al., “Deep learning models of the retinal response to
natural scenes,” in Proc. Adv. Neural Inf. Process. Syst., 2016, vol. 29,
pp. 1369–1377.

[6] H. Wen et al., “Neural encoding and decoding with deep learning
for dynamic natural vision,” Cerebral Cortex, vol. 28, pp. 4136–4160,
Dec. 2018.

[7] D. L. K. Yamins and J. J. DiCarlo, “Using goal-driven deep learning
models to understand sensory cortex,” Nature Neurosci., vol. 19, pp. 356–
365, Mar. 2016.

[8] M. M. Churchland et al., “Neural population dynamics during reaching,”
Nature, vol. 487, pp. 51–56, Jul. 2012.

[9] J. A. Michaels, B. Dann, and H. Scherberger, “Neural population dy-
namics during reaching are better explained by a dynamical system than
representational tuning,” PLoS Comput. Biol., vol. 12, no. 11, 2016,
Art. no. e1005175.

[10] R. E. Hampson et al., “Developing a hippocampal neural prosthetic to
facilitate human memory encoding and recall,” J. Neural Eng., vol. 15,
Jun. 2018, Art. no. 036014.

[11] S. J. Bensmaia and L. E. Miller, “Restoring sensorimotor function through
intracortical interfaces: Progress and looming challenges,” Nature Rev.
Neurosci., vol. 15, pp. 313–325, May 2014.

[12] V. Gilja et al., “Challenges and opportunities for next-generation intra-
cortically based neural prostheses,” IEEE Trans. Biomed. Eng., vol. 58,
no. 7, pp. 1891–1899, Jul. 2011.

[13] J. E. O’Doherty et al., “Active tactile exploration using a brain-machine-
brain interface,” Nature, vol. 479, pp. 228–231, Oct. 2011.

[14] J. P. Cunningham et al., “A closed-loop human simulator for investigating
the role of feedback control in brain-machine interfaces,” J. Neurophys-
iol., vol. 105, pp. 1932–1949, Apr. 2011.

[15] K. D. Anderson, “Targeting recovery: Priorities of the spinal cord-injured
population,” J. Neurotrauma, vol. 21, pp. 1371–1383, Oct. 2004.

[16] B. S. Armour et al., “Prevalence and causes of Paralysis-United states,
2013,” Amer. J. Public Health, vol. 106, pp. 1855–1857, Oct. 2016.

[17] C. & Dana Reeve Foundation, One Degree of Separation: Paralysis and
Spinal Cord Injury in the United States. Short Hills, NJ, USA: Christopher
& Dana Reeve Foundation, 2009.

[18] A. B. Ajiboye et al., “Restoration of reaching and grasping movements
through brain-controlled muscle stimulation in a person with tetraplegia:
A proof-of-concept demonstration,” Lancet, vol. 389, pp. 1821–1830,
May 2017.

[19] J. L. Collinger et al., “High-performance neuroprosthetic control by an
individual with tetraplegia,” Lancet, vol. 381, pp. 557–564, Feb. 2013.

[20] L. R. Hochberg et al., “Neuronal ensemble control of prosthetic devices
by a human with tetraplegia,” Nature, vol. 442, pp. 164–171, Jul. 2006.

[21] L. R. Hochberg et al., “Reach and grasp by people with tetraplegia
using a neurally controlled robotic arm,” Nature, vol. 485, pp. 372–375,
May 2012.

[22] C. Pandarinath et al., “High performance communication by people with
paralysis using an intracortical brain-computer interface,” eLife, vol. 6,
Feb. 2017, Art. no. e18554, doi: 10.7554/eLife.18554.

[23] J. Dethier et al., “Design and validation of a real-time spiking-neural-
network decoder for brain-machine interfaces,” J. Neural Eng., vol. 10,
Jun. 2013, Art. no. 036008.

[24] J. C. Kao et al., “Information systems opportunities in brain machine
interface decoders,” Proc. IEEE, vol. 102, no. 5, pp. 666–682, May 2014.

[25] P. R. Kennedy et al., “Direct control of a computer from the human central
nervous system,” IEEE Trans. Rehabil. Eng., vol. 8, no. 2, pp. 198–202,
Jun. 2000.

[26] D. M. Taylor, S. I. H. Tillery, and A. B. Schwartz, “Direct cortical
control of 3D neuroprosthetic devices,” Science, vol. 296, pp. 1829–1832,
Jun. 2002.

[27] J. M. Carmena et al., “Learning to control a brain-machine interface
for reaching and grasping by primates,” PLoS Biol., vol. 1, Nov. 2003,
Art. no. E42.

[28] P. Nuyujukian et al., “A nonhuman primate brain–computer typing
interface,” Proc. IEEE, vol. 105, no. 1, pp. 66–72, Jan. 2017.

[29] M. Velliste et al., “Cortical control of a prosthetic arm for self-feeding,”
Nature, vol. 453, pp. 1098–1101, Jun. 2008.

[30] C. E. Bouton et al., “Restoring cortical control of functional movement
in a human with quadriplegia,” Nature, vol. 533, pp. 247–250, May 2016.

[31] P. Nuyujukian et al., “Cortical control of a tablet computer by people
with paralysis,” PLoS One, vol. 13, Nov. 2018, Art. no. e0204566.

[32] S. I. Ryu and K. V. Shenoy, “Human cortical prostheses: Lost in transla-
tion?,” Neurosurgical Focus, vol. 27, 2009, Art. no. E5.

[33] V. Gilja et al., “A high-performance neural prosthesis enabled by control
algorithm design,” Nature Neurosci., vol. 15, pp. 1752–1757, Dec. 2012.

[34] M. M. Shanechi et al., “Rapid control and feedback rates enhance
neuroprosthetic control,” Nature Commun., vol. 8, 2017, Art. no. 13825.

[35] M. Aghagolzadeh and W. Truccolo, “Inference and decoding of mo-
tor cortex low-dimensional dynamics via latent state-space models,”
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 2, pp. 272–282,
Feb. 2016.

[36] J. C. Kao et al., “Single-trial dynamics of motor cortex and their appli-
cations to brain-machine interfaces,” Nature Commun., vol. 6, Jul. 2015,
Art. no. 7759.

[37] J. C. Kao, S. I. Ryu, and K. V. Shenoy, “Leveraging neural dynamics to
extend functional lifetime of brain-machine interfaces,” Sci. Rep., vol. 7,
Aug. 2017, Art. no. 7395.

[38] E. L. Dyer et al., “A cryptography-based approach for movement decod-
ing,” Nature Biomed. Eng., vol. 1, pp. 967–976, Dec. 2017.

[39] C. Pandarinath et al., “Latent factors and dynamics in motor cortex and
their application to Brain–Machine interfaces,” J. Neurosci., vol. 38,
pp. 9390–9401, Oct. 2018.

[40] V. Lawhern et al., “Population decoding of motor cortical activity using
a generalized linear model with hidden states,” J. Neurosci. Methods,
vol. 189, pp. 267–280, Jun. 2010.

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.7554/eLife.18554

LIANG AND KAO: DEEP LEARNING NEURAL ENCODERS FOR MOTOR CORTEX 2157

[41] M. Aghagolzadeh and W. Truccolo, “Latent state-space models for neural
decoding,” in Proc. IEEE Conf. Eng. Med. Biol. Soc., 2014, vol. 2014,
pp. 3033–3036.

[42] H. Abbaspourazad et al., “Identifying multiscale hidden states to decode
behavior,” in Proc. IEEE Conf. Eng. Med. Biol. Soc., Jul. 2018, vol. 2018,
pp. 3778–3781.

[43] J. H. Macke et al., “Empirical models of spiking in neural populations,” in
Advances in Neural Information Processing Systems 24, J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, Eds., Red
Hook, NY, USA: Curran Associates, Inc., 2011, pp. 1350–1358.

[44] J. E. Kulkarni and L. Paninski, “Common-input models for multiple
neural spike-train data,” Network, vol. 18, pp. 375–407, Dec. 2007.

[45] D. Sussillo et al., “Making brain–machine interfaces robust to future
neural variability,” Nature Commun., vol. 7, Dec. 2016, Art. no. 13749.

[46] J. M. Fan et al., “Intention estimation in brain-machine interfaces,” J.
Neural Eng., vol. 11, Feb. 2014, Art. no. 016004.

[47] K. Ganguly and J. M. Carmena, “Emergence of a stable cortical map for
neuroprosthetic control,” PLoS Biol., vol. 7, Jul. 2009, Art. no. e1000153.

[48] K. Ganguly et al., “Reversible large-scale modification of cortical
networks during neuroprosthetic control,” Nature Neurosci., vol. 14,
pp. 662–667, May 2011.

[49] K. V. Shenoy and J. M. Carmena, “Combining decoder design and neural
adaptation in brain-machine interfaces,” Neuron, vol. 84, no. 4, pp. 665–
680, 2014.

[50] S. M. Chase, A. B. Schwartz, and R. E. Kass, “Bias, optimal linear
estimation, and the differences between open-loop simulation and closed-
loop performance of spiking-based brain-computer interface algorithms,”
Neural Netw., vol. 22, no. 9, pp. 1203–1213, 2009.

[51] S. Koyama et al., “Comparison of brain-computer interface decoding
algorithms in open-loop and closed-loop control,” J. Comput. Neurosci.,
vol. 29, pp. 73–87, Aug. 2010.

[52] F. R. Willett et al., “Feedback control policies employed by people
using intracortical brain-computer interfaces,” J. Neural Eng., vol. 14,
Feb. 2017, Art. no. 016001.

[53] F. R. Willett et al., “Principled BCI decoder design and parameter
selection using a feedback control model,” Sci. Rep., vol. 9, Jun. 2019,
Art. no. 8881.

[54] A. P. Georgopoulos et al., “On the relations between the direction of
two-dimensional arm movements and cell discharge in primate motor
cortex,” J. Neurosci., vol. 2, pp. 1527–1537, Nov. 1982.

[55] M. M. Churchland and K. V. Shenoy, “Temporal complexity and het-
erogeneity of single-neuron activity in premotor and motor cortex,” J.
Neurophysiol., vol. 97, pp. 4235–4257, 2007.

[56] C. Pandarinath et al., “Inferring single-trial neural population dynamics
using sequential auto-encoders,” Nature Methods, vol. 15, pp. 805–815,
Oct. 2018.

[57] M. M. Churchland et al., “Neural population dynamics during reaching,”
Nature, vol. 487, pp. 51–56, Jul. 2012.

[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., Red Hook, NY, USA: Curran Associates, Inc.,
2012, pp. 1097–1105.

[59] C. Szeged et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vision Pattern Recognit., 2015, pp. 1–9.

[60] K. He et al., “Identity mappings in deep residual networks,” in Computer
Vision (Lecture Notes in Computer Science). Berlin, Germany: Springer,
Oct. 2016, pp. 630–645.

[61] G. Cheng, P. Zhou, and J. Han, “Learning rotation-Invariant convolutional
neural networks for object detection in VHR optical remote sensing im-
ages,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405–7415,
Dec. 2016.

[62] J. Han et al., “Object detection in optical remote sensing images
based on weakly supervised learning and high-level feature learning,”
IEEE Trans. Geosci. Remote Sens., vol. 53, no. 6, pp. 3325–3337,
Jun. 2015.

[63] D. Zhang et al., “Detection of co-salient objects by looking deep and
wide,” Int. J. Comput. Vis., vol. 120, pp. 215–232, Nov. 2016.

[64] J. Han et al., “Background prior-based salient object detection via deep re-
construction residual,” IEEE Trans. Circuits Syst. Video Technol., vol. 25,
no. 8, pp. 1309–1321, Aug. 2015.

[65] J. Lindsey et al., “The effects of neural resource constraints on early
visual representations,” in Proc. Int. Conf. Learn. Representations,
2019.

[66] V. Gilja et al., “Clinical translation of a high-performance neural pros-
thesis,” Nature Med., vol. 21, no. 10, pp. 1142–1145, 2015.

[67] C. A. Chestek et al., “Long-term stability of neural prosthetic control
signals from silicon cortical arrays in rhesus macaque motor cortex,” J.
Neural Eng., vol. 8, Aug. 2011, Art. no. 045005.

[68] P. Nuyujukian et al., “Monkey models for brain-machine interfaces:
The need for maintaining diversity,” Conf. IEEE Eng. Med. Biol. Soc.,
vol. 2011, pp. 1301–1305, Jan. 2011.

[69] B. M. Yu et al., “Gaussian-process factor analysis for low-dimensional
single-trial analysis of neural population activity,” J. Neurophysiol.,
vol. 102, pp. 614–635, Jul. 2009.

[70] K. V. Shenoy, M. Sahani, and M. M. Churchland, “Cortical control of arm
movements: A dynamical systems perspective,” Annu. Rev. Neurosci.,
vol. 36, pp. 337–359, Jul. 2013.

[71] J. P. Cunningham and B. M. Yu, “Dimensionality reduction for large-scale
neural recordings,” Nature Neurosci., vol. 17, pp. 1500–1509, Aug. 2014.

[72] C. Pandarinath et al., “Latent factors and dynamics in motor cortex
and their application to Brain-Machine interfaces,” J. Neurosci., vol. 38,
pp. 9390–9401, Oct. 2018.

[73] E. Salinas and L. F. Abbott, “Vector reconstruction from firing rates,” J.
Comput. Neurosci., vol. 1, pp. 89–107, Jun. 1994.

[74] J. M. Carmena et al., “Learning to control a Brain–Machine interface for
reaching and grasping by primates,” PLoS Biol., vol. 1, Oct. 2003, Art.
no. e42.

[75] S.-P. Kim et al., “Neural control of computer cursor velocity by decoding
motor cortical spiking activity in humans with tetraplegia,” J. Neural
Eng., vol. 5, pp. 455–476, Dec. 2008.

[76] W. Wu et al., “Neural decoding of cursor motion using a Kalman filter,”
in Advances in Neural Information Processing Systems 15, S. Becker,
S. Thrun, and K. Obermayer, Eds., Cambridge, MA, USA: MIT Press,
2003, pp. 133–140.

[77] E. Stark and M. Abeles, “Predicting movement from multiunit activity,”
J. Neurosci., vol. 27, pp. 8387–8394, Aug. 2007.

[78] G. W. Fraser et al., “Control of a brain-computer interface without spike
sorting,” J. Neural Eng., vol. 6, Oct. 2009, Art. no. 055004.

[79] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
Proc. Int. Conf. Learn. Representations, 2014.

[80] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell.
Statist., Mar. 2010, pp. 249–256.

[81] S. Gerwinn et al., “Bayesian inference for generalized linear models for
spiking neurons,” Frontiers Comput. Neurosci., vol. 4, p. 12, May 2010,
doi: 10.3389/fncom.2010.00012.

[82] W. Truccolo., “A point process framework for relating neural spiking ac-
tivity to spiking history, neural ensemble, and extrinsic covariate effects,”
J. Neurophysiol., vol. 93, pp. 1074–1089, Feb. 2005.

[83] A. S. Benjamin et al., “Modern machine learning as a benchmark for fit-
ting neural responses,” Front. Comput. Neurosci., vol. 12, p. 56, Jul. 2018,
doi: 10.3389/fncom.2018.00056.

[84] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, Nov. 2016.

[85] M. T. Kaufman et al., “The largest response component in motor cor-
tex reflects movement timing but not movement type,” eNeuro, vol. 3,
no. 4, Aug. 2016, doi: 10.1523/ENEURO.0085-16.

[86] G. Hennequin, T. P. Vogels, and W. Gerstner, “Optimal control of tran-
sient dynamics in balanced networks supports generation of complex
movements,” Neuron, vol. 82, pp. 1394–1406, Jun. 2014.

[87] D. Sussillo et al., “A neural network that finds a naturalistic solution
for the production of muscle activity,” Nature Neurosci., vol. 18, no. 7,
pp. 1025–1033, 2015.

[88] C. Pandarinath et al., “Neural population dynamics in human motor
cortex during movements in people with ALS,” Elife, vol. 4, Jun. 2015,
Art. no. e07436.

[89] G. F. Elsayed and J. P. Cunningham, “Structure in neural population
recordings: An expected byproduct of simpler phenomena?,” Nature
Neurosci., vol. 20, pp. 1310–1318, Sep. 2017.

[90] N. Even-Chen et al., “Augmenting intracortical brain-machine interface
with neurally driven error detectors,” J. Neural Eng., vol. 14, Dec. 2017,
Art. no. 066007.

[91] M. M. Churchland et al., “Cortical preparatory activity: Representation
of movement or first cog in a dynamical machine?,” Neuron, vol. 68,
pp. 387–400, Nov. 2010.

[92] A. A. Russo et al., “Motor cortex embeds muscle-like commands in an
untangled population response,” Neuron, vol. 97, pp. 953–966, Feb. 2018.

[93] W. Wu et al., “Neural decoding of cursor motion using a kalman filter,”
in Advances in Neural Information Processing Systems 15, S. Becker,
S. Thrun, and K. Obermayer, Eds., Cambridge, MA, USA: MIT Press,
2003, pp. 133–140.

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.3389/fncom.2010.00012
https://dx.doi.org/10.3389/fncom.2018.00056
https://dx.doi.org/10.1523/ENEURO.0085-16

2158 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020

[94] L. Paninski et al., “Spatiotemporal tuning of motor cortical neurons
for hand position and velocity,” J. Neurophysiol., vol. 91, pp. 515–532,
Jan. 2004.

[95] M. M. Churchland, G. Santhanam, and K. V. Shenoy, “Preparatory
activity in premotor and motor cortex reflects the speed of the upcoming
reach,” J. Neurophysiol., vol. 96, pp. 3130–3146, Dec. 2006.

[96] Q. G. Fu, J. I. Suarez, and T. J. Ebner, “Neuronal specification of direc-
tion and distance during reaching movements in the superior precentral
premotor area and primary motor cortex of monkeys,” J. Neurophysiol.,
vol. 70, pp. 2097–2116, Nov. 1993.

[97] J. Messier and J. F. Kalaska, “Covariation of primate dorsal premotor cell
activity with direction and amplitude during a memorized-delay reaching
task,” J. Neurophysiol., vol. 84, pp. 152–165, Jul. 2000.

[98] D. W. Moran and A. B. Schwartz, “Motor cortical representation of speed
and direction during reaching,” J. Neurophysiol., vol. 82, pp. 2676–2692,
Nov. 1999.

[99] A. Riehle and J. Requin, “Monkey primary motor and premotor cortex:
Single-cell activity related to prior information about direction and extent
of an intended movement,” J. Neurophysiol., vol. 61, pp. 534–549,
Mar. 1989.

[100] J. A. Pruszynski et al., “Primary motor cortex underlies multi-joint
integration for fast feedback control,” Nature, vol. 478, pp. 387–390,
Sep. 2011.

[101] D. R. Humphrey, E. M. Schmidt, and W. D. Thompson, “Predicting
measures of motor performance from multiple cortical spike trains,”
Science, vol. 170, pp. 758–762, Nov. 1970.

[102] M. Hepp-Reymond et al., “Context-dependent force coding in motor
and premotor cortical areas,” Exp. Brain Res., vol. 128, pp. 123–133,
Sep. 1999.

[103] V. Mante et al., “Context-dependent computation by recurrent dynamics
in prefrontal cortex,” Nature, vol. 503, pp. 78–84, Nov. 2013.

[104] H. F. Song, G. R. Yang, and X. J. Wang, “Training excitatory-
inhibitory recurrent neural networks for cognitive tasks: A simple and
flexible framework,” PLoS Comput. Biol., vol. 12, no. 2, pp. 1–30,
2016.

[105] W. Chaisangmongkon et al., “Computing by robust transience: How the
fronto-parietal network performs sequential, category-based decisions,”
Neuron, vol. 93, no. 6, pp. 1504–1517, 2017.

Authorized licensed use limited to: UCLA Library. Downloaded on August 23,2020 at 04:44:47 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

