
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 67, NO. 8, AUGUST 2020 2145

Deep Learning Neural Encoders for
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Abstract—Intracortical brain-machine interfaces (BMIs)
transform neural activity into control signals to drive a
prosthesis or communication device, such as a robotic arm
or computer cursor. To be clinically viable, BMI decoders
must achieve high accuracy and robustness. Optimizing
these decoders is expensive, traditionally requiring animal
or human experiments spanning months to years. This is
because BMIs are closed-loop systems, where the user
updates his or her motor commands in response to an
imperfectly decoded output. Decoder optimization using
previously collected “offline” data will therefore not cap-
ture this closed-loop response. An alternative approach to
significantly accelerate decoder optimization is to use a
closed-loop experimental simulator. A key component of
this simulator is the neural encoder, which synthetically
generates neural population activity from kinematics. Prior
neural encoders do not model important features of neural
population activity. To overcome these limitations, we use
deep learning neural encoders. We find these models sig-
nificantly outperform prior neural encoders in reproducing
peri-stimulus time histograms (PSTHs) and neural popula-
tion dynamics. We also find that deep learning neural en-
coders better match neural decoding results in offline data
and closed-loop experimental data. We anticipate these
deep-learning neural encoders will substantially improve
simulators for BMIs, enabling faster evaluation, optimiza-
tion, and characterization of BMI decoder algorithms.

Index Terms—Brain-machine interfaces, neural en-
coders, neural networks, motor cortex, deep learning.

I. INTRODUCTION

G ENERATING neural activity has wide implications in
systems neuroscience and neural engineering. Neural en-

coding models (encoders) have produced insight into compu-
tations in early visual processing stages (e.g., [1]–[4]). Recent
work has applied deep learning, specifically convolutional neu-
ral networks (CNNs), to model retinal activity. Analysis of
these CNNs revealed roles for feedforward inhibition, recurrent
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lateral connections, and noise in explaining empirical neural
responses [5]–[7]. Neural encoders have been used to argue that
the motor cortex does not represent movement, but is rather a dy-
namical system (e.g., [8], [9]). In engineering applications, neu-
ral encoders are proposed to augment memory function through
modeling hippocampal activity [10] and deliver realistic sensory
sensation through stimulation of sensory cortices [11]–[13].
Finally, motor cortical neural encoders are a critical component
for simulating motor brain-machine interfaces (BMIs) [14].

We focus on building motor cortical neural encoders for
intracortical motor BMI simulation, with the goal of substan-
tially accelerating clinical translation. For people with motor
neurological disease and injury, such as amyotrophic lateral
sclerosis (ALS) and spinal cord injury [15]–[17], BMIs aim
to recover lost motor function and communication [18]–[22].
The ultimate goal is to improve quality of life for people with
paralysis by providing direct neural control of prosthetic arms
or computer cursors. These prostheses are guided by a control
signal decoded from motor regions of the brain (e.g., [21],
[23], [24]) as illustrated in Fig. 1(a). In clinical trials, these
neural decoders are trained with recorded neural signals during
imagined (or intended) movements [20]. While considerable
research over the past 15 years has led to important BMI demon-
strations [19]–[22], [25]–[31] several challenges remain towards
achieving clinically viable BMI systems.

To be clinically viable, intracortical BMIs must achieve high
performance at a level justifying neurosurgery [32]. The perfor-
mance of these systems is heavily impacted by the BMI decoder.
Recent efforts have produced novel algorithms to increase BMI
performance and robustness by utilizing feedback control [33],
[34], neural population dynamics [35]–[37], latent factors [38]–
[44], and deep learning [45]. Yet, BMI development remains
relatively slow. An important reason is that the most reliable
test of BMI decoder performance are closed-loop experiments,
which are expensive and time-consuming. In particular, BMIs
are unique in that a user interacts with the system, adjusting
his/her motor commands in response to observing the BMI
decoder output. When the decoded output does not match user
intent, the user updates his/her motor commands. This may cause
the statistics of the neural activity to be different to previously
collected open-loop experimental data (“offline evaluation”)
used to train the decoder [46]–[49]. It is therefore possible for
decoders optimized through offline evaluation to be suboptimal
in closed-loop experiments [14], [50], [51].

Yet, closed-loop experiment also face challenges. They have
greater costs per tested algorithm than offline decoding, being
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Fig. 1. BMI system and neural encoder. (a) Neural activity is recorded from electrode arrays implanted in motor cortex. A decoder transforms
neural activity into control signals which guides a motor prosthesis. The BMI user receives visual and potentially sensory feedback, adjusting his
or her control policy in response to observing the decoded movement. (b) A neural encoder takes user hand movement kinematics and produces
synthetic neural activity. A good encoder reproduces single electrode activity, neural population dynamics, and decoded movement decoded from
real neural activity. Here, we compare (1) the PSTHs and neural dynamics of recorded and synthetic neural activity, and (2) decoded movements
from real and synthetic neural activity.

more time-consuming and financially expensive [14]. Further,
closed-loop experiments incorporate sources of variation in-
cluding animal behavior and motivation. While this variance
can be beneficially used to increase decoder robustness [45],
this variation may also increase the time and data required to
demonstrate statistically significant differences. Finally, closed-
loop experiments are difficult to compare across laboratories
due to variations in recording technology, animal training, and
task design. These obstacles are largely not faced by offline
decoding and evaluation, where decoders are trained and tested
on previously recorded motor cortical data. Offline evaluation,
in contrast, allows for the same dataset to be used for algorithm
development, has reduced variability from animal motivation,
and can be performed at time scales that are orders of magnitude
smaller than closed-loop experiments. Offline evaluation can
therefore play an important role as stepping stones to closed-loop
experiments, producing insight into what algorithms are most
promising to evaluate in available closed-loop experiments.
However, it is important to emphasize that offline decoding
does not capture the closed-loop nature of BMI systems [14],
[50]–[53].

In contrast to closed-loop animal experiments and offline
decoding, prior work introduced a middle ground: neural activity
can be simulated to more rapidly perform experiments that
incorporate the closed-loop nature of BMI systems. This online
prosthetic simulator (OPS) [14] enables faster decoder evalua-
tion incorporating closed-loop feedback control policies without
requiring intracortical recordings from the brain. Cunningham
and colleagues showed using OPS that BMI performance should
increase with smaller bin width, an empirical result they and
another study confirmed [34]. In the OPS, spike trains were
synthesized via an inhomogeneous Poisson process whose rate
was described by a speed-modulated tuning curve model [54].
We call this model the Poisson Process Velocity Tuning (PPVT)
model. Several studies have demonstrated that this model does
not reproduce complex heterogeneity in neuron firing rates,
including changing preferred directions with time [55], nonlin-
ear structure in the neural population activity [56], and neural
population dynamics (e.g., [9], [57]).

In this work, we introduce deep learning (DL) based neural en-
coders for synthesizing motor cortical neural population activity

from kinematic behavior. We chose to use DL due to its success
in a variety of research areas including, but not limited to, com-
puter vision [58]–[60], object detection [61]–[64], neural signal
denoising [56], early visual representations modeling [65], and
sensory cortex modeling [7]. We trained DL encoders in a su-
pervised fashion using data collected while a monkey performed
a reaching task. We demonstrate that DL encoders can better
reproduce single neuron PSTH variability, neural population
dynamics, and neurally decoded movements. Further, we show
that these models more faithfully reproduce closed-loop BMI
kinematics decoded from a monkey experiment. We anticipate
that DL encoders will be a key component in developing BMI
simulators. Together, with offline decoding experiments, closed-
loop simulation may substantially accelerate the evaluation and
optimization of BMIs.

II. METHODS

A. Experimental Setup

All surgical and animal care procedures were performed in
accordance with National Institutes of Health guidelines and
were approved by the Stanford University Institutional Animal
Care and Use Committee. Experiments were conducted with two
adult male rhesus macaques (Monkeys J and L). Monkey J (L)
was implanted with two (one) 96 electrode Utah arrays (Black-
rock Microsystems Inc., Salt Lake City, UT) using standard
neurosurgical techniques. Monkey J’s arrays were implanted in
dorsal premotor cortex (PMd) and primary motor cortex (M1)
as visually estimated from local anatomical landmarks, while
Monkey L’s array was implanted around the PMd/M1 border.
Monkey J’s (L’s) arrays were implanted 75 (94) months prior to
data collection for this work. The monkeys made point-to-point
reaches in a 2D plane with a virtual cursor controlled by the
contralateral arm or by a BMI. The experimental setup has been
previously described (e.g., [14], [66]). The virtual cursor and
targets were presented in a three-dimensional (3D) environment
(MusculoSkeletal Modeling Software (MSMS), Medical Device
Development Facility (MDDF), USC, Los Angeles, CA). Hand
position data were measured with an infrared reflective bead
tracking system (Polaris, Northern Digital, Ontario, Canada).
Spike counts were collected by applying a single threshold,
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set to −4.5× the root-mean-square of the high-pass filtered
spike voltage per electrode [67]. Behavioral control and neural
decode were run on separate PCs using Simulink/xPC platform
(Mathworks, Natick, MA) with communication latencies of
3 ms. This enabled millisecond timing precision for all com-
putations. Neural data were initially processed by the Cerebus
recording system (Blackrock Microsystems Inc., Salt Lake City,
UT) and were available to the behavioural control system within
5 ± 1 ms. Visual presentation was provided via two LCD
monitors with refresh rates at 120 Hz, yielding frame updates of
7 ± 4 ms. Two mirrors visually fused the displays into a single
3D percept for the user, creating a Wheatstone stereograph. All
tasks presented in this study were restricted to a two-dimensional
plane. We report results from Monkey J in the main manuscript.
All analyses described were reproduced and confirmed in Mon-
key L, which is shown in the supplementary material.

B. Tasks

We used recordings from when monkeys performed a center-
out-and-back reaching task. In this task, eight targets were
placed with uniform spacing on the circumference of a 12-cm
radius circle. The monkey acquired the center target followed
by one of the eight (randomly chosen) radial targets. Each target
had to be acquired within 2 seconds, or the trial was counted
as a failure. After successful acquisition of a radial target, or
following the failure to acquire any radial target, the center target
was prompted. Each target had a 4-by-4 cm acceptance window
centered around the target. For every target selection, the subject
had to hold the cursor within the acceptance window for 500
contiguous milliseconds.

In open-loop experiments, the cursor position was the mon-
key’s hand position. In closed-loop (BMI) experiments, the
cursor’s movements were decoded by a Recalibrated Feedback
Intention-Trained Kalman Filter (ReFIT-KF) decoder [33] with
neural spikes summed in 10 ms bins. The monkey’s arm was
free to move during BMI experiments [49], [68]. The ReFIT-KF
decoder uses kinematic intention estimation and closed-loop
adaptation to better estimate decoded velocity [46]. In open- and
closed-loop experiments, we recorded monkey’s hand positions
and neural signals for training neural encoders. Open-loop data
and closed-loop data were recorded on the same day to minimize
neural variation and allow a direct comparison of closed-loop
decoding from real data versus simulated data. In total, we used
approximately 500 successful trials from open-loop experiments
and 150 successful trials from closed-loop experiments to train
and test neural encoders.

C. Training and Testing Data

When evaluating neural encoders on open-loop data, the
training set comprised approximately 80% of open-loop trials;
the remaining open-loop trials comprised the testing set. Trials
were randomly chosen to be training or testing set trials. We
repeated experiments with different training and testing data
splits. No conclusions of the paper were affected based on how
the training and testing data were split. We also performed
experiments evaluating neural encoders on closed-loop data. In

these experiments,the training set comprised the open-loop data
and the test set comprised the closed-loop data.

D. Comparison Metrics

1) Pearson Correlation Coefficient (PCC) of PSTH: We
report the PCC between electrode and synthetic PSTHs. The
PSTH is the average firing rate for reaches to each of eight
reach conditions. This was calculated by averaging spike counts
across all trials within a condition, aligned to target onset. We
concatenated the PSTH for each of eight reach conditions into
a vector. The data were binned at intervals of 25 ms; each reach
condition comprised 32 bins, or 800 ms of activity. Hence, each
vector comprised 256 data points. We then calculated the PCC
between these vectors for real and synthetic PSTHs.

2) Mean Squared Error (MSE) of Neural Trajectories: We
report the MSE of neural trajectories between real and syn-
thetic neural population activity. The neural trajectory pro-
vides a low-dimensional and compact representation of the
high-dimensional recorded activity through time [69]–[72]. We
first calculated the principal components (PCs) of real neural
population activity. Subsequently, we projected both real and
synthetic neural population into the top 7 PCs, which captured at
least 90% of the variance. We then calculated the MSE between
these trajectories.

3) Normalized Mean Squared Error of Decoded Position:
We computed MSE between positions decoded from the real and
synthetic neural activity. We subsequently normalized the MSE
(NMSE) by dividing by the variance of decoded position from
real neural data. We evaluated NMSE for common decoders
in the literature, including the optimal linear estimator (OLE)
(e.g., [36], [73]), Wiener filter (WF) (e.g., [20], [36], [74]), and
Kalman filter (KF) (e.g., [22], [33], [66], [75], [76]). Briefly, the
OLE is the least-squares mapping from neural data to kinemat-
ics; the WF is the least-squares mapping from a history of neural
activity to kinematics; and the KF models a linear dynamical
system where the states are kinematics and the observations are
neural activity.

E. Dimensionality Reduction

1) Principal Component Analysis (PCA): We used PCA
to reduce the dimensionality of data and compare neural trajec-
tories. PCA is an orthogonal transformation of the neural data
that maximizes the variability of the data in low-dimensional
projections. We performed PCA on neuron PSTHs to emphasize
across-condition variability over single-trial variability. When
comparing neural trajectories, we projected both real and syn-
thetic neural population activity into the PCs found from real
data.

2) jPCA: jPCA, a rotation of the top PCs, finds an orthonor-
mal basis that reveals rotational structure in data [8]. We applied
jPCA after finding the top six PCs, since we found that 7
PCs capture over 90% of the PSTH variance. This comprised
finding a skew symmetric matrix least-squares mapping from
the position of the neural trajectory to its velocity. We report
R2

skew, which is the variance explained in predicting the neural
trajectory velocity from its position. A higher R2

skew indicates
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that the system is better described by rotational dynamics. We
also report R2

skew/R
2
best, where R2

best is the variance explained
using unconstrained least-squares [57]. This indicates how well
rotational dynamics describe data relative to unconstrained lin-
ear dynamics.

F. Encoding Models

Neural encoders transform kinematics, xt, into binned spike
counts, yt. All presented models generate a neural firing rate.
Neural encoders were trained to reproduce the empirical binned
spike counts recorded from multi-unit threshold crossing activ-
ity. We did not reproduce single unit activity since decoding
threshold crossings achieves similar performance compared to
decoding after spike sorting [77], [78] and may be more ro-
bust [67]. Further, BMI clinical trials largely decode multiunit
activity [18], [21], [22], [66], [75]. We calculated binned spike
counts by treating the neural encoder firing rate as the rate of
an inhomogeneous Poisson process. We evaluated several linear
tuning models, including a preferred direction (PD) model, a
Poisson process velocity tuning (PPVT) model, and generalized
linear models (GLMs). We subsequently evaluated DL neural
encoders, including a multilayer perceptron (MLP), a MLP with
historical inputs (MLPh), and a recurrent neural network (RNN).

Below, unless otherwise stated, all DL models were trained
in a supervised manner with recorded kinematics comprising
2D position and velocity (inputs) and neural activity (outputs)
during the center-out-and-back task. Unless otherwise stated,
kinematics and binned spike counts were evaluated at 25 ms
bin width resolution. Networks were trained to optimize a
maximum-likelihood cost function, described further below.
This loss function was optimized with stochastic gradient de-
scent, using the Adam optimizer [79]. All DL models were
initialized with the Xavier uniform initializer [80]. We did not
otherwise constrain the models; in particular there were no
constraints on reproducing neural population dynamics.

1) Preferred Direction (PD) Model: The PD model is based
on a tuning curve model where each neuron’s firing rate is
explained as a function of the reach angle, with the angle eliciting
the highest firing rate called the “preferred direction” (PD) [54].
The PD model calculates firing rate based on a cosine tuning
curve. Subsequently, binned spike counts, yt, are generated by
treating the PD model firing rate as the underlying rate of an
inhomogeneous Poisson distribution. The equations to generate
binned spike counts are:

λt = λo + (λmax − λo) cos(θt − θmax) (1)

ŷt|λt ∼ Poisson (max(0, λt)) , (2)

where: λt is the neural firing rate, yt is the binned spike counts, θt
is the reach angle, θmax is the PD, and λo is an offset firing rate.
The neuron’s modeled firing rate, λt, ranges from 2λo − λmax

(when the reach angle is opposite to the PD) to λmax (reach angle
aligned to the PD). The model parameters were found using the
technique of [54], where firing rates were averaged from 200 ms
to 500 ms after trial initiation. Because neural firing rates cannot
be negative, we draw spike counts with rates lower bounded by
0, i.e., with rate max(0, λt).

2) Poisson Process Velocity Tuning (PPVT) Model: The
PPVT model extends the PD model by incorporating reach speed
into the neural encoder. This was the model used by Cunningham
and colleagues [14]. Here, the firing rate is linearly scaled based
on the speed of the reach. Firing rate is calculated as,

λt = λo + (λmax − λo) cos(θt − θmax) · st. (3)

In this equation, st is the scaled movement speed at time t.
We scale st so that the firing rates, when decoded, produce
reasonable trajectories. This scaling is subject dependent, since
different subjects may reach with different vigor. We generate
binned spike counts using equation (2).

3) Generalized Linear Models (GLMs): The GLM model is
a flexible generalization of ordinary linear regression [81]–[83].
In its most basic form, we calculate the rates as:

λt = k · xt + noise, (4)

where k is a vector of weights and xt are the kinematic inputs.
Unless otherwise stated, xt is the 2D position and velocity of
the hand at time t. The GLM can be extended to incorporate
different noise distributions and a link function relating inputs to
the rates. In total, we evaluated: (1) Linear Gaussian GLM, with
Gaussian noise and identity link function; (2) Linear Gaussian
GLM with 4 bins of kinematic input history, so that the input was
(xt, xt−1, . . . , xt−4) (GLMh), (3) a Poisson GLM with a log link
function, and (4) a Binomial GLM with a logistic link function.
We performed maximum likelihood estimation through itera-
tively reweighted least squares. In the main manuscript, GLM
and GLMh refer to linear Gaussian GLMs.

4) Multilayer Perceptron (MLP) Model: The multilayer
perceptron (MLP) model is a nonlinear, fully connected feed-
forward neural network, as shown in Fig. 2(a). As a feedforward
network, it does not model any firing rate dynamics but enables
a data-driven, nonlinear approach to predict firing rates from
kinematics. The MLP is a universal function approximator and
has higher capacity than the linear neural encoders [84]. The
MLP model takes kinematics, xt, and generates firing rates, λt.
We denote an MLP layer as

ht = MLPf
N (xt) (5)

= f(Wxt + b), (6)

where f is activation function, N is the number of neurons,
W ∈ RN×dim(xt), b ∈ RN , and ht ∈ RN . We used the sigmoid
activation function, i.e., f(x) = σ(x) = 1

1+exp(−x) in all hidden
layers. Because firing rates are non-negative and not bounded
by 1, we used an exponential nonlinear activation function in
the final layer, i.e., f(x) = exp(x). The overall neural encoder
we tested is:

λt = MLPexp
192(MLPσ

128(MLPσ
64(MLPσ

32(xt)))), (7)

with spikes generated according to equation (2). To optimize the
model, we maximized the log-likelihood of the empirical data
by assuming that empirical binned spike counts, yt, were Pois-
son distributed and conditionally independent given the firing
rate, λt. Optimization was performed in batches of trials. The
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Fig. 2. (a) Multilayer perceptron (MLP) architecture. The MLP consists of an input layer, three hidden layers, and an output layer. The nodes
are fully connected. (b) MLP with history (MLPh). The MLPh processes a history of inputs with a larger input layer but otherwise has the same
architecture as the MLP. (c) Recurrent neural network (RNN) model. The RNN processes an input history, but incorporates recurrent dynamics. Its
output is passed to MLP layers.

log-likelihood function is,

L =
∑

i

∑

t

(
yit log λt − λt

)
, (8)

where i is iterating over trials in a batch, t is iterating over the
time in trial i, and yit is the binned spike counts at time t on
trial i.

5) MLP With Kinematics History (MLPh) Model: While
the MLP is a nonlinear approach, it does not incorporate any
historical kinematics into its predictions. Without kinematic
history, the MLP generates neural activity from only positions
and velocities at that time. For example, the MLP will produce
the exact same neural activity with the exact same input at
time t, irrespective of past data. Neural population activity
from motor cortex is dynamical, having structure over time.
To account for temporal structure, we tested an MLP model
inputting a history of kinematics. We call this encoder MLPh,
with the h denoting historical inputs. The MLPh model inputs the
vertical concatenation of the kinematics, (xt, xt−1, . . . , xt−m),
and outputs firing rate, λt. We chose m = 4 through heuristic
optimization over several values of m. We used the same activa-
tion function structure as in the MLP model. Hence, firing rates
were generated via the following equation:

λt = MLPexp
192(MLPσ

128(MLPσ
64(MLPσ

32([xt−m:t])))), (9)

with spikes generated according to equation (2). Like in the MLP,
we performed optimization by maximizing the log-likelihood
of the observed binned spike counts. The MLPh is illustrated in
Fig. 2(b).

6) RNN Model: The MLPh enables temporal structure by
processing a history of inputs, but does not explicitly incorporate
a dynamical model. To model dynamics, we trained an RNN
model to process the inputs, xt, and generate firing rates, λt.
The RNN incorporates history by maintaining a hidden state,
ht. We use RNNf

N to denote the RNN architecture, Concretely,

zt = RNNf
N (xt) (10)

= Woht + bo (11)

ht = f(Wfxt +Wrht−1 + bh), (12)

where Wf ∈ RN×dim(xt) maps the inputs to the hidden state,
ht ∈ RN ,Wr ∈ RN×N captures the RNN’s recurrent dynamics,
Wo ∈ RN×N linearly reads out the hidden state, zt ∈ RN is the
output of the network, and bh ∈ RN and bo ∈ RN are learned
biases. we ran the RNN for 32 time-steps to seed the hidden
state, ht, then evaluated the log-likelihood of the model for
training. In experiments, we found that additional nonlinearity
at the output increased performance. In the reported results, we
therefore added MLP layers to the RNN output. The complete
RNN neural encoder is:

λt = MLPexp
192(MLPσ

192(MLPtanh
192 (RNNtanh

192 (xt)))) (13)

with spikes generated according to equation (2). The RNN was
trained by maximizing the log-likelihood of the observed binned
spike counts under the assumption that they follow Poisson
statistics. The RNN architecture as illustrated in Fig. 2(c).

III. RESULTS

We found that deep learning (DL) models outperformed
representational tuning models (PD, PPVT) and GLM models
(GLM, GLMh) in reproducing recorded single electrode activity,
neural population activity, and decoded kinematics. Importantly,
we decoded closed-loop data to demonstrate generalization of
neural encoders to closed-loop BMI data it was not trained on.
Here, we detail these analyses and comparisons.

A. DL Encoders Better Reproduce PSTHs

We first evaluated how each encoding model reproduced every
electrode’s PSTHs. We also calculated PSTHs for synthetic
spike trains for each encoding model. We subsequently evaluated
the similarity between recorded and synthetic electrode PSTHs
by calculating the PCC (also denoted Pearson’s r, see Methods).
A model’s overall Pearson’s r is the average of the Pearson’s r
across all 192 (96) electrodes for Monkey J (L).

Fig. 3 illustrates a representative example, with the recorded
PSTHs shown in panel (h) and neural encoder PSTHs shown
in other panels. As has been previously described, the PSTHs
have a condition-independent increase in activity followed by
heterogeneous activity that may be multiphasic [85]. The PD and
PPVT models fail to reproduce these characteristics. We found
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Fig. 3. PSTHs and spike rasters of recorded and synthetic neural activity. The PSTHs are of: (a) PD, (b) PPVT, (c) GLM, (d) GLMh, (e) MLP. (f)
MLPh, (g) RNN, (h) a randomly chosen electrode from empirical recordings. (a)-(g) show the corresponding neural encoder outputs in reproducing
electrode activity in (h). Each color shows the average firing rate to one of eight center-out reach condition over time, with eight different colors
corresponding to eight reach conditions. In (h), the vertical bars denote 50 spikes/s, and the horizontal bar denotes 100 ms. The average PCC
across all neurons and average MSE of PSTH (spikes2/s) for each encoding model are shown in each panel. We also show spike rasters in each
panel. The PCC for single-trial binned spike counts for PD, PPVT, GLM, GLMh, MLP, MLPh and RNN were 0.016, 0.011, 0.020, 0.024, 0.103, 0.135,
and 0.137, respectively. Their respective MSEs were 53.60, 52.99, 41.65, 41.51, 39.62, 38.90, and 40.77 spikes2/s.

that the PD model achieved relatively static firing rates (Fig. 3(a),
Pearson’s r = 0.23, MSE = 9.78 spikes2/s). This is expected
because the PD model’s firing rates only vary with reach angle.
The PPVT incorporates speed modulation, causing the PSTHs to
resemble the speed profile. However, consistent with prior work,
the PPVT encoder does not capture heterogeneity, including
multiphasic behavior, in PSTH activity [8], [9], [55]. The PPVT
achieves comparable performance to PD (Fig. 3(b), Pearson’s
r = 0.22, MSE= 9.50 spikes2/s, not significantly different from
PD model, Wilcoxon rank-sum test over repeatedly trained
models).

We next evaluated GLM models, which incorporate position
and velocity. We found that these models achieved constant firing
rates while approaching targets. (Fig. 3(c), Pearson’s r = 0.27,
MSE = 8.74 spikes2/s, not significantly different from PPVT
model). When evaluating GLMh, which incorporates history of
kinematics, we saw multiphasic PSTHs (Fig. 3(d), Pearson’s
r = 0.31, MSE = 8.57 spikes2/s).

In contrast to representational tuning models and GLM mod-
els, we found that DL models better reproduced empirically
recorded PSTHs. The MLP was capable of reproducing a
condition-independent increase and qualitative motifs in the
original PSTH, including the relative ordering of condition firing
rates. However, it does not capture all multiphasic activity, such
as the biphasic activity of the green PSTH (Fig. 3(e), Pearson’s
r = 0.80, MSE = 2.20 spikes2/s, better than representational
models, both p < 10−7, Wilcoxon rank-sum test). As discussed
in the Methods, we reasoned that a key limitation of tuning and
MLP models is that they do not incorporate history over the
inputs, i.e., kinematics. (It is worth noting that PSTHs from
the MLP model would be symmetric if only provided with

symmetric velocity inputs, as is the case for center-out reaches;
providing position information enables the MLP to capture
richer and non-symmetric PSTHs.) We therefore evaluated the
MLPh model, incorporating 4 time bins of kinematic history,
and observed that MLPh better reproduced PSTHs (Fig. 3(f),
Pearson’s r = 0.83, MSE = 1.46 spikes2/s, better than MLP
model, both p < 10−7, Wilcoxon rank-sum test).

Finally, a more general and effective method to model dy-
namics in neural population activity is through an RNN [9],
[86], [87]. The RNN can generate different outputs for the same
input depending on its internal hidden state, which is a function
of past inputs and the RNN’s own internal dynamics. We found
that an RNN achieved better performance than the MLPh model
(Fig. 3(g), Pearson’s r = 0.86, MSE = 0.63 spikes2/s, compar-
ison to the MLPh model, both p < 10−7, Wilcoxon rank-sum
test). Together, these results demonstrate that DL models better
reproduce single electrode firing rates.

B. DL Models Better Reproduce Neural
Population Motifs

As DL models better reproduce empirical firing rates, we
next wondered how well DL models reproduce neural popu-
lation activity [8], [88]. It is worth noting that related work has
demonstrated that RNNs trained to process task inputs (such
as a go cue and target location) to produce either kinemat-
ics [9] or EMG [86], [87] exhibit low-dimensional and rotational
dynamics, a motif also found in premotor and primary motor
cortex [57], [89]. In our models, rather than evaluating the neu-
ral network’s artificial activity, we evaluated neural population
structure in the network output, i.e., firing rates, given kinematic
inputs.
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Fig. 4. Projections of PSTHs on PCs found from real neural data. The projections are of (a) PD, (b) PPVT, (c) GLM, (d) GLMh, (e) MLP, (f) MLPh,
(g) RNN, (h) empirically recorded neural population activity. Each color shows the neural trajectory of one of eight center-out reach conditions over
time. We calculate the MSE and PCC of neural trajectories in the top 7 PCs.

To quantify neural population activity, we performed PCA
on empirically recorded and synthetically generated PSTHs
(see Methods). When performing PCA on recorded PSTHs, we
found 7 dimensions were required to capture over 90% of the
recorded neural variance. Tuning models were overly simplistic,
demonstrating a smaller dimensionality. When performing PCA
on synthetic neural population activity generated by the PD and
PPVT outputs, we found that only 2 PCs are required to capture
nearly 100% variance. GLM requried 3, and GLMh required
4 dimensions to capture over 90% of the neural variance. On
the other hand, we found that MLP, MLPh and RNN required
5 or 6 dimensions to capture over 90% of the neural variance, as
shown in Fig 5. Together, these results demonstrate that DL
models more closely match the dimensionality of real data,
reflecting relatively greater variability in the neural population
response compared to tuning and linear models.

How similar are neural population trajectories in these low-
dimensions? We compared low-dimensional projections via
PCA on the synthetic versus recorded neural population. We
projected synthetic and neural activity onto the PCs found by
performing PCA on the real data Fig. 4. We found that tuning
models had very different projections in comparison to real
data (compare Fig. 4(a),(b),(h)). Tuning model low-dimensional
variance primarily resided on a 1-dimensional axis, reflecting
a large degree of covariation. To quantify these results, we
compared the mean PCC and MSE of PC trajectories in the
top 7 dimensions (capturing greater than 90% of the variance)
between synthetic and real neural activity. Tuning and GLM
models had relatively modest PCCs less than 0.5. On the other
hand, DL models more closely reproduced neural trajectories,
achieving PCCs above 0.85. This demonstrates that DL models
better reproduced empirical neural population motifs.

Another way to measure neural population structure is to
compare rotational dynamics in the neural population via jPCA
(e.g., [9], [14], [57], [89], see Methods). We applied jPCA and

Fig. 5. Dimensionality of recorded and synthetic PSTHs. Only 2 PCs
were needed to capture almost 100% variance of PD and PPVT activity.
To capture over 90% of recorded neural variance, we required 3 PCs for
GLM, 4 PCs for GLMh, and 5 or 6 PCs for DL models. The real data
required 7 PCs.

found that neither the PD, PPVT or GLM activity could be
well described by rotational dynamics (R2

skew < 0.01 for PD,
R2

skew < 0.01 for PPVT, and R2
skew = 0.05 for GLM; real data

R2
skew = 0.35, as shown in Fig. 6(a),(b),(c),(h)), as reported

previously [9], [57]. We observed that GLMh showed stronger
rotational dynamics (R2

skew = 0.28), as shown in Fig. 6(d)). This
is not entirely surprising, since models where neuron firing rate
peaks occur at different times, with multiphasic activity, demon-
strate rotational dynamics [9]. Interestingly, though the MLP
model does not have internal dynamics or utilizes any historical
data, we found that its generated PSTH exhibited a degree of
rotational dynamics (R2

skew = 0.22, Fig. 6(e)). This implies that,
only considering the position and velocity at a time point t, a
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Fig. 6. jPCA projections of the population responses. Each plot shows the jPCA projection of eight center-out reach conditions (different colors).
The jPCA projections are of: (a) PD, (b) PPVT, (c) GLM, (d) GLMh, (e) MLP, (f) MLPh, (g) RNN, (h) empirically recorded neural population activity.
We show the R2

skew in the jPCs as well as R2
skew/R

2
best (Skew ratio) for each encoding model (see Methods).

neural network can still generate neural population activity that
exhibits rotational structure. We found that the degree of rota-
tional dynamics in the encoding model output increased as the
model was able to consider historical inputs; the MLPh exhibited
more rotational dynamics than the MLP (R2

skew = 0.25, Fig. 6(f),
comparison to the MLP model, p < 10−4, Wilcoxon rank-sum
test). This was further improved by using RNN (R2

skew = 0.32,
Fig. 6(g), comparison to the MLPh model, p < 10−7, Wilcoxon
rank-sum test). These results demonstrate that DL models not
only better reproduce single electrode PSTHs, but also better
reproduce neural population motifs. Together, the data generated
by DL models appears to be a more faithful representation of
neural population activity in the motor cortex.

C. Kinematics Decoded From DL Generated Neural
Activity Better Match Open-Loop Decoded Kinematics

As our motivating application for generating motor corti-
cal neural signals is BMI simulation, we next assessed if DL
synthetic neural data could better match offline decoding of
previously recorded neural data. We therefore decoded neural
data recorded from when monkeys performed a center-out-and-
back reaching task, and compared these to kinematics decoded
from encoding models. Neural activity from a more effective
encoding model can be decoded to produce kinematics that
more closely matched the kinematics decoded from real data.
While DL encoding models more accurately reproduce PSTHs
and population structure, as earlier described, optimal decoding
dimensions may have little overlap with the top PCs of the activ-
ity [90]. Therefore, it is important to assess if neural variance in
these kinematic dimensions is better captured by DL models. We
trained an optimal linear estimator (OLE) [73], a Wiener filter

(WF) [20], [74] and a Kalman filter (KF) [75], [76] to decode
both recorded and synthetic neural activity. We show randomly
chosen decoding trials in Fig. 7. The mean and standard de-
viation of the NMSE across all open-loop testing set trials is
summarized in Fig. 8. We found that, across all decoders, DL
generated neural activity more closely resembled real decodes
when compared to the representational PD and PPVT models, as
well as GLM models. DL models achieved approximately a 20%
reduction in NMSE of decoded positions over tuning models and
linear models (all p < 10−3, Wilcoxon rank-sum test). Hence,
DL models well encode kinematics in a manner that is more
similar to the real neural data than linear encoders.

More specifically, we found that GLMh encoder achieved
significantly better decoding performance than PD, PPVT, and
GLM encoders, suggesting that incorporating kinematic history
is important for reproducing decoding. This result is consistent
with our observations that MLPh and RNN models outper-
formed the MLP, as shown in Fig. 7. As our prior results demon-
strated that models incorporating kinematic history better repro-
duce dynamical aspects of motor cortical activity, this result is
consistent with the observation that dynamical aspects of motor
cortical activity are important for kinematic decoding [35], [36],
[56]. Finally, while RNN models achieved better training loss
and better reproduced PSTHs and population motifs, we did not
find that the RNN model was always better than the MLPh model
when decoding testing data.

D. Kinematics Decoded From DL and GLMh Models
Better Match Closed-Loop Decoded Kinematics

As discussed earlier, BMIs are closed-loop systems where the
user interacts with the decoded output, updating his or her motor
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Fig. 7. Decoded movements from open-loop recorded and synthetic neural activity with three standard decoders (OLE, WF, and KF). For each
direction, one randomly chosen trial is shown. In each panel, red lines represent decoded movements from real neural activity, and blue lines
represent decoded movements from synthetic neural activity. NMSE of decoded positions are shown in each panel. Decoded positions from DL
models have relatively better NMSE compared to tuning and linear models.

Fig. 8. NMSE of positions decoded from recorded neural activity and
those decoded from synthetic neural activity in the open-loop testing
dataset. The red vertical line on each bar is the standard deviation of
NMSE of repeated experiments. DL models achieve lower value than
tuning models across three decoders. *** denotes p < 0.001, Wilcoxon
rank-sum test.

commands in response to visual feedback of the decoded output.
Hence, the statistics of closed-loop neural population activity
may differ from those during naturalistic reaching (e.g., [14],
[24], [50], [51]). We therefore evaluated how well DL models
generalized to reproduce closed-loop data, where monkeys up-
date their motor commands in response to imperfect decoding. If

DL models more faithfully reproduce prior decoded closed-loop
kinematics, this is an additional evidence that they are more
appropriate for closed-loop BMI use.

We trained encoding models on an open-loop center-out-and-
back task performed with the native hand. However, we subse-
quently tested how well these encoding models could generate
neural activity during BMI control from a previously collected
closed-loop BMI dataset. We used the kinematics of the mon-
key’s arm to generate synthetic neural activity, and subsequently
decoded this activity post-hoc using the ReFIT-KF decoder. We
then compared the post-hoc decoded movements to the empirical
movements during closed-loop ReFIT-KF BMI control. These
results are summarized in Fig. 9, demonstrating that even for
closed-loop control, the DL encoding model synthetic activity
could be better decoded to produce kinematics than tuning
models. The DL model achieved a significant reduction (>25%)
in NMSE of decoded positions over PD and PPVT models (all
p < 10−3, Wilcoxon rank-sum test). Interestingly, we found
that the GLMh model performed comparably to DL models,
suggesting that this model may be appropriate for closed-loop
BMI simulation. Together, these results indicate that DL models
reproduce neural population activity better than tuning models
when used in closed-loop settings, even though they were only
trained in open-loop settings.

IV. DISCUSSION

Prior work has demonstrated that motor cortical activity is
heterogeneous, dynamic, and more complex than previously
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Fig. 9. Decoded movements from closed-loop recorded and synthetic neural activity with ReFIT-KF as decoder. In each panel, red lines are
movements decoded from real neural data. Blue lines in each panel are movements decoded from synthetic neural activity of (a) PD, (b) PPVT,
(c) GLM, (d) GLMh, (e) MLP, (f) MLPh, and (g) RNN, respectively. The average NMSE of each encoder is showen in each panel. (e) and (g) are
decoded movements from MLP and RNN models, reflecting key motifs in original decodes and achieving the lowest NMSEs. (h) Normalized mean
squared error (NMSE) between positions decoded from recorded neural activity and those decoded from synthetic neural activity in closed-loop
dataset. *** denotes p < 0.001, Wilcoxon rank-sum test.

TABLE I
SUMMARY OF MONKEY J’S RESULTS

thought [55], [57], [87], [91]. Neural encoders that do not
reproduce neural population statistics will limit the performance
of BMI simulators. To overcome this limit, we employed high
capacity, nonlinear neural network models to better capture com-
plexities in the empirical data. Our results demonstrate that these
models are better than traditional models in (1) reproducing het-
erogeneity in single electrode PSTHs, (2) reproducing nonlinear
structure and dynamic features in the neural population, (3)
matching decoded kinematics in open-loop experiments, and (4)
matching decoded kinematics in closed-loop experiments. We
summarize monkey J’s results in Table I. Standard deviations
are reported in Supplementary Table 1. Monkey L’s results are
summarized in Supplementary Tables 2 and 3. Note that we have
not done an exhaustive search of hyperparameters, and it is likely
that doing so could further improve our results. Future work can
further optimize these hyperparameters.

We found that tuning and linear models significantly un-
derestimated the variability of motor cortical neural activ-
ity. The PD model generated relatively static firing rates be-
cause it only represents the reach angle. The PPVT and GLM
models incorporated kinematics, causing the PSTHs to have

kinematic-resembling activity. In contrast, we found that DL
models incorporating nonlinearity more closely reproduced em-
pirical PSTHs. In addition to this, they also reproduced neural
population motifs, resembling neural trajectories in PCA and
jPCA projections.

When comparing to previously used tuning models, we found
that decoding DL generated neural activity more closely re-
sembled kinematics decoded from recorded activity, both in
open-loop and closed-loop experiments. While DL models were
superior to GLM and GLMh models in open-loop decoding, we
observed that GLMh achieved similar NMSE to DL models in
closed-loop decoding, as shown in Fig. 9. This is interesting,
in light of the fact that GLMh was significantly worse than DL
models in reproducing single electrode, neural population, and
open-loop decodes. These results suggest that for closed-loop
decoding, DL models and GLMh captures important kinematic
variability in the neural activity. Further, this variability can be
captured without accurately reproducing other neural features.

We found that incorporating kinematic history in neural en-
coders could improve neural encoding. A history over the inputs
allows the output to have temporal structure, in that the same
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input at time t can produce a different output at time t based
on the history of inputs at time t− 1, t− 2, and so forth. In
this manner, the generated neural activity can have dynamics,
which is an important and useful property of motor cortical
activity [39], [87], [92]. However, we did find that DL models
were best trained with an intermediate amount of history, or
through an explicit dynamical model as in the RNN. Specifically,
an MLPh model trained with 4 bins of input history performed
better than when trained with 16 or 32 bins of input history.
This suggests that although the MLPh can incorporate history
over the inputs, it is difficult to model longer sequences for
this application. This may be due to the fact that each input
causes a commensurate increase in the number of parameters,
making training more difficult. Hence, while MLPh can help
model temporal structure in the output, it is limited in its ability
to do so. The RNN, by implementing a dynamical system, can
learn longer temporal dependencies. We emphasize though, that
in open-loop data, while RNN models better reproduced PSTHs,
PCA trajectories, and jPCA dynamics, we did not find that
RNN is better than the MLP-based models when generalizing to
closed-loop data (closed-loop NMSE not significantly different).

The input to DL neural encoders were 2D position and ve-
locity. However, motor cortex also encodes additional kine-
matic [11] and kinetic variables including acceleration [93],
[94], time [85], distance [95]–[99], joint angles [100], and
forces [101], [102]. These additional kinematic parameters may
improve neural encoders. To show that different inputs can
impact performance, we trained MLP, GLM, and GLMh models
with only a velocity input, and compared it to the same encoders
trained with position and velocity inputs. We found that across
these architectures, encoders using position and velocity (pv)
generally matched or outperformed encoders using only velocity
(v) as shown in Table I. We also tested DL encoders with accel-
eration as an additional input, but did not find that these encoders
significantly increased performance. We note that, without po-
sition, MLP-v did not perform well. This answer is intuitive
when considering that MLP-v does not incorporate history or
dynamics, and therefore the same velocities will produce the
same synthetic neural activity. When performing straight-line
reaches, similar velocities will be encountered during the ac-
celeration and deceleration of the reach. This causes synthetic
neural activity in MLP-v to appear somewhat symmetric around
the peak velocity, resulting in a neural encoder that does not
capture key features of the neural population activity. Future
work may improve encoding models by measuring and incorpo-
rating additional kinematic and kinetic variables as inputs. An
important limitation of this simulation approach is that if a novel
decoder algorithm incorporates newly discovered mechanisms
or aspects of neural variance not captured by the inputs, then
the simulator may not adequately evaluate this decoder’s per-
formance. This limits the scope of testable decoding algorithms
to ones that operate on neural variability adequately captured by
the available inputs.

The reported GLM models are linear Gaussian. We also tested
a Poisson-GLM and Binomial-GLM, and found these encoders
to perform significantly worse than DL models (data not shown).
The GLM assumes the form of the error distribution between

predicted and observed spike rates; however, these assumptions
may not be valid. Further, GLMs with a nonlinear link function
have nonlinearity at the output, but prior to the output, the model
is linear. These nonlinear link functions have less capacity to
model nonlinear relationships [5], [83] than neural networks.
Therefore, DL models significantly improve upon linear and
tuning methods in reconstructing single electrode and neural
population activity, as well as decoding (except when comparing
to GLMh, described above), showing that nonlinearity is an
important factor in improving encoding models.

To demonstrate that DL models generalize for BMI simula-
tors, we also assessed how well these models generated neural
activity during closed-loop BMI experiments. Closed-loop BMI
data has different statistics than offline testing data. However,
if an encoding model generally captures how kinematics can
be predictive of neural population activity, we would expect
this encoding model to more accurately reproduce closed-loop
BMI decoding performance. In closed-loop BMI decoding,
the user’s kinematics are drastically different; where as offline
data comprises primarily ballistic reaches, closed-loop BMI
decoding incorporates corrective movements, which are typi-
cally smaller in extent and fairly precise. We found that, when
generalizing to closed-loop BMI kinematics, DL models and
GLMh significantly outperformed tuning models, indicating that
they may generalize better for closed-loop experiments. Future
work should assess how these DL models perform in real-time
closed-loop experiments. These experiments would utilize the
neural encoder to generate synthetic neural activity and decode
this activity in real-time.

There is a growing literature using deep learning in neuro-
science. This body of work includes using variational autoen-
coders to denoise intracortical spike trains [56], and model early
visual representations [65], sensory cortex [7], decision-making
tasks [103]–[105], and motor tasks [9], [86], [87]. Prior studies
training RNNs to perform motor tasks have used artificial units
that resemble neurophysiological activity and dynamics [9],
[86], [87]. However, these studies have important differences
to this work. The goal of those studies is to train RNNs that
reproduce animal behavior, so that the artificial RNN can be
further analyzed for neuroscientific insight [104]. Along these
lines, the inputs to these RNNs are task inputs and the outputs
are behavior (such as electromyograms or kinematics). Further,
in these RNNs, it is important for the artificial neurons to re-
semble the activity of empirically recorded neurons. In contrast,
our study aimed to generate neural activity as a function of
kinematics. As such, the inputs to our network are kinematics
(as opposed to task inputs), and the outputs are neural activity
(as opposed to EMG or kinematics). Finally, our work is not
concerned about the activity of the hidden artificial units, as our
goal is to reproduce neural activity at the output.

This work helps to improve BMI simulator tools for modeling
closed-loop aspects of BMI decoding. Ultimately, the goal of
this work is to accelerate the translation and design of BMI
algorithms. Our work simulates monkey neural data, and not
human neural data. We note that our approach could be applied
to experiments with paralyzed participants: kinematics would
correspond to imagined or intended kinematics, which match
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the movements of a cursor on a computer screen or a robotic
arm (e.g., [19]–[21]) with simultaneous neural recordings. It
is worth noting that results from monkey experiments have
been translated to pilot clinical trials (e.g., [66]), showing the
translational feasibility of performing optimization with monkey
experiments.

V. CONCLUSION

Deep learning neural encoders are able to reproduce hetero-
geneous neural activity better than existing tuning models and
GLM models. We showed that deep learning neural encoders
are significantly better than prior neural encoders in reproducing
PSTHs, neural population motifs, and matching decoded kine-
matics in open-loop and closed-loop data. Our results indicate
that these deep learning neural encoders may significantly im-
prove the fidelity of BMI simulators. Improving these simulators
may facilitate developing, analyzing, and optimizing neural
decoders to accelerate BMI clinical translation.
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