
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] We mention that the mechanisms

in the RNNs should be interpreted as hypothesis for biological mechanisms
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Since our

work involves understanding deep neural networks, it inherits the broader positive and
negative societal impacts of deep learning.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] All details
required to implement our experiments are described in the Appendix, and we have
provided the code to our implementation.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 2.1 and appendix

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See footnote on page 2

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

Appendix

4.1 Clustering of attractor states

We constructed a similarity matrix, S, to quantify the topological structure of attractor states. This
section details how S, was computed. Because all RNNs across all learning rules and hyperparameter
choices studied in this work always instantiated a single attractor state for large input values, we
focused on attractor states near zero as this is where we observed the greatest degree of variation
between RNNs. Therefore, we compute all the attractor states for static input values between −0.02
and +0.02 (−0.03 and 0.03 for RDM task). Specifically we examined 20 non-zero static inputs in
this range along with the zero input to give a total of 21 static input conditions, for each context.
We examined only a subset of attractor states since different RNNs instantiate a variable number of
attractor states for small inputs. Specifically, we chose to examine the m = 10N attractors with the
smallest absolute value, where N corresponds to the number of contextual inputs for the task. For the
RDM task, we set N = 1.

We rank ordered the m attractors in order of increasing absolute value. For each of these attractor
states, we solved for its nearest n = 3N neighbors in RNN state space (R50) among all attractors
found (not just the smallest m) using the L2 distance. For each RNN we constructed a topological
embedding vector, v, based on the nearest neighbors for each of the m attractor states. The first
element of the topological embedding vector, v0, is the static input associated with the first attractor
examined (which is always zero). The next n − 1 elements of this vector are the static inputs
associated with the n nearest neighboring attractors in RNN space. The next element at position n is
the next attractor state examined, and the following n− 1 entries are the static inputs associated with
its nearest neighboring attractor states. More generally, each element vij for n ∈ {0, 1, 2, ...,m} will
be the static input associated with the ith attractor state examined and {vin, ...,v(i+1)n−1} are the
static inputs associated with the nearest neighboring attractors of the ith attractor state. Therefore, for
each RNN we constructed a topological embedding vector, v of length mn = 30N2.

We then constructed the similarity matrix, S, for a population of p RNNs by stacking the topological
similarity vectors. Therefore, this similarity matrix was a p ×mn matrix. Since each topological
similarity vector contributed a row in the similarity matrix, if for all RNNs, the relative topological
ordering of attractors by static input values was the same, then all rows would be the same and RNNs
would be tightly clustered. Alternatively, if the topological arrangement of attractors varied greatly
between RNNs, the similarity matrix would exhibit heterogeneity.

Silhouette cluster analysis was used to quantify the degree of clustering among attractor topologies
from different RNNs. The ground truth lables were given by the RNNs learning rule (or specific
hyperparameter being analyzed). MDS was used only for visualizing the amount of clustering among
RNN attractor topologies.

Trained Models

Table 1 lists all the models that were trained for this study. We trained a total of 1, 760 RNNs across
the study.

Integration strategies for CDI task

Figure 6 depicts the transient and stable integration strategies observed in RNNs trained to do the
CDI task with either low (input variance set to 0.1) or high (input variance set to 1.0) input noise.

Visualization of Attractors for N-CDI Tasks

Figure 7 depicts the attractor structures for example RNNs trained on the 3,4,5, and 6-dimensional
CDI tasks. All these attractor structures exhibit multiple attractors associated with the zero input
and a single attractor associated with non-zero inputs. As additional input dimensions are added to
the task, the network instantates additional attractor states associated with those contexts. Note that
Figure 7 exaggerates attractor overlap when there are more contexts, since they are only visualized in
2D.

14

Transient integration (noise var = 0.1)

Stable integration (noise var = 1.0)

a

Time (ms)

Ou
tpu

t a
cti

va
tio

n
inputs on inputs off

inputs on

inputs off

d

0

2

-2

0 500

0

2

-2
0 500

b

e

PC

PC

1

2

PC

PC

1

2

0.5

 -0.5

0.2
-0.2

line of slow dynamics
for each context

one stable zero attractor
for each context

context 2

context 1

context 2

context 1

multiple stable zero attractors
for each context

inputs on

c

inputs off

Dynamics drive trajectory
to attractor

Trajectory transiently relaxes to
single zero attractor

f
inputs on

Trajectory stably relaxes to one of
multiple zero attractors

context 1
context 1

context 1

context 1

context 2
context 2

context 2context 2

inputs off

Figure 6: Two different input strategies based on input noise for CDI-task. Panels (a-c) illustrate
transient integration, while (d-f) is for stable integration. (a) RNN output activation for positive
(red) and negative (blue) inputs. After inputs turn off, the RNN output slowly decays. (b) Attractor
topology for a transient RNN. Dots are attractors. Attractors corresponding to each of the two
contexts are outlined. Numbers next to attractors in context one correspond to the setting of the input,
ut. There was a single attractor for ut = 0 in both contexts. There was also a line attractor of slow
dynamics under zero input, denoted by gray x’s, for each context. (c) When the inputs turn on, the
RNN state is driven towards attractors (blue, yellow dots). When the input turns off, the trajectories
relax to a single attractor corresponding to zero input. This decay is relatively slow along a line
attractor of slow dynamics. (d) RNN output activation for a RNN with stable integration. After the
inputs turn off, the RNN output maintains a stable value. (e) Attractor topology for each context in a
stable RNN. Now, at an input of zero (purple), there are multiple attractors in each context. (f) After
the dots turn off, the trajectory stably relaxes to one of multiple attractors corresponding to zero input,
thereby holding the memory of the input indefinitely.

3 CDI Attractors 4 CDI Attractors 5 CDI Attractors 6 CDI Attractors

PC1
PC2

context #0 (C0)

context #2 (C2) context #1 (C1)
C3

C2

C1
C0

C0 C1
C2

C3
C4

C5

C0 C1
C2

C3

C4

+0.5

-0.25
0

+0.25

-0.5

Figure 7: Example attractor structures for an RNN trained on the N-CDI tasks. For each N-CDI
task, attractors are instantiated for each of the N contexts. Within each these contexts, attractors
associated with zero input are duplicated.

15

Table 1: Breakdown of all RNNs traiend for this study

Task & Learning Rule Number of RNNs V=1.0 V=0.75 V=0.50 V=0.25 V=0.10

RDM BPTT 130 50 20 20 20 20
RDM GA 130 50 20 20 20 20
RDM H 130 50 20 20 20 20
RDM FF 130 50 20 20 20 20
CDI BPTT 160 50 20 50 20 20
CDI GA 160 50 20 50 20 20
CDI H 130 50 20 20 20 20
CDI FF 130 50 20 20 20 20
3-CDI BPTT 90 20 0 50 0 20
3-CDI GA 50 0 0 50 0 0
4-CDI BPTT 90 20 0 50 0 20
4-CDI GA 50 0 0 50 0 0
5-CDI BPTT 90 20 0 50 0 20
5-CDI GA 50 0 0 50 0 0
6-CDI BPTT 90 20 0 50 0 20
6-CDI GA 50 0 0 50 0 0
RDM BPTT (ReLU) 50 50 0 0 0 0
CDI BPTT (ReLU) 50 50 0 0 0 0
DNMS BPTT 20
DNMS GA 20
DNMS H 20
DNMS FF 20
RDM BPTT (single neuron) 20
RDM GA (single neuro) 20
CDI BPTT (single neuro) 20
CDI GA (single neuro) 20
Total 1920

Delayed Non-Match To Sample Task

In addition to the integration tasks discussed in main text, we also investigated the attractor topologies
and network representations following training on a working memory task. To do this, we trained
RNNs to perform the delayed non-match to sample (DNMS) task as described in [18] using the four
different learning rules. The network was presented with two input channels which are set to zero
at all times except for two stimulus periods (stimulus 1: 0− 200ms and stimulus 2: 400− 600ms).
During the stimulus periods, one of the two input channels is set to one. The stimuli may occur in the
same channel or different channels. The RNN is trained to output +1 when both stimuli occur in the
same channel and −1 when the stimuli occur in different channels.

Consistent with our findings for the integration tasks, we found that RNNs trained with different
learning rules may result in networks with distinct representations (Figure 8b) but similar attractor
structures (Figure 8c). In contrast to the integration tasks, which had a continuous space of physio-
logical attractors, this task only has three attractor states: two attractors each corresponding to one
of the channels being turned on and one attractor corresponding to both channels off. We noticed
three clusters in the attractor MDS because our clustering methods are sensitive to slight variations
in distances between these three neighboring attractors. This does not mean there are three distinct
dynamical mechanisms. All these networks exhibited a similar dynamical motif during the task,
depicted in Figure 8e. Rather, the attractor MDS method will find distinct clusters depending on
which of the attractors are closest to each other, which may vary even within a learning rule as in
Figure 8c. This is a limitation of the attractor MDS clustering we used. Nevertheless, we see there is
no significant clustering of attractor structure by learning rule (silhouette score: 0.01 for attractor
MDS).

16

SVCCA Distances SVCCA MDS Attractor MDS

GA
BPTT

HEB
FF

0.3

0

B
PT

T
G

A
H

EB
FF

BPTT GA HEB FF

Sillhouette Score: 0.15

Sillhouette Score: 0.01

RNN Behavior Stimulus OffSimulus OnExample Attractor
Structure

0 700Time (ms)

RN
N

Ou
tpu

t

-1

1

both channels off

channel 1 on
channel 2 on

non-match

match

Stimulus OffSimulus On

a b c

d e2e1 e3 e4 e5

PC1
PC2

Figure 8: Representations and attractor structures for RNNs trained on the DNMS task. (a)
SVCCA distances between RNNs on the DNMS task following training with one of the four learning
rules. (b) MDS clustering of representations and (c) and attractor structures reveals that there are
some differences in the representations learned by networks trained with different learning rules
but attractor structures remain similar (SVCCA silhouette: 0.15, attractor silhouette: 0.01). (d)
After training, RNNs are able to succesfully discriminate between match and non-match trials. (e1)
Example attractor structure for a network trained on the DNMS task. (e2) During the first stimulus,
the RNNs state moves towareds one of two attractors depending on which channel is turned on. (e3)
When the stimulus is turned off, RNNs decay back to a common attractor. (e4), during the second
stimulus, RNNs take different trajectories depending on which channel gets turned on relative to
which channel was on during the first stimulus. (e5) After the second stimulus ends, RNNs decay
back to a common fixed point, however non-match and match conditions start their decay from
different regions of state space, yielding different decay trajectories.

Activation function affects dynamical mechanism for simple but not complex tasks

Because our results suggested RNNs become more invariant to design choice as task complexity
grows, we also tested the effect of activation function on attractor topology and representational
geometry following training with the RDM and CDI tasks. Specifically, we trained RNNs with
BPTT using either a saturating (1 + tanh) activation function or a non-saturating (ReLU) activation
function.

Following training on either the RDM or CDI task, we tested RNNs by providing them a pulse of
inputs. We found that RNNs trained to perform the RDM task using the tanh activation function
consistently instantiated the stable integration mechanism while RNNs that used a ReLU activation
consistently demonstrated transient integration dynamics (Fig 9a,c). However, networks trained
to perform the CDI task maintained a bistable integration mechanism regardless of the choice of
activation function (Fig 9b,d). To quantify the similarity of dynamical mechanism between RNNs, we
clustered the network attractor states, where the activation function was used as the labels. Networks
that used tanh and ReLU formed distinct attractor clusters for the RDM task but not the CDI task
(9e,f), consistent with the observed differences in dynamical mechanism. Representations also formed
distinct clusters for different activation functions following training on the RDM but not the CDI
task. Therefore, we find that this is further evidence that for more simple tasks RNNs are likely
more sensitive to design choice while for more complex tasks RNNs become more invariant to
design decisions. Namely, it appeared the activation function was sufficient to impact the dynamical
mechanism in the case of a simple task (RDM) but not a more complicated decision-making task
(CDI).

17

RDM (tanh)

 E
xa

m
pl

e
at

tra
ct

or
 st

ru
ct

ur
es

Attractor TopologyRepresentational Similarity

CDI (tanh)RDM (ReLU) CDI (ReLU)

0.53 0.026

context 1

context 2 context 2

context 1

Silhouette: 0.22 0.01

Ex
am

pl
e t

es
t t

im
e

 p

er
fo

rm
an

ce

RDM Networks CDI Networks
Representational Similarity

tanh

ReLU

Attractor Topology

1.5

0

2

-2
0

0 500
Time (ms) 0 500 0 500 0 500

2

-2

0

3

-3

0

-1.5

a b

c d

e f

Figure 9: Effect of Activation Function on Dynamical Mechanism. (a) Topology of attractors for
RNNs trained on RDM task with tanh (left) and ReLU (right) activation functions. (b) Attractors
for RNNs trained on the CDI task are also depicted with a tanh (left) and ReLU (right) activation
function. (c, d) Network outputs during pulsed experiments reveals different activation functions
lead to different integration mechanisms on the RDM task but not the more complex CDI task. (e,
f) Attractor topologies and representational geometries form distinct clusters based on activation
function (attractor sillhouette score: 0.22, representational geometry sillhouette score: 0.53) for the
RDM task. However, RNNs trained on the CDI task have overlapping attractor structure (sillhouette
score: 0.01) and representaions (sillhouette score: 0.026).

BPTT FFHebGA
Sillhouette Score: 0.58 0.48

Trained
Untrained

0.60 0.18

Figure 10: Representational similarities between RNNs before and after training on the RDM
task. For all four learning rules, we observe that there is a signficiant degree of clustering between
trained (yellow) and untrained (blue) RNNs. In particular, trained RNNs have distinct representations
from untrained RNNs as evidenced by a silhouette score greater than 0.

SVCCA of untrained RNNs

As discussed by [14], canonical correlation analysis can sometimes suggest that trained and untrained
RNNs have more similar representations than RNNs trained with different design choices. We
investigated the representational similarities detected with SVCCA among RNNs before and after
training on the RDM task. We found that untrained RNNs had representations that were distinct form
those of trained RNNs on the RDM task across all four learning rules (Figure 10). Therefore, the
RNN representations we inferred with SVCCA are influenced by the training process and unlikely to
be similar to each other due to initialization.

Single neuron output RNNs

One potential concern is that Hebbian trained RNNs used a single recurrent neuron as output while
the other learning rules used a linear readout over all of the neurons as output. To control for this, we
trained an additional 20 RNNs using both BPTT and GA learning rules to perform the RDM and
CDI tasks using a single neuron as output (Figure 11). We excluded FF from this analysis because
we observed training difficulties for this analysis, likely due to the additional soft constraints that
FF places on recurrent neurons. When comparing RNNs from these three learning rules following
training, we find that our results are consistent with those originally reported in Figure 1. In particular,

18

R
D

M
C

D
I

Attractor MDSSVCCA Distances

BPTT

GA

HEB

Sillhouete Score: -0.03

Sillhouete Score: 0.14Sillhouete Score: 0.05

Sillhouete Score: -0.05

SVCCA MDS
0.3

0

BP
TT

GA
H

BPTT GA H

Figure 11: Representations and attractor structures for RNNs that use a single neuron as
output. For the RDM task, we see that both the representational geometries and attractor topologies
do not show any significant clustering by learning rule.

we observed that attractor topologies are largely invariant to the choice of learning rule for both the
RDM and CDI tasks. Additionally, we obtained similar Silhouette scores for both representations
and attractor structures.

19

	Introduction
	Methods
	Model Architecture
	Tasks
	Learning Rules
	Finding RNN attractor states
	SVCCA to assess similarity of RNN activity
	Multi-dimensional scaling to visualize attractor topology and representational geometry

	Results
	RNN attractor topologies are universal across learning rules
	Increasing task complexity results in more individualistic representations, but not dynamics
	Task input noise can alter RNN integration strategies
	Attractor topologies are robust to input noise as tasks become more complex

	Discussion
	Clustering of attractor states

