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SUMMARY
In multiple cortical areas, including the motor cortex, neurons have similar firing rate statistics whether we
observe or executemovements. These ‘‘congruent’’ neurons are hypothesized to support action understand-
ing by participating in a neural circuit consistently activated in both observed and executed movements. We
examined this hypothesis by analyzing neural population structure and dynamics between observed and
executed movements. We find that observed and executed movements exhibit similar neural population
covariation in a shared subspace capturing significant neural variance. Further, neural dynamics are more
similar between observed and executed movements within the shared subspace than outside it. Finally,
we find that this shared subspace has a heterogeneous composition of congruent and incongruent neurons.
Together, these results argue that similar neural covariation and dynamics between observed and executed
movements do not occur via activation of a subpopulation of congruent single neurons, but through consis-
tent temporal activation of a heterogeneous neural population.
INTRODUCTION

Even when we don’t move, motor cortex is involved in process-

ing observed movements. Intriguingly, motor cortex does not

use separate groups of neurons to process observed and

executed movements: neurons in the ventral premotor cortex

(PMv) (Gallese et al., 1996; Rizzolatti and Craighero, 2004; Bonini

et al., 2014), dorsal premotor cortex (PMd) (Tkach et al., 2007; Ci-

sek and Kalaska, 2004; Papadourakis and Raos, 2019), and pri-

marymotor cortex (M1) (Dushanova andDonoghue, 2010; Tkach

et al., 2007; Vigneswaran et al., 2013; Mazurek et al., 2018) can

fire during both executed and observedmovements. This has led

researchers to hypothesize that motor cortical neurons, in addi-

tion to generating movements, support an understanding of

observed motor actions (Rizzolatti et al., 2001; Fogassi and Gal-

lese, 2002), predict and interpret sensory consequences of our

actions (Tkach et al., 2008), and reflect mental rehearsal (Cisek

and Kalaska, 2004).

But how does motor cortex use the same neural circuit to

both process observed movements and generate executed

movements? Prior work suggests that this may occur through
This is an open access article under the CC BY-N
a subpopulation of ‘‘congruent’’ neurons, the activity of which

is similar across observed and executed movement contexts

(Gallese et al., 1996; Rizzolatti et al., 2001; Rizzolatti and Craigh-

ero, 2004; Tkach et al., 2007, 2008; Dushanova and Donoghue,

2010; Mazurek et al., 2018), for example, in preferred direction

(PD) (Tkach et al., 2007, 2008; Dushanova and Donoghue,

2010) or in action encoding (Gallese et al., 1996; Mazurek

et al., 2018). This has led researchers to hypothesize that

congruent neurons support an understanding of observed

movements by transforming an observed action into a motor

representation, effectively activating (or ‘‘resonating’’ [Rizzolatti

et al., 2001]) the same neural subcircuits (Gallese et al., 1996;

Rizzolatti et al., 2001; Fogassi and Gallese, 2002; Tkach et al.,

2007). More specifically, congruent neurons may reflect mental

rehearsal of the action (Cisek and Kalaska, 2004) or internal gen-

eration of motor commands that are gated by downstream cir-

cuits, but otherwise would have produced the observed move-

ment (Tkach et al., 2007, 2008). We call this the ‘‘congruent

subpopulation hypothesis.’’ On the other hand, there are also

unique attributes of observed and executed actions. For

example, motor cortex must uniquely generate movement in
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executed, but not observed, actions, or motor cortex may repre-

sent the movements of external agents in observed, but not

executed, actions. These unique computations may be carried

out by a separate population of ‘‘incongruent’’ neurons. Dusha-

nova and Donoghue (2010) found 62% of recorded M1 neurons

were incongruent, having statistically significant changes in PD

between observed and executed movements. Congruent and

incongruent subpopulations may therefore play distinct roles in

the motor circuit. For example, while congruent neurons may

support an understanding of action (whether observed or

executed), incongruent neurons may support the execution of

the movement.

An alternative hypothesis is that shared computation be-

tween observed and executed movements occurs at the level

of the neural population, rather than in congruent subpopula-

tions (Papadourakis and Raos, 2019). This hypothesis is

based on the framework that motor cortex is a dynamical

system where the key feature is how neurons coordinate their

activity through time. This coordinated activity can be

analyzed in a low-dimensional neural subspace that reflects

neural population covariation (Yu et al., 2009; Shenoy et al.,

2013; Elsayed et al., 2016; Gallego et al., 2017). These sub-

spaces have led to insight into several aspects of movement,

including robust neural populations dynamics during move-

ment generation (Churchland et al., 2012; Russo et al.,

2018; Pandarinath et al., 2018a), how preparatory activity in

PMd and M1 does not cause movement (Kaufman et al.,

2014), neural constraints on learning (Sadtler et al., 2014),

and shared computation between multiple motor tasks (Gal-

lego et al., 2018). Under this alternative hypothesis, there is

a low-dimensional shared neural subspace between observed

and executed movements, irrespective of whether neurons

are congruent or incongruent. Attributes shared between

observed and executed movements may be neurally repre-

sented in this shared subspace, while attributes unique to

observed and executed movements may be represented

outside the shared subspace (an ‘‘exclusive’’ subspace).

Importantly, the shared subspace may reflect coordinated ac-

tivity patterns across both congruent and incongruent neu-

rons, rather than just the congruent subpopulation.

To date, the relationship between observation and execution

neural population activity is still opaque. While it may be intuitive

to hypothesize that observation and execution activity must

share neural population structure due to the presence of

congruent neurons, this is not necessarily true. First, single

neuron statistics used to define congruence, such as PD (used

in this work), do not capture how multiple neurons coordinate

their activity through time (reviewed in Cunningham and Yu,

2014). For example, in planned and executed movements,

some PMd andM1 neurons exhibit a degree of congruence, hav-

ing correlated PDs (Crammond and Kalaska, 2000); however,

neural subspaces supporting computation for planned and

executed movements are orthogonal, not overlapping (Elsayed

et al., 2016). Second, neural subspaces involved in executed

movements are hypothesized to comprise ‘‘output-potent’’ di-

mensions, where activity leads to generated movements (Kauf-

man et al., 2014; Elsayed et al., 2016; Kaufman et al., 2016; Gal-

lego et al., 2018). Prior work established that even though neural
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activity during motor planning (without overt movement) can be

decoded to predict executed movements, plan activity explicitly

avoids these output-potent dimensions (Kaufman et al., 2014)

and occupies neural subspaces orthogonal to execution activity

(Elsayed et al., 2016). While these studies analyzed preparatory

versus execution activity, these principles apply also to observa-

tion versus execution activity. In this study, there are no overt

movements during observation, and therefore activity must

reside in a putative output-null subspace that avoids driving

the muscles. It is therefore possible that observation subspaces,

like planning subspaces, are orthogonal to execution

subspaces.

To elucidate the relationship between neural population activ-

ity between observed and executed movements, we addressed

three categories of hypotheses, as illustrated in Figure 1. First,

we investigated whether neural population structure between

observed and executed movements is orthogonal (exclusive

subspaces) or overlapping (shared subspace), as illustrated in

Figure 1A. Second, we assessed if shared (or exclusive) struc-

ture between observed and executed movements was due pri-

marily to congruent (or incongruent) neurons versus a heteroge-

neous population of congruent and incongruent neurons, as

illustrated in Figure 1B. If congruent neurons support action un-

derstanding through consistent activation in observed and

executed movements (Cisek and Kalaska, 2004; Tkach et al.,

2007, 2008), they should primarily contribute to shared structure,

while incongruent neurons should contribute to exclusive struc-

ture. Alternatively, a heterogeneous composition would imply

that congruent and incongruent neurons participate in both

shared and exclusive structure. Finally, we quantified whether

neural dynamics were more similar in the shared subspace or

congruent subpopulation via ‘‘tangling.’’ Tangling quantifies

how dissimilar future neural activity patterns can be from a

similar starting point (i.e., present neural activity) (Russo et al.,

2018). If the shared subspace has similar dynamics, they ought

to have low tangling relative to other subspaces, as illustrated

in Figure 1C.

In summary, we find that observation and execution activity

share a neural subspace, composed of a heterogeneous popu-

lation of congruent and incongruent neurons. This rejects the

congruent subpopulation hypothesis. Further, the shared sub-

space has similar dynamics during observed and executed

movements. Our results support the hypothesis that shared

computation in observed and executed movements, reflected

through the similar coordination of neural population activity

through time, is carried out by a heterogeneous neural

population.

RESULTS

We trained two rhesus macaques (Monkeys J and L) to perform

a center-out-and-back task (see Method Details). In the

executed movement context (Figure 2A), the monkey

controlled the cursor with his hand position. In the observed

movement context (Figure 2B), the monkey observed the

cursor moving from target to target while both arms were

restrained. To ensure the monkey was engaged in movement

observation, we monitored his eye position during observation
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Figure 1. Hypothesis Categories

(A) Neural population subspaces between observation and execution may be orthogonal, completely overlapping, or partially overlapping with shared structure.

Exclusive subspaces only capture neural variance in one context. Shared subspaces capture variance in both contexts.

(B) The shared (or exclusive) subspace may have a homogeneous composition of congruent (or incongruent) neurons, or a heterogeneous composition. Red

(blue) denotes congruent (incongruent) neurons.

(C) Dynamics in observation and execution may be more similar (low tangling) in the shared subspace (top, similarity in subspace), or in the congruent sub-

population (bottom, similarity in subpopulation).
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trials and only used trials where the monkey’s eye position

was consistent with the cursor’s start and end position (see

Method Details). To further validate that observation activity

was modulated for the task, we also trained a brain-machine

interface (BMI) from observation trials on each experimental

session. In closed-loop experiments, we found that Monkey J

(L) was able to control the BMI to perform a center-out-and-

back task at 100% (95.8% to 99.4% across datasets) success

rate, consistent with prior observation-based BMIs (Gilja et al.,

2012; Stavisky et al., 2017). This indicates that recorded neural

population activity during observation was modulated for

cursor movement during the task.

Simultaneous to behavior, we recorded spiking activity from

Utah electrode arrays. Monkey J had two Utah arrays, one im-

planted in PMd and the other implanted in M1, as visually esti-

mated from anatomical landmarks. Monkey L had one Utah

array, implanted at the PMd/M1 border. All analyses directly

comparing observation and execution activity were done with

neurons recorded in the same experimental session, so that

the recorded units were putatively the same in both observation

and execution contexts. We initially recorded threshold cross-

ings, detecting multiunit spikes whenever the voltage crossed a

threshold at�4.53 the root-mean-square voltage recorded on

that electrode. We manually spike sorted this activity and im-

plemented an interspike interval (ISI) threshold (seeMethod De-

tails) to determine putative single units. We recorded anywhere

from 41 to 83 putative single units in each experimental session.

For these analyses, we intentionally did not discard single units

based on their activity or correlation to movement, as single
neurons may bear no obvious relationship to movement com-

mands, but may contribute meaningfully to a population

response (Shenoy et al., 2013; Cunningham and Yu, 2014; Gal-

lego et al., 2017). Nevertheless, when possible, we confirmed

our analyses on a smaller population where neurons with a

cosine tuning curve (Georgopoulos et al., 1982) (R2 < 0.3)

were discarded (Table S1). We also confirmed our analyses

on threshold-crossing activity, as it is possible to accurately es-

timate neural population dynamics without subjective spike

sorting (Trautmann et al., 2019). Results from these analyses

are summarized in Table S1, and uphold the conclusions from

analysis of the single-unit population. Finally, the same conclu-

sions also hold when considering only the subpopulation of

PMd or M1 neurons (Table S5).

We first characterized the proportion of recorded congruent

neurons in our recordings. We fit a cosine tuning model for

each neuron recorded during observation and execution based

on the average activity (in a window 200 to 500 ms after target

onset) during center-out movements (Georgopoulos et al.,

1982). We defined a neuron as being incongruent if its PD had

a statistically significant change between observation and

execution contexts (e.g., Figure 2D) by bootstrapping (Fan

et al., 2014) (see Method Details); otherwise, it was congruent

(e.g., Figure 2C). PD has been previously used to determine

congruence (Tkach et al., 2007, 2008; Dushanova and Donog-

hue, 2010), and is reasonable because it is an important sum-

mary feature of single-neuron tuning (Georgopoulos et al.,

1982), even comprising the basis for several BMI decoder algo-

rithms (Taylor et al., 2002; Velliste et al., 2008; Kao et al., 2014).
Cell Reports 32, 108006, August 11, 2020 3
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Figure 2. Behavior and Neuron Congruence

(A and B) Illustrations of (A) execution and (B)

observation.

(C and D) Cosine tuning curves for a single neuron

during execution (blue) and observation (orange)

demonstrating (C) congruence and (D) incongru-

ence.

(E and F) PSTHs for the (E) congruent and (F) incon-

gruent neurons of (C) and (D) during execution and

observation, with color denoting different target

conditions.

(G and H) Histogram of PD differences between

observation and execution for (G) Monkey J and (H)

Monkey L. Grayscale indicates the proportion of

neurons with a significant change in PD.
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In Monkey J (L), we found that 47.4% (53.2%) of neurons in M1

and 52.7% (43.7%) of neurons in PMd were incongruent (p <

0.05, bootstrap with 1,000 resamples). Circular histograms of

PD changes are shown in Figures 2G and 2H. The differences

in PD change distributions between monkeys may be due to

anatomical sampling, as Monkey J had two arrays in PMd

and M1, while Monkey L had one array at the PMd/M1 border.

We found more congruent neurons than the study by Dusha-

nova and Donoghue (2010), where 38% of recorded neurons

were congruent in M1. Finally, we also found that modulation

depth and baseline firing rate were smaller on average in

observation than in execution, as shown in Figure S1. These

results show that our recorded neural population has a mixed

degree of congruent and incongruent neurons.
4 Cell Reports 32, 108006, August 11, 2020
Neural Population Subspaces for
Observation and Execution Activity
Are Not Orthogonal
We first examined the relationship be-

tween the neural population activity irre-

spective of whether neurons were

congruent or incongruent. Neural popula-

tion activity can be described in a high-

dimensional neural space where each

dimension reflects the activity of one re-

corded neuron. However, empirical results

(Yu et al., 2009; Shenoy et al., 2013; Cun-

ningham and Yu, 2014; Gallego et al.,

2017) and theoretical studies (Gao et al.,

2017) show that neural activity does not

explore the entire space, but rather resides

in a low-dimensional subspace. This sub-

space is described by a series of basis

vectors or neural modes that capture how

recorded neurons covary during behavior

(Gallego et al., 2017, 2018). Are the neural

modes of observation and execution activ-

ity orthogonal or overlapping? If observa-

tion and execution subspaces overlap,

then neurons exhibit similar covariance in

both contexts. If they are orthogonal,

then neurons covary differently between

contexts.
We first tested the hypothesis that observation and execution

neural subspaces are orthogonal. This hypothesis is motivated

by prior work in motor preparation that found that output-null

activity during motor preparation is orthogonal to an execution

subspace (Kaufman et al., 2014; Elsayed et al., 2016). This

orthogonality allows motor cortex to have fundamentally

different activity and computation between preparation and

movement (Elsayed et al., 2016). In our study, observation ac-

tivity is ‘‘putative output-null’’; while we did not record electro-

myography (EMG) activity, analysis of videos from the experi-

ment and BMI control suggest that the monkey was not

contracting his muscles during the experiment (see Discussion

and Figure S6). As a putative output-null space, observation ac-

tivity, like preparatory activity, may be orthogonal to execution
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Figure 3. Observation and Execution Subspaces Are Not Orthogonal

(A and B) Observation and execution variance explained in (A) observation PCs and (B) execution PCs.

(C) Variance captured by cross-projections in the top 10 PCs (orange: Obs variance in Ex PCs; blue: Ex variance in Obs PCs), and variance captured by random

observation and execution 10D subspaces (purple; error bars: 95% confidence interval).

(D) Hypothesis illustration.

(E) Orth-Obs and Orth-Ex subspace optimization. Variance captured within a context’s own subspace (orange: Obs variance in Orth-Obs; blue: Ex variance in

Orth-Ex) and across context ‘‘cross-projections’’ (red: observation variance in Orth-Ex; dark blue: execution variance in Orth-Obs). We also decoded Obs

variance cross-projected in Orth-Ex (green) and Ex variance cross-projected in Orth-Obs (purple) (chance: 12.5%).
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subspaces. We tested this by performing principal component

analysis (PCA) separately on observation and execution trial-

averaged peristimulus time histograms (PSTHs) (see Method

Details). In observation, the top 10 PCs captured 74.1%

(80.0%) of the total variance in Monkey J (L), while in execution

they captured 83.9% (87.6%). We then projected observation

activity on the execution PCs and vice versa to quantify the vari-

ance captured in cross-projections, as shown in Figures 3A and

3B. We found that 40.0% (49.5%) of cross-projected observa-

tion variance was captured in the top 10 execution PCs, and

44.0% (48.2%) of cross-projected execution variance was

captured in the top 10 observation PCs. This cross-projection
was significantly larger than expected by chance (Figure 3C,

p < 0.05, comparison to random projections biased toward

the original subspace; see Method Details). Because statisti-

cally significant observation variance is present in the execu-

tion PCs and vice versa, this analysis suggests that observation

and execution subspaces are not orthogonal.

To show this more conclusively, we designed an additional

analysis to consider two important factors unaccounted for by

this PCA. First, Elsayed et al. (2016) demonstrated that explicit

joint optimization over two contexts is a stronger test of

orthogonality. Our prior PC analysis was performed separately

(not jointly) on observation and execution activity, which may
Cell Reports 32, 108006, August 11, 2020 5
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Figure 4. Exclusive and Shared Subspace
(A) Illustration of the hypothesis that the observation subspace is a subset of the execution subspace.

(B) Variance captured in the Excl-Obs (orange) and Excl-Ex (blue) subspaces. By design, Excl subspaces capture less than 1% cross-projected variance.

Observation variance is high in Excl-Obs, and can be decoded at significantly above chance levels (green). The dotted line indicatesmaximum accuracy achieved

using all neurons. The same results hold for execution activity.

(C) Illustration of the hypothesis that observation and execution activity share neural population structure.

(D) The shared subspace captures significant observation and execution variance, andwas decodable above chance levels for observation (green) and execution

(purple) variance.
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have had spurious overlap due to noise. In contrast, a more

rigorous approach is to ask if it is possible to find orthogonal

observation and execution subspaces jointly. Second, cross-

projected variance may be noise, rather than behaviorally

informative. We addressed these concerns by performing an

additional dimensionality reduction analysis and decoding

analysis. We used manifold optimization to jointly identify

mutually orthogonal subspaces, one for observation (‘‘Orth-

Obs’’) and one for execution (‘‘Orth-Ex’’) (Koep and Weich-

wald, 2016). If observation and execution activity are orthog-

onal, then the Orth-Obs and Orth-Ex subspaces will have

nearly zero cross-projected variance; otherwise, they will

have significant cross-projected variance. To test if any

cross-projected variance is signal or noise, we decoded

target identity from the cross-projected variance. We report

results for four-dimensional (4D) Orth-Obs and Orth-Ex

subspaces, but our conclusions hold for different dimension-

alities (Table S2). We use a metric called ‘‘normalized variance

captured’’ (see Method Details), which is the variance

captured in the 4D Orth subspace divided by the variance

captured by the top four PCs (i.e., the maximum possible vari-

ance captured by four dimensions). All variance captured

quantities in this study are normalized in this way, unless

otherwise noted.

Our optimization identified an Orth-Obs and Orth-Ex sub-

space, each capturing over 90% of variance in their contexts
6 Cell Reports 32, 108006, August 11, 2020
across both monkeys, as shown in Figure 3E. Critically, we

observed that there was significant cross-projected variance.

For Monkey J (L), there was 15.9% (18.0%) cross-projected

observation variance in the Orth-Ex, and 10.3% (13.9%)

cross-projected execution variance in Orth-Obs. To test

whether this cross-projected variance was noise, we decoded

cross-projected activity to decode target identity using a linear

discriminator (see Methods). We found that execution variance

in Orth-Obs was task relevant, achieving 72.7% (55.7%)

decode accuracy (Figure 3E, purple bars), significantly above

chance levels of 12.5% (p < 0.05, bootstrap with 1,000 resam-

ples). In contrast, observation variance in Orth-Ex was not al-

ways task relevant, achieving 15.3% (21.3%) decode accuracy

(Figure 3C, green bars). These modest accuracies were signif-

icantly above chance in four of six datasets (p < 0.05, bootstrap

with 1,000 resamples; p = 0.330 and 0.238 in remaining

datasets).

The presence of task-relevant execution variance in the

Orth-Obs subspace rejects the hypothesis that execution

and observation activity are orthogonal. But subtly, observa-

tion activity has little or no task-relevant variance in Orth-Ex.

As execution activity has variance in Orth-Obs, but observa-

tion activity has limited task-related variance in Orth-Ex, this

leads to an alternative hypothesis: observation activity is a

subset of execution activity. In this hypothesis, observation

and execution share neural modes for processing actions.
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Figure 5. Congruent and Incongruent Composition of the Exclusive and Shared Subspaces

(A and B) Distribution of neuron subspace contributions in the Excl-Obs, Excl-Ex, and shared subspaces for congruent neurons (A) and incongruent neurons (B).

(C and D)Median (error bars are 25th and 75th percentiles) neuron subspace contributions in Excl-Obs, Excl-Ex, and shared subspaces for congruent neurons (C)

and incongruent neurons (D).

(E) Hypothesis figures. If the homogeneous hypothesis is true, then the distribution of neuron subspace contributions should be bimodal across all subspaces.

One subpopulation should have nearly zero contributions for the exclusive (or shared) subspaces and significant contributions for the shared (or exclusive)

subspaces. Further, the log ratio of the subspace contributions between the shared and exclusive subspaces should be bimodal.

(F and G) The empirical distribution of (F) neuron subspace contributions and (G) log ratio of neuron subspace contributions in Excl-Obs, Excl-Ex, and shared

subspaces is more consistent with the heterogeneous hypothesis.
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Execution activity, however, exists in a larger subspace,

comprising additional dimensions that lead to overt move-

ment. These dimensions are explicitly avoided during

observation.

Observation Activity Is Not a Subset of Execution
Activity
Is the observation subspace a subset of the execution subspace,

where shared task-related processing occurs, but is otherwise

orthogonal to other execution dimensions involved in movement

generation? This hypothesis is conceptually diagrammed in Fig-

ure 4A. Under this hypothesis, there would be no subspace that

captures task-relevant observation variance and essentially zero

execution variance. We designed a new constrained subspace
optimization, which defined an ‘‘exclusive’’ observation (Excl-

Obs) subspace that maximizes observation variance while

capturing less than 1% execution variance (see Method Details).

If the Excl-Obs subspace has task-relevant observation vari-

ance, then observation activity explores dimensions avoided

during execution, rejecting the hypothesis.

We found, for Monkey J (L), that the Excl-Obs subspace

captured 64.1% (51.3%) of normalized observation variance, as

shown in Figure 4B. This Excl-Obs variance was task relevant,

achieving a decode accuracy of 43.6% (44.4%), close to the

maximum performance, with all neurons denoted by dotted

lines in Figure 4B (p < 0.05, bootstrap with 1,000 resamples). In

addition, when we decoded the 1% variance execution activity

in the Excl-Obs subspace, decode accuracy was significantly
Cell Reports 32, 108006, August 11, 2020 7
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Figure 6. Dynamics in Observation and Execution

(A–C) Tangling results for Monkey J. Monkey L’s results are consistent and not shown.

(A) Tangling in congruent and incongruent subpopulations during observation and execution. Each data point corresponds to a different time.

(B) Tangling in the Excl-Obs, Excl-Ex, and Shared subspace.

(C) Tangling in the highest variance subspace orthogonal to the Shared subspace for observation and execution.

(D and E) Projection of (D) execution and (E) observation activity onto the top jPC plane. Colors denote target conditions.

(F) Average R2
skew in observation and execution activity across six datasets (error bars: SEM).

(G) Average ratio of R2
skew=R

2
linear , (error bars: SEM).
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smaller than decoding random projections of execution

activity (p < 0.05, bootstrap with 1,000 resamples). These results

show that observation activity has task-relevant variance in

unique dimensions avoided by execution activity. This rejects

the hypothesis that observation activity is a subset of execution

activity.

Results from prior literature (Kaufman et al., 2014), as well as

Figure 3, indicate that an exclusive execution (Excl-Ex) subspace

must exist: execution activity uniquely explores dimensions for

movement generation (output-potent) that are avoided by obser-

vation activity (putative output-null). We similarly applied the

exclusive subspace optimization to quantify the amount of

Excl-Ex variance during executed movements, which partially

reflects neural variance dedicated to generating movement.

We found that the Excl-Ex subspace captured 47.2% (35.1%)

of normalized execution variance. This Excl-Ex variance was

task relevant, achieving a decode accuracy of 87.9% (70.7%),

significantly higher than chance levels (p < 0.05, bootstrap with

1,000 resamples).

In addition to these exclusive subspaces, observation and

execution activity must explore a common shared subspace

because they are not orthogonal. We therefore designed an opti-
8 Cell Reports 32, 108006, August 11, 2020
mization to identify this shared subspace.We defined the shared

subspace to be orthogonal to Excl-Obs and Excl-Ex, while jointly

maximizing observation and execution variance (see Method

Details). We found that the shared subspace captured 52.8%

(59.2%) of normalized observation variance in Monkey J (L)

and 66.3% (73.1%) of normalized execution variance, as shown

in Figure 4D. This variance was task relevant for both contexts

(p < 0.05, bootstrap with 1,000 resamples): observation activity

could be decoded at 43.5% (40.7%) accuracy and execution ac-

tivity at 88.1% (81.8%) accuracy. These results identify similar

patterns of neural population covariation during observation

and execution occurring in a shared subspace, and dissimilar

covariation occurs in exclusive subspaces. We next asked:

how does neuron congruence and incongruence relate to the

shared and exclusive subspaces?

The Shared Subspace Has a Heterogeneous
Composition of Congruent and Incongruent Neurons
The congruent subpopulation hypothesis poses the concept that

congruent neurons mediate an understanding of a motor action

through congruent activation of a motor cortical circuit. If

congruent neurons reflect shared computation between
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observed and executed movements, they should primarily

contribute to the shared subspace. Likewise, if incongruent neu-

rons reflect unique computation, they should primarily contribute

to the exclusive subspaces. We term this the ‘‘homogeneous’’

composition hypothesis, diagrammed in Figure 1B. In contrast,

the ‘‘heterogeneous’’ composition hypothesis posits that both

congruent and incongruent neurons contribute to the shared

and exclusive subspaces.

To test if the shared (or exclusive) subspace is primarily

composed of congruent (or incongruent) neurons, we

analyzed the contribution of incongruent and congruent neu-

rons in the Excl-Obs, Excl-Ex, and shared subspaces. We

defined a neuron’s ‘‘subspace contribution’’ as the square

root of the variance of the projected neuron’s activity in the

subspace divided by the neuron’s total variance, times the

mean firing rate of the neuron (in both contexts). This sim-

plifies to the magnitude of the weights times the mean firing

rate, a metric previously used to quantify channel contribu-

tions to subspaces (see Method Details) (Nuyujukian et al.,

2014). As shown in Figures 5A and 5B, we observed that

congruent and incongruent neurons had similar subspace

contribution distributions for both the shared and exclusive

subspaces. To further quantify this, we compared the PD

changes of congruent neurons with a subspace contribution

of at least 0.01 to see if congruent neurons contributing to

the shared subspace may have smaller PD shifts than those

contributing to the exclusive subspaces. As shown in Figures

S4A–S4C, there was no statistically significant difference in

PD shifts between congruent neurons in the shared versus

exclusive subspaces. We also repeated the optimizations to

find Excl-Obs, Excl-Ex, and shared subspaces using only sub-

populations of either congruent or incongruent neurons. Even

with homogeneous subpopulations, congruent neurons had

significant exclusive subspaces and incongruent neurons

had significant shared subspaces (Figure S2).

These results reject the homogeneous composition hypothe-

sis, and suggest that shared neural population structure is

achieved through a heterogeneous population, rather than

through a congruent subpopulation of neurons. However, are

there any other homogeneous subpopulations (rather than

congruent and incongruent categories) that define neuron clas-

ses primarily contributing to shared or exclusive subspaces? If

the shared and exclusive subspaces were primarily driven by

any homogeneous subpopulation, wewould expect (1) the distri-

bution of subspace contributions to be bimodal for both shared

and exclusive subspaces, and (2) the log ratio of neuron sub-

space contributions to the shared and exclusive subspaces to

be bimodal. This is because, if such subpopulations exist, then

a neuron having a large (small) weight for the shared subspace

should also have a small (large) weight for the exclusive sub-

space. These hypotheses are diagrammed in Figure 5E. The

empirical contributions and log ratios, shown in Figures 5F and

5G, were consistent with the heterogeneous hypothesis. This

suggests that there do not appear to be any subpopulations of

neurons that contribute only to the shared or exclusive sub-

spaces. As an additional control, we assessed if there was a

bimodal population of neurons that prefer observation versus

execution, which could explain the exclusive subspace compo-
sition. To test this, we calculated each neuron’s preference index

for neuron i as B(i) = Bobs(i)/Bobs � Bex(i)/Bex, where B is tuning

strength and B is average tuning strength across all neurons

(Elsayed et al., 2016). We then performed Hartigan’s dip test

on these preference indices to test if there was a bimodal distri-

bution of observation versus execution-preferring neurons.

We did not find that these neuron preference indices were

bimodal (p = 0.974 [0.978] in Monkey J [L]). Together, these

results support the concept that a heterogeneous population

is responsible for shared structure between observed and

executed movements, rather than a subpopulation of neurons.

Neural Dynamics Are Similar in Shared Subspaces,
Dissimilar in Exclusive Subspaces
Neural population structure describes how neurons covary

across all time. Another key feature of neural population activity

is its dynamics: how neural population activity evolves predict-

ably through time (Churchland et al., 2012; Russo et al., 2018;

Pandarinath et al., 2018a). If similar computations occur during

observation and execution, then neural population activity ought

to evolve through time in similar ways. Specifically, shared

subspaces should exhibit more similar dynamics between

observation and execution than exclusive subspaces.

We quantified the similarity of dynamics between observation

and execution in the shared and exclusive subspaces, as well as

in congruent and incongruent subpopulations. We computed

similarity of dynamics through tangling (Russo et al., 2018). Neu-

ral dynamics can be thought of as a flow field in the subspace,

where the neural population activity is propelled according to

the direction and strength of the flow field. Tangling is a measure

of how inconsistent the flow field is in the subspace. Dynamics

are tangled if, at the same location in the subspace, the flow field

is inconsistently oriented. When the flow field is consistent, dy-

namics are untangled.

We first compared tangling for congruent and incongruent

neuron subpopulations. If the congruent subpopulation hypoth-

esis is true, then the congruent subpopulation should exhibit less

tangling in observation and execution. In observation, the me-

dian congruent neuron tangling for Monkey J (L) was 6.36 3

104 (8.18 3 104), while incongruent neuron tangling was 4.00 3

104 (6.48 3 104). In execution, the median congruent neuron

tangling for Monkey J (L) was 2.21 3 104 (3.21 3 104), while

incongruent neuron tangling was 2.65 3 104 (3.17 3 104).

Although this difference is statistically significant in all pairs

(p < 0.05, Wilcoxon rank sum test), the effect is relatively small,

and the tangling distributions of congruent and incongruent sub-

populations are highly overlapping (Figure 6A). Congruent and

incongruent subpopulations therefore have similar levels of

tangling in observation and execution.

We next compared tangling for the shared (green), Excl-Obs

(orange), and Excl-Ex (blue) subspaces (Figure 6B). We

observed that, in the Excl-Obs subspace, observation activity

was less tangled than execution activity. Likewise, in the Excl-

Ex subspace, execution activity was less tangled than observa-

tion activity. These results are not surprising, given the negligible

execution (observation) variance in the Excl-Obs (Excl-Ex) sub-

space. This nevertheless supports the hypothesis that the exclu-

sive subspaces support context-specific activity, as execution
Cell Reports 32, 108006, August 11, 2020 9
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activity in Excl-Obs and observation activity in Excl-Ex have

inconsistent dynamics. In contrast, we found that the shared

subspace had relatively low tangling for both observation and

execution activity, as shown by the green dots in Figure 6B.

We also found that tangling for execution (observation) activity

in the Excl-Ex (Excl-Obs) subspace was, on average, smaller

than tangling in the shared subspace. This is not entirely surpris-

ing: the Excl-Ex and Excl-Obs subspaces are optimized to cap-

ture significant task-related execution and observation variance,

and therefore should exhibit context-specific dynamics. The

shared subspace, however, is unique in that, unlike Excl-Ex

and Excl-Obs, it has relatively consistent dynamics for both con-

texts (less tangling than in across-context exclusive subspaces,

p < 0.05, Wilcoxon rank sum test). We also evaluated tangling

through time over the course of the trial in each subspace, but

did not observe any consistent evidence that tangling was higher

during particular points in the trial. Finally, we computed the

speed of neural population trajectories through time, which

have previously been reported to decrease over the course of

a reach (Afshar et al., 2011). We observed this general decrease

in trajectory speed in the shared and within-context exclusive

subspaces, but not in the opposite context exclusive subspace,

further supporting the idea that relevant dynamics occur in the

shared and within-context exclusive subspaces (Figure S5D).

The Excl-Ex and Excl-Obs subspaces are designed to capture

little cross-projected variance and, as such, have high tangling in

observation and execution contexts, respectively. We performed

an additional control to demonstrate that the shared subspace

uniquely captures low tangling in both observation and execution.

After computing the shared subspace, we computed the next

best 4D orthogonal subspaces that maximally captured the re-

maining execution (blue) and observation (orange) variance. In

these orthogonal subspaces, we found that there was higher

tangling relative to the shared subspace, as shown in Figure 6C.

These results suggest that the shared subspace captures shared

neural population dynamics between observation and execution,

potentially reflecting similar computations in both contexts.

A consequence of these results is that dynamical motifs pre-

sent in executed movements may also be present during

observed movements. We therefore assessed if observation ac-

tivity exhibits rotational dynamics, a salient feature in execution

activity (Churchland et al., 2012; Kaufman et al., 2016; Pandari-

nath et al., 2015). We used jPCA (Churchland et al., 2012) to

calculate R2
skew and R2

linear, which are coefficients of determina-

tion for how well future neural states can be predicted using

strictly rotational and strictly linear dynamics, respectively (see

Method Details). Consistent with prior results, we found that

purely rotational dynamics performed reasonably well at predict-

ing future neural states during execution (R2
skew = 0:61; R2

linear =

0:69, averaged across both monkeys). Interestingly, we

found that rotational dynamics could also predict future neural

states in observation activity reasonably well (R2
skew = 0:36;

R2
linear = 0:45), albeit worse than in execution. Example jPCA

trajectories are shown for execution (Figure 6D) and observation

activity (Figure 6E). Across all datasets, we found that observa-

tion activity could be described by a rotational dynamical system

explaining, on average, 40% of future neural state variance

(Figure 6F). The relative performance of using solely rotational
10 Cell Reports 32, 108006, August 11, 2020
dynamics versus general linear dynamics (which allow for

contraction or expansion) was comparable between observation

and execution (Figure 6G), suggesting that rotational dynamical

motifs can be prominent in observation activity. We found that

the shared subspace had relatively strong rotational dynamics

in both observation and execution contexts, while exclusive sub-

spaces with high tangling (i.e., opposing context) did not have

strongly rotational dynamics (Figures S5B and S5C). We did

not observe a significant difference in rotational dynamics be-

tween incongruent and congruent subpopulations in both

execution and observation (Figure S5A).

DISCUSSION

The congruent subpopulation hypothesis posits that mirror neu-

rons support understanding of an observed motor action

through activation (or ‘‘resonance’’) of a group of congruent neu-

rons that would have fired during executed movements. How-

ever, recent literature has suggested that shared computation

in observed and executed movements may occur not in certain

cell subpopulations, but across a heterogeneous neural popula-

tion (Papadourakis and Raos, 2019; Mazurek et al., 2018). Our

results provide new insights into neural population structure be-

tween observed and executed movements. First, observation

and execution activity exhibit both shared and exclusive struc-

ture in their neural population activity (Figure 1A). Second, we

did not identify any neural subpopulations in the shared and

exclusive subspaces. In particular, congruent and incongruent

neurons contributed to both subspaces (Figure 1B, ‘‘heteroge-

neous’’). Third, neural dynamics are relatively untangled in the

shared subspace compared with other subspaces, but the sub-

population of congruent neurons has similar tangling to incon-

gruent neurons (Figure 1C, ‘‘similarity in subspace’’). These re-

sults argue that shared computation—referring to similar neural

activity covariation and temporal evolution across observation

and execution—occurs across a heterogeneous neural popula-

tion, and not in a congruent subpopulation of neurons.

These results also suggest that there is context-specific pro-

cessing that occurs in exclusive subspaces. Our results of an

Excl-Ex subspace agreewith prior literature. The analyses of Fig-

ure 3 show it was possible to find an Excl-Ex subspace where

projected observation activity could not be decoded above

chance. A consistent interpretation of these results is that the

Excl-Ex, which contains minimal observation variance, is

partially aligned with output-potent dimensions (Kaufman et al.,

2014). If observation activity is accompanied by EMG silence

(i.e., no muscle activation), then observation activity would

explicitly avoid these output-potent dimensions. Therefore, it is

likely that the Excl-Ex subspace aligns with output-potent di-

mensions involved in executed movements.

Although we did not measure EMG activity, it is unlikely that

the monkey was co-contracting his muscles during observation

trials for three reasons. (1) During observation experiments, we

observed no visible overt movement of the hands. To quantify

this, we used DeepLabCut (Mathis et al., 2018) to track Monkey

J’s fist and Monkey L’s digits in a video recording of a represen-

tative session. Digit movement was, on average, less than 1

pixel/s for Monkey J (L) across all observation trials. For
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comparison, Monkey J’s (L’s) hand in video had an area of

approximately 195 pixels2 (158 pixels2). This small, non-zero ve-

locity is consistent with artifactual micromotion due to tracking

precision in DeepLabCut, which we observed occasionally had

errors of a few pixels (Figure S6). (2) Observation data were

used to train a biomimetic BMI decoder that achieved very

high performance from BMI onset without learning. BMI trials

required moving the cursor to the target followed by a 500-ms

hold time, for eight unique radial targets. Monkeys often had to

‘‘dial in’’ to the target, requiring precise fine control (Gilja et al.,

2012). Achieving this level of control at BMI onset would require

(a) distinct co-contraction patterns to move to each target, (b) a

distinct co-contraction pattern for holding the target, (c) a co-

contraction pattern that enables accurate fine control, and (d)

executing this strategy at peak performance at the onset of

BMI control. These systematic and quickly changing co-contrac-

tions would likely be visible on video; we did not observe this. (3)

Monkeys J and Lwere able to sustain BMI control for hours. Sus-

taining such a precise, yet latent, co-contraction strategy for this

long is unlikely, given the effort and energy required. Because the

BMI is biomimetic, immediately achieving peak performance

without learning, the lack of a co-contraction strategy in BMI

control implies a lack of co-contraction strategy during observa-

tion. Together, these conclusions support the idea that the mon-

key was likely not co-contracting his muscles, so that observa-

tion activity would avoid output-potent dimensions.

More interestingly, we found that there was an Excl-Obs sub-

space. This evidence rejects the hypothesis that observation ac-

tivity is merely a subspace (i.e., a putative ‘‘output-null’’ compo-

nent) of execution activity. The motor cortex, rather, has a

subspace for observation activity that is orthogonal to execution

subspaces. This Excl-Obs subspace may be involved in cogni-

tive and motor processes unique to observed movements,

such as representing the agent (or lack thereof) carrying out

the observed movement. It may also be linked to execution ac-

tivity, much like orthogonal preparatory subspaces are linked

to execution activity (Elsayed et al., 2016).

Observation and execution activity also occupy a shared

subspace with similar dynamics. We note that we also found

there was a shared subspace in both PMd and M1 subpopu-

lations, as shown in Table S5. Differences from Mazurek et al.

(2018), who found that premotor cortex neurons had more

similar trajectories between observation and execution than

did M1 neurons, may be due to task differences, location of

recording (we recorded in PMd, while Mazurek and colleagues

recorded primarily in PMv), or that, in our observation context,

the monkey did not observe an experimenter performing the

task. Nevertheless, this shared subspace reflects that,

whether observing or executing movement, neurons covary

in similar ways. Even more, this coordinated activity is struc-

tured through time, exhibiting relatively consistent dynamics

(low tangling). This means that, in the shared subspace, a

certain neural activity pattern will lead to similar future neural

activity patterns, whether observing or executing movement.

We found tangling outside of this shared subspace to be

high, meaning that the temporal evolution of execution and

observation activity outside of the shared subspace is context

dependent.
Because the shared subspace has more consistent (1) covari-

ation among neurons, and (2) dynamics through time, we hy-

pothesize that the shared subspace is related to shared compu-

tation between observed and executed movements. For

example, behavioral studies demonstrate that humans can

improve their performance on sports and other motor tasks

through mental rehearsal (Sheahan et al., 2018; Feltz and

Landers, 1983; Frank et al., 2014; Clark, 1960; Dechent et al.,

2004; Mokienko et al., 2013) and action observation (Zhang

et al., 2011; Mattar and Gribble, 2005). Hence, motor learning

and skill transfer can occur without overt movement. The shared

subspace, which exhibits similar neural dynamics across both

observed and executed movements, but comprises congruent

and incongruent neurons, may mediate this motor learning and

skill transfer (Jeannerod and Decety, 1995; Sirigu et al., 1996; Ci-

sek and Kalaska, 2004; Zhang et al., 2011; Vyas et al., 2018;

Sheahan et al., 2018). Further experiments should assess, in

the context of task learning, if shared subspace activity reflects

neural correlates of learning.

As neural population dynamics are shared between execution

and observation, we expect to see similar dynamical motifs in

both contexts. A prominent dynamical motif in execution activity

is the rotational dynamics (Churchland et al., 2012; Pandarinath

et al., 2015). In particular, Kaufman et al. (2016) found that rota-

tional dynamics occurred during the transition from preparing to

executing moving, suggesting a role for these dynamics in

generating movements. In addition to movement generation,

rotational dynamics have also been observed during covert

mental rehearsal (Vyas et al., 2018). Our results add to this liter-

ature by demonstrating that rotational dynamics are also present

during observed movements, albeit to a smaller degree than in

executed movements. These results suggest that a component

of the rotational dynamical motif may be related to motor pro-

cessing that is not explicitly involved in generating movement.

We used PD to quantify whether neurons fired congruently be-

tween execution and observation, a metric commonly used to

describe congruent activity for a center-out task (Tkach et al.,

2007, 2008; Dushanova and Donoghue, 2010). In other tasks,

neural responses across task conditions can be used to calcu-

late a similarity metric, analogous to congruence (Mazurek

et al., 2018). It is worth noting, however, that PDs in motor cortex

can change in different contexts, including whether a prepared

reach is slow or fast (Churchland et al., 2006), across time in a

trial (Churchland and Shenoy, 2007), between preparation and

movement (Churchland et al., 2010), under different arm orienta-

tions (Scott et al., 1997; Scott and Kalaska, 1997), between iso-

metric or isotonic tasks (Sergio et al., 2005), and based on loca-

tion of the hand during an isometric-force task (Sergio and

Kalaska, 2003). It is therefore not surprising that PDs change be-

tween observation and execution, as reported by Dushanova

and Donoghue (2010) and our results. In particular, we found

that around half of the cells changed their PD, leading to sizeable

congruent and incongruent subpopulations. It is worth noting

that, even though PDs may change between contexts, this

does not lead to a prediction on the composition of congruent

or incongruent neurons in the shared and exclusive subspaces.

In this study, we focused on the role of congruent and incon-

gruent neurons in the shared and exclusive subspaces. We
Cell Reports 32, 108006, August 11, 2020 11
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note that there were also neurons that were primarily active dur-

ing only the execution or observation context. As such, they

have little variance during the execution or observation con-

texts. Because the subspace optimization techniques that we

used maximize the variance of the neuron firing rates across

time and conditions, neurons that are relatively quiescent dur-

ing a context (e.g., observation) have less variance across

time, and should therefore have less contribution to the

shared subspace and that context’s exclusive subspace

(e.g., Excl-Obs). These neurons may still contribute if

they have across-condition variance. We show the subspace

contribution of neurons active in both contexts and one

context in Figure S4. Neurons active in both contexts in

general had larger subspace contributions. Among neurons

active in both contexts, we found that 44.6% of neurons were

congruent and 55.4% of neurons were incongruent. It is

worth re-emphasizing that, in prior analyses, we did not distin-

guish whether neurons were active or not, but whether they

were congruent or incongruent across contexts. Our analyses

therefore include all neurons, including those inactive in one

context.

We note that we did not impose mandatory eye fixation. Does

the shared subspace therefore reflect neural variance related to

similar gaze trajectories between observation and execution?

We argue that prior literature militates against this alternative

interpretation. First, while PMd neurons may encode eye position

(relative to hand and target) (Pesaran et al., 2006), gaze-related

variables explain a smaller percentage of the variance (i.e.,

<20%) than that captured by the shared subspace (Cisek and Ka-

laska, 2002). We found that the total (unnormalized) variance

captured by the shared subspace was 28% and 35% inMonkeys

J and L, respectively, which is more than gaze-related variance.

These results are also supported by prior analyses using partial

correlations to argue that apparent correlations between motor

cortical activity and eye movement during observed movements

is primarily due to correlation between cursor movement and

eye position (Tkach et al., 2007 [their Figure 6]). These analyses

suggest that the shared subspace is not solely explained by

similar eye movements. Another alternative hypothesis is that

the shared subspace may primarily reflect visual feedback. If

this was the case, then neural activity in the future should be

most correlated with kinematics at present. We performed a de-

coding analysis to predict the cursor’s position from the neural ac-

tivity at different time lags. We found that the optimal decoding

accuracy occurredwhen the neural data instead preceded cursor

position, as shown in Figure S3. Decoding accuracy was worse

when the cursor position trailed the neural data, arguing that the

recorded activity is not primarily representing visual feedback.

These results have implications for BMIs, which can be de-

signed by having users observemovements or imagine executing

movements (Shenoy and Carmena, 2014; Hochberg et al., 2012;

Nuyujukian et al., 2011). While there are shared components of

neural population activity between observed and executedmove-

ments, the activity across both contexts remains distinct. Decod-

ing imagined movements, which can have an output-potent

component, may result in better performance than observing

movement, especially considering that execution activity has

distinctly different structure than observation activity. Further,
12 Cell Reports 32, 108006, August 11, 2020
because execution activity exhibits more linear dynamical motifs,

such activitymay bebetter suited for BMIs that learn and incorpo-

rate neural dynamics (Kao et al., 2015, 2017; Sussillo et al., 2016;

Pandarinath et al., 2014, 2018a, 2018b).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures and experiments were approved by the Stanford University Institutional Animal Care and Use Committee (IACUC).

Experiments were conducted with two adult male rhesusmacaques (Macacamulatta, monkeys J and L), implanted with 96 electrode

Utah arrays (Blackrock Microsystems Inc., Salt Lake City, UT) using standard neurosurgical techniques. At the time of experiments,

Monkey J was 11 years old and weighed 15 kg, while Monkey L was 18 years old and weighed 9 kg. Monkey J (L) was implanted 56

(67) months prior to experiments. Monkey J had two Utah arrays, one implanted in PMd and the other implanted in M1, as visually

estimated from anatomical landmarks. Monkey L had one Utah array, implanted at the PMd / M1 border.

METHOD DETAILS

Experimental design and data preprocessing
There were two contexts in our experiments: (1) observation (Obs) and (2) execution (Ex). In both contexts, there were 8 targets,

equally spaced in 45� intervals at 0�, 45�, ..., 315� in a 2D plane. Each target was 12 cm from the center target. In the observation

context, the monkey observed the cursor moving at a constant speed of 9.25 cm/s between the center and the 8 targets. In the

execution context, the monkey made center-out-and-back reaches in this 2D plane with a virtual cursor controlled by the contralat-

eral arm. In both cases, targets were selected after the cursor was held for 500 ms in an acceptance window of size 4 cm by 4 cm

centered on the target. There was no delay period. There were no rest times between trials within an experimental block. Inter-trial

intervals in both contexts were 40 ms. For data analysis, only reaches starting from the center were analyzed. The virtual cursor and
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targets were presented in a 3D environment (MSMS,MDDF, USC, Los Angeles, CA) described in Cunningham et al. (2011). Themon-

key was unable able to see his hand during experiments, only the virtual cursor. We chose trial counts that aim to maximize the num-

ber of trials collected across all conditions within one experimental session. The number of trials for observation in each session

ranges from 89 to 258, while for execution this number ranges from 251 to 266.

Hand position data were measured with an infrared reflective bead tracking system (Polaris, Northern Digital, Ontario, Canada).

Behavioral control and neural decode were run on separate PCs using the Simulink/xPC platform (Mathworks, Natick, MA). Eye po-

sitions were recorded via ISCAN (ISCAN, Inc., MA). Neural data were initially processed by the Cerebus recording system (Blackrock

Microsystems Inc., Salt LakeCity, UT) according to specifications described in Cunningham et al. (2011). Spike events were detected

by setting a threshold value to �4.5 times the RMS voltage of the channel.

After thresholding the activity, we spike sorted the data via MK sort, available at https://sites.google.com/site/antimatt/software,

and found anywhere from 41 to 83 putative single units in each experimental session. We incorporated this more stringent and con-

servative criterion for determining single neurons, since sorting spike waveforms incorporates a subjective component. Our criterion

was based on prior studies (Chandrasekaran et al., 2017; Rutishauser et al., 2006) that only counted neurons that had ISI violations (<

3 ms) less than 3% of the time. Our empirical dataset labels for this work are: J140507, J140508, L140829, L140911, L140912,

L140916, the first letter indicates the monkey label (J or L), and the following numbers indicates the date of data acquisition. For

example, J140507 means the data is collected from monkey J on May 07, 2014.

All presented analyses used all datasets, with the exception of the subspace composition analysis presented in Figure S2 where

dataset L140829 was excluded. This was because this dataset did not have enough congruent or incongruent units to reliably deter-

mine an exclusive and shared subspace.Wewere not able to do this analysis with single units satisfying a tuning threshold ofR2 > 0.3

due to there being not enough units in all but one dataset.

Trial selection during movement observation
Themonkeymay cease to pay attention to themoving cursor duringmovement observation.We addressed this in twoways. First, we

observed themonkey’s eye position throughout the duration of the experiment, and stopped the task if themonkey disengaged. Sec-

ond, we only analyzed trials that met the following criteria: (a) the angle betweenmonkey’s eye position vector (between the start and

end of trial) and cursor movement vector was less than 45�, (b) the length of monkey’s eye position vector was larger than half of the

length of cursor movement vector. Together, these selection criteria resulted in trials selected where the monkey’s eye movements

were consistent with cursor movement. The percentage of observation trials excluded due to this criteria in each dataset was: 12.2%,

0.3%, 35.2%, 6.7%, 12.3%, 6.5%. It is alsoworth noting that, as described in the Results, these datasets were adequate training sets

for BMIs achieving near-perfect performance on a center-out-and-back task.

Single neuron firing rate statistics
To test for significant differences in single neuron firing rate statistics, we performed a bootstrap hypothesis test (Fan et al., 2014). We

first resampled the firing rate for a given direction. Then, we fit a tuning curve for the resampled firing rates. Our null hypothesis tests if

a tuning curve statistic has the same mean between two different samples (i.e., observation and execution activity). For example, for

the preferred direction of a single neuron, x and y are both n-dimensional column vectors representing the preferred directions for

observation and execution contexts across many re-samples. We tested for statistically significant changes as follows:

1. Mean subtract statistics from two different samples: bx = x � x, by = y � y, where x denotes the mean of x.

2. Concatenate all mean-subtracted statistics column-wise: c = [bx, by], so c is a 2n by 1 vector.

3. Sample vectors xmix and ymix from c with replacement; each vector comprises 1000 samples.

4. Compute the mean-centered bootstrap statistic: Dctrl = xmix � ymix and Dc = Dctrl � Dctrl.

5. Sample vectors xreal and yreal from bx and by respectively with replacement; each vector comprises 1000 samples.

6. Compute the statistic: Dreal = xreal � yreal.

7. Calculate the p value: p=
#ð
���Dreal

���< jDctrljÞ
1000 .

We rejected the null hypothesis if p < 0.05.

Classifying reach direction from neural data
We utilized a generative model with shared covariance matrices across classes (i.e., the 8 reach directions), thereby implementing a

linear discriminant. The data was already projected into a low dimensional subspace of interest.We denote the low dimensional latent

states as s = [s1 , s2 , . . ., sD ], whereD is number of dimensions. D is smaller than the number of total neurons. Wemodeled the latent

states in a given class as being a multivariate Gaussian distribution, i.e.,

p sjC= kð Þ � N mk ;Sð Þ (Equation 1)

where mk is class k’s mean, and S is an across-class covariance. We constrain the across-class covariance to be diagonal. The

maximum-likelihood mean is the sample mean of the low-dimensional states in class k, while the maximum-likelihood covariance
e2 Cell Reports 32, 108006, August 11, 2020
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is the weighted sum of sample covariance matrices across all classes. The weights are the proportions of samples in each class. To

decode, we calculate the class that maximizes the posterior probability:

k� = arg max
k

p C= kjsð Þ (Equation 2)

where k* denotes the decoded class. In decoding reach direction, we found that the peak performance using all the data

was approximately 60% (100%) for observation (execution). This relatively poor performance for observation indicates that

activity is less modulated during observation; we note that the same decoder applied in a BMI context trained from observation

achieved performance over 95%. We did not observe performance significantly increase with multi-class SVMs (data not

shown).

Neural data smoothing and soft-normalization
We smoothed the firing rates with a Gaussian kernel having standard deviation 25 ms. We also soft-normalized the data before opti-

mization (Churchland et al., 2012; Elsayed et al., 2016). This entailed normalizing the firing rate of a neuron, denoted by x in units of

spikes/s, according to

x

l+maxðxÞ �minðxÞ (Equation 3)

where max(x) � min(x) is the range of one neuron’s firing rate across all time. We set l = 10 spikes/s based on the fact that max(x) -

min(x) range from 1 to 42 spikes/s for observation, with mean at 12 spikes/s, and 1 to 82 spikes/s for execution, with mean 22 spikes/

s. All conclusions of this study were upheld when varying the Gaussian kernel smoothing (25, 50, or 75 ms) and soft-normalization l

(5, 10, or 15 spikes/s).

Neural population matrix
In all neural population analysis, including PCA, subspace optimization analysis, and dynamics, we performed analysis on the trial-

averaged PSTHs across neurons, conditions, and time. We formed a matrix M˛ℝN3TC , where N is the number of neurons, T is the

number of time points, and C is the number of reach conditions (8 directions in this work). Each row of this matrix corresponds to the

trial-averaged firing rates for a neuron over time, concatenated over all conditions. We formed this matrix for both observation

and execution activity. We performed subspace optimization on these trial-averaged firing rates, rather than single trials, since

our subspace optimizations focus on maximizing variance. Trial-averaging firing rates reduces single trial variance, so that the

subspace optimizations more strongly reflect across-condition variance. This is a commonly used approach when performing

dimensionality reduction on a neural population (Elsayed et al., 2016; Churchland et al., 2012).

Normalized variance captured in a subspace
We used the following equation to quantify the normalized variance captured of neural population data in a subspace, which is the

metric used throughout this study. We note that Elsayed and colleagues have also called this quantity ‘alignment index’ (Elsayed

et al., 2016). The normalized variance captured is:

A =
TrðQTCQÞPd

i = 1li
;

whereQ˛RN3d is a d-dimensional basis overN neurons,C is the covariancematrix of the neural activity, and li is the i
th largest eigen-

value forC. ThematricesQ andC can be computed for both observation and execution activity. The quantity
Pd

i = 1li is the maximum

variance that can be captured in d dimensions. As such, A is a quantity between 0 and 1.

Computing chance alignment indices
Weperformed a random subspace selectionmethod (reported by Elsayed et al. (2016), Supplementary Note 3) to quantify the chance

level normalized variance captured (alignment index) between observation and execution subspaces. This random subspace selec-

tion is biased to the covariance structure of the data. It assumes that there is a fixed correlation between the neurons at all times,

dictating a subspace where computation occurs, and randomly samples from this subspace.

For example, consider observation activity. The covariance matrix of observation activity is denoted asCObs, and its eigendecom-

position is

CObs =QObsLObsQ
T
Obs; (Equation 4)

where the columns of QObs are eigenvectors of CObs, and LObs is a diagonal matrix of the sorted eigenvalues of CObs. A randomly

sampled observation subspace, denoted as QObs;rnd, is obtained by computing:

QObs;rnd = orth
QObsL

1=2
Obsv

kQObsL
1=2
Obsv k 2

 !
(Equation 5)
Cell Reports 32, 108006, August 11, 2020 e3
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where v˛ℝN3d is a matrix whose entries are independently drawn from a Gaussian distribution with zero mean and unit variance. The

orth() operator computes the left singular values of its argument, resulting in an orthonormal basis. An analogous procedure is used to

find QEx,rnd. To sample one random alignment index, Arnd, we then compute:

Arnd =
Tr QT

Obs;rndQEx;rndQ
T
Ex;rndQObs;rnd

� �
d

: (Equation 6)

We chose d = 10 for this calculation. The empirical alignment index for execution activity projected onto observation PCs is

AEx�on�Obs =
Tr QT

ObsCExQObs

� �
Pd

i = 1li
; (Equation 7)

where li are the sorted eigenvalues of CEx. We can also compute the analogous quantity,

AObs�on�Ex =
Tr QT

ExCObsQEx

� �
Pd

i = 1li
: (Equation 8)

To perform a statistical test, we sampled 10,000 random Arnd to build a chance distribution. We then compared the values of

AObs-on-Ex and AEx-on-Obs (empirical alignments) to these 10,000 values. We observed that AObs-on-Ex and AEx-on-Obs were statistically

significant larger than the average Arnd. We computed a p value by calculating the number of Arnd samples larger than the empirical

alignment index.

Subspace optimization
We performed three different subspace optimization problems in this study. Here, we describe each one in detail. All subspace opti-

mization was performed using the manopt toolbox for MATLAB (Boumal et al., 2014). When necessary, we discuss how wemodified

the optimization problem to be used with the toolbox.

Optimization 1: orthogonal subspaces

In our first optimization, we sought to find an orthogonal observation subspace QOrth�Obs˛ℝN3dObs and an orthogonal execution

subspace QOrth�Ex˛ℝN3dEx that were mutually orthogonal, i.e. QOrth-Obs t QOrth-Ex or equivalently, QT
Orth�ObsQOrth�Ex = 0. This is

an optimization over the Stiefel manifold, which is a submanifold of real n 3 k matrices with orthogonal columns, i.e.,

Mk ℝnð Þ= X˛ℝn3k : XTX= Ik
� �

, where Ik is the k 3 k identity matrix. Our objective was to find QOrth-Obs and QOrth-Ex such that

the observation and execution variance, respectively, were maximized. To solve this optimization problem, we let CObs and

CEx denote the covariance matrices for observation and execution activity, respectively. We let lObs
i and lExi denote the ith eigen-

value of CObs and CEx respectively, where the eigenvalues are in sorted order, i.e., liRlj for i%j. Thus, we solved the optimi-

zation problem:

maximize
Q˛MdObs +dEx

ℝNð Þ
Tr QT

Orth�ObsCObsQOrth�Obs

� �
PdObs

i = 1 l
Obs
i

+
Tr QT

Orth�ExCExQOrth�Ex

� �
PdEx

i = 1l
Ex
i

(Equation 9)

where Q= QOrth�Obs; QOrth�Ex½ �˛MdObs +dEx
ℝN
� �

. This optimization therefore finds mutually orthogonal subspaces, QOrth-Obs

and QOrth-Ex, that maximize the proportion of variance captured in the observation and execution subspaces respectively. As

in the text, we note that while QOrth�Obs and QOrth�Ex are constrained to be orthogonal, it need not be the case that

QT
OrthObsCExQOrthObs = 0 and vice versa, since CEx has variance in dimensions beyond the top dEx dimensions. Rather, this quantity

is a measure of the degree to which observation and execution activity are orthogonal. The four quantities reported (observation or

execution) variance projected onto (observation or execution) subspaces were:

(a) Observation on observation :
Tr QT

Orth�ObsCObsQOrth�Obsð ÞPdObs

i = 1
lObs
i

(b) Observation on execution :
Tr QT

Orth�ExCObsQOrth�Exð ÞPdEx

i = 1
lObs
i

(c) Execution on observation :
Tr QT

Orth�ObsCExQOrth�Obsð ÞPdObs

i =1
lExi

(d) Execution on execution :
Tr QT

Orth�ExCExQOrth�Exð ÞPdEx

i =1
lExi
e4 Cell Reports 32, 108006, August 11, 2020
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Optimization 2: Exclusive subspaces

In our second optimization, we sought to find a subspaceQExcl�Ex˛MdEx
ℝN
� �

, that maximized the variance of one context subject to a

constraint that the variance in the other context was less than a small number, v. By maximizing the variance of one context (e.g.,

observation) while constraining the other (e.g., execution), this quantifies an exclusive subspace describing variance in only one

context. For example, an exclusive subspace for observation activity would capture observation variance but negligible execution

variance. Thus, we sought to solve the optimization problem:

maximize
QExcl�Ex˛MdEx

ℝNð Þ
Tr QT

Excl�ExCExQExcl�Ex

� �
XdEx

i =1
lExi

subject to
Tr QT

Excl�ExCObsQExcl�Ex

� �
XdEx

i = 1
lObs
i

%v

In Figure 4B, we show results where v = 0.01. The objective function and inequality constraint are convex; therefore, the constraint

can be incorporated as a log barrier and the overall objective remains a convex optimization problem (Boyd and Vandenberghe,

2004). Hence, we solved the following optimization problem:

maximize
QExcl�Ex˛MdEx

ℝNð Þ
Tr QT

Excl�ExCExQExcl�Ex

� �
PdEx

i = 1l
Ex
i

+
1

t
log v �

Tr QT
Excl�ExCObsQExcl�Ex

� �
PdEx

i = 1l
Obs
i

0@ 1A (Equation 10)

where t >0 isahyperparameter.Note that as x/0+, log(x)/�N. That is, the log-barrier functionwill become infinitewhen the inequality

constraint is not satisfied. This log function thus incorporates a ‘‘barrier’’ into the objective function. As t grows larger, the log-barrier will

asymptotically have a value of 0 if the inequality constraint is satisfied, and�N if it is violated. Therefore, as long as the optimization is

initializedwith a parameter setting in the feasible set, the output of the optimizationwill remain feasible. To initialize the optimization, we

choose QExcl-Ex to be the dEx eigenvectors corresponding to the smallest eigenvalues of CObs. This subspace QExcl-Ex minimizes the

varianceofdatawithcovarianceCObs. If the initialQExcl-Ex lies in the feasible set,weproceedwith theoptimization.However, sometimes

even thisQExcl-Ex does not satisfy the constraint; in this case, the optimization problem has no solution.

We repeatedly annealed the value of t, so that t / (1 + b)t for b ˛ (0,1) at each step. We chose b = 0.01. We iteratively solved the

optimization problem until convergence. We note that the variance captured will depend on the time length of the neural population

activity used to find each subspace. In the main text, we found the observation and execution exclusive subspaces from neural ac-

tivity from 100 ms to 1000 ms after target onset. We chose this interval, in part, because we wanted to quantify observation and

execution subspaces for the entire duration of the trial. We obtain the same conclusions if we only analyze activity from 200 ms

to 500 ms after target onset.

Optimization 3: Shared subspaces

We sought to find a shared subspace that was orthogonal to the exclusive subspace defined in optimization 2. Intuitively, this opti-

mization thus asks: in dimensions orthogonal to the observation and execution exclusive subspaces, what subspace maximizes the

variance of both observation and execution activity? This definition presumes that no shared computation occurs in exclusive sub-

spaces. Hence, we sought to find a shared subspace QShared˛MdShared
ℝN
� �

that maximized the sum of projected observation and

execution variance, subject to the constraint that QShared is orthogonal to the observation and execution exclusive subspaces.

maximize
QShared˛MdShared

ℝNð Þ
Tr QT

SharedCExQShared

� �
XdShared

i = 1
lExi

+
Tr QT

SharedCObsQShared

� �
XdShared

i = 1
lObs
i

subject to
QSharedtQExcl�Obs

QSharedtQExcl�Ex

where QShared is the shared subspace, while QExcl-Obs and QExcl-Ex are the exclusive subspaces for observation and execution,

respectively. In order to fit this problem into the manopt framework, we created a new, related optimization problem. We first intro-

duced a subspace QExcl0 = orth([QExcl-Obs, QExcl-Ex]), where orth() finds the orthonormal basis of a subspace. This QExcl0 spans the

subspace [QExcl-Obs,QExcl-Ex] and has dimension dExcl0 % dExcl-Ex + dExcl-Obs, since there is no guarantee from optimization 2 that

QExcl-Obs and QExcl-Ex are orthogonal. Our requirement is that QShared t QExcl0 . Thus, we solve the following optimization problem

to find a Q= QExcl;QShared½ �˛MdExcl0 +dShared
ℝN
� �

instead, as follows:

maximize
Q= QExcl ;QShared½ �˛MdExcl0 +dShared

ℝNð Þ
Tr QT

ExclQExcl0

� �
+
Tr QT

SharedCExQShared

� �
PdShared

i = 1 lExi

+
Tr QT

SharedCObsQShared

� �
PdShared

i = 1 lObs
i

: (Equation 11)
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Since Q is optimized over the Stiefel manifold, by construction QExcl t QShared and the objective function forces QExcl z QExcl0.

Neuron subspace contribution
As in the previous section, we define a subspace Q˛Md ℝN

� �
, with its ith row being a row vector wi˛ℝ13d . We define the

neuron activity matrix to be X˛RN3TC. Further, we define Xi˛RN3TC as neuron i’s activity, by setting every entry of X to zero

except for ith row. We define neuron i’s ‘‘subspace contribution,’’ ci , to this subspace Q to be the square root of the variance

of the projected neuron’s activity in the subspace divided by the neuron’s total variance, times the neuron’s mean firing rate (in

both observation and execution contexts), which we denote FR. This equivalent to taking the magnitude of the weights and

multiplying it by the firing rate, which has previously been used to quantify neuron contributions to a projection (Nuyujukian

et al., 2014).

ci =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr QTXiX

T
i Q

� �
Tr XiX

T
i

� �
vuut

$FR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr XiX

T
i QQT

� �
Tr XiX

T
i

� �
vuut

$FR=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xið Þkwi k 2

var xið Þ

s
$FR= kwi k $FR (Equation 12)

where var(xi) is neuron i’s total variance, and ||wi||
2 is the squared sum ofQ’s ith row. The reason for multiplying by FR is that neurons

having small firing rate should have small contribution to a subspace, even though its activity might be aligned with this subspace, as

described in Nuyujukian et al. (2014).

Variance explained for neuron subclasses
Weperformed the optimizations prior describedwith incongruent and congruent neuron populations. In these analyses, we restricted

the subspace optimization to congruent or incongruent neurons. We note that because the number of congruent and incongruent

neurons are not necessarily equalized, to bootstrap, we performed subspace optimization multiple times, each time sampling equal

amounts of incongruent or congruent neurons with replacement. Concretely, we sampled 0.9 times the minimum number of

congruent neurons and incongruent neurons. It is worth noting that due to a low number of neurons, we were sometimes unable

to find a subspace that satisfied the exclusive subspace optimization constraint. If this was the case, we were unable to use this data-

set for this analysis and therefore excluded it. In our analyses, dataset L140829 was excluded for this reason.

Quantifying dynamics
In this work, we quantified the degree of tangling and the degree of rotational dynamics in the neural population. All results were

analyzed using a time window 200 ms to 500 ms after target onset, during which the monkey was either reliably executing or

observing movement. Both analyses followed methods developed in prior work. We performed tangling analysis, as described by

Russo et al. (2018). Tangling quantifies how consistent the velocity of the neural trajectory is at a location in state space.

Q tð Þ=max
t
0

k _xt � _xt
0 k 2

k _xt � _xt
0 k 2 + ε

(Equation 13)

where xt is the neural trajectory at time t, _xt is its temporal derivative. ||$ || is the Euclidean norm, and ε is a small constant to prevent

dividing by zero. If tangling is larger, then dynamics are less consistent. In this work, the subspaces for tangling analysis are all 4D,

consistent with the dimensionality for subspace optimizations. When comparing tangling of the congruent versus incongruent sub-

populations, we used PCA to reduce dimensionality to 4D.

Second, we performed jPCA analysis, as described by Churchland et al. (2012). jPCA finds a projection of the neural activity that

captures rotational structure in the data. We first reduced the dimensionality of data to 6 using PCA. We reported coefficients of

determination in predicting future neural activity using only the current neural activity via a dynamics matrix learned via jPCA

_Xred =MskewXred (14)

or linear regression,

_Xred =MXred: (15)

For statistical tests comparing jPCA R2 between congruent and incongruent neurons, we used the same bootstrap used to calculate

PD difference, but on z-scored R2
skew.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are presented as mean, mean ± 95% confidence interval, mean ± SD, or median ± 25% and 75% percentile, based on analysis

and is indicated in the figure legends or main text. Single neuron statistical analysis are described in the ‘‘Single neuron firing rate

statistics’’ Method section. Bootstrap tests were performed by performing a shuffle analysis 1000 times with replacement. Hartigan’s

dip test was used to perform a bimodality test. We used the Wilcoxon rank-sum test was used to compare difference in tangling.

Statistically significant differences were tested at p < 0.05, unless otherwise noted.
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