
Journal of Neural Engineering

PAPER

An artificial intelligence that increases simulated brain–computer
interface performance
To cite this article: Sebastian Olsen et al 2021 J. Neural Eng. 18 046053

 

View the article online for updates and enhancements.

This content was downloaded from IP address 149.142.26.11 on 09/08/2021 at 22:46

https://doi.org/10.1088/1741-2552/abfaaa


J. Neural Eng. 18 (2021) 046053 https://doi.org/10.1088/1741-2552/abfaaa

Journal of Neural Engineering

RECEIVED

16 November 2020

REVISED

18 March 2021

ACCEPTED FOR PUBLICATION

22 April 2021

PUBLISHED

13 May 2021

PAPER

An artificial intelligence that increases simulated brain–computer
interface performance
Sebastian Olsen1,4, Jianwei Zhang1,4, Ken-Fu Liang1, Michelle Lam1, Usama Riaz2

and Jonathan C Kao1,3,∗
1 Department of Electrical and Computer Engineering , University of California, Los Angeles, CA 90024, United States of America
2 Department of Computer Science , University of California, Los Angeles, CA 90024, United States of America
3 Neurosciences Program, University of California , Los Angeles, CA 90024, United States of America
4 These authors contributed equally to this work
∗ Author to whom any correspondence should be addressed.

E-mail: kao@seas.ucla.edu

Keywords: artificial intelligence, brain–computer interface, shared control, motor cortex, decoder, brain-machine interface

Supplementary material for this article is available online

Abstract
Objective. Brain–computer interfaces (BCIs) translate neural activity into control signals for
assistive devices in order to help people with motor disabilities communicate effectively. In this
work, we introduce a new BCI architecture that improves control of a BCI computer cursor to type
on a virtual keyboard. Approach. Our BCI architecture incorporates an external artificial
intelligence (AI) that beneficially augments the movement trajectories of the BCI. This AI-BCI
leverages past user actions, at both long (100 s of seconds ago) and short (100 s of milliseconds ago)
timescales, to modify the BCI’s trajectories.Main results.We tested our AI-BCI in a closed-loop
BCI simulator with nine human subjects performing a typing task. We demonstrate that our
AI-BCI achieves: (1) categorically higher information communication rates, (2) quicker ballistic
movements between targets, (3) improved precision control to ‘dial in’ on targets, and (4) more
efficient movement trajectories. We further show that our AI-BCI increases performance across a
wide control quality spectrum from poor to proficient control. Significance. This AI-BCI
architecture, by increasing BCI performance across all key metrics evaluated, may increase the
clinical viability of BCI systems.

1. Introduction

Brain–computer interfaces (BCIs) aim to restore
communication for those with paralysis by trans-
lating neural signals into control signals to use a
computer. We focus on cursor control BCIs, where
neural signals are decoded to control the 2D position
and/or velocity of a computer cursor. The neural sig-
nals may be intracortical (Taylor et al 2002, Hoch-
berg et al 2006, Kim et al 2008, Ganguly et al 2009,
Gilja et al 2012, 2015, Kao et al 2015, Pandarinath
et al 2017, Nuyujukian et al 2018), electroenceph-
alographic (Wolpaw and McFarland 2004, McFar-
land et al 2010, Edelman et al 2019), or electrocor-
ticographic (Leuthardt et al 2004, Chao et al 2010,
Wang et al 2013, Rouse et al 2016, Degenhart et al
2018, Silversmith et al 2021). To be clinically viable,
BCIs should achieve high performance levels that

overcome their costs and risks. To date, significant
advances in BCI performance have been achieved by
decoder optimization, which optimizes the neural-to-
movement algorithm (Kim et al 2008, Li et al 2009,
2011, Gilja et al 2012, Sussillo et al 2012, 2016b, Kao
et al 2015, Shanechi et al 2017), and neural adapt-
ation, where the user’s neural activity changes to
optimize control (Ganguly et al 2009, 2011, Orsborn
et al 2014, Sadtler et al 2014, Shenoy and Carmena
2014, Silversmith et al 2021). In current state-of-the-
art BCIs, users can neurally control a cursor to type
on a virtual keyboard at peak rates of up to 40 charac-
ters perminute (cpm) (Pandarinath et al 2017). These
BCIs have also enabled control of an Android tablet
for multipurpose uses, including checking and com-
posing e-mail, web chat, web browsing, video sharing,
music streaming, and browsing news (Nuyujukian
et al 2018).
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The goal of this study is to design and simu-
late a new BCI architecture that can achieve cat-
egorically higher typing performance in a comple-
mentary and synergistic fashion: by incorporating
an external artificial intelligence (AI) agent to aid
continuous movements. Specifically, the AI agent is
designed to increase BCI performance by helping
to guide the cursor efficiently to desired target loc-
ations and stopping over them. This idea uses the
framework of ‘shared control.’ In shared control, non-
neural information, including contextual environ-
ment information, past actions, or the current task
state, are beneficially combined with neural informa-
tion to increase overall BCI system performance.

Prior literature has explored this concept in a
variety of ways. Non-invasive BCIs based off of elec-
troencephalography have used structure in English
language and robotic system control properties as
priors to improve classification (Bell et al 2008, Speier
et al 2012, 2014). Another system, HARMONIE, util-
ized neural data to decode a 3D endpoint and engaged
a robotic arm to complete a grasping movement once
the robotic armwas close enough to the target (Katyal
et al 2014, McMullen et al 2014). This shared control
occurred in separate phases: a neurally driven phase,
and a robotic grasping phase. Downey, Muelling,
and colleagues extended this system significantly,
employing shared control for grasping, where the
robotic arm and neural decode were linearly weighted
according to proximity to the object (Downey et al
2016, Muelling et al 2017). They reported signific-
antly quicker grasping trials with shared control,
with users also perceiving shared control to be less
difficult (Downey et al 2016, Muelling et al 2017).
This important work demonstrated that shared con-
trol produces more stable and efficient grasp trials,
although they noted that shared control produced
slower peak movement speeds (Downey et al 2016).
These results suggest that while shared control should
intuitively increase performance in all areas, design-
ing a shared control BCI that categorically improves
BCI control requires careful attention.

Whereas prior shared control studies emphasized
classification or grasping, our present study focuses
on improving continuous BCI control at every time
step, beneficially augmenting the trajectories of the
BCI endpoint. Our approach uses a deep learning
based AI unit with a potential field to guide the
trajectories of a computer cursor on screen to dif-
ferent targets. We call this system an AI-BCI, illus-
trated in figure 1(b) (compare to a traditional BCI in
figure 1(a)). Our AI design was guided by three key
design goals. (1) Beneficial at both high- and low-
performance BCIs. A well-designed AI unit should
augment BCIs irrespective of the baseline perform-
ance level. This requires a balance between AI and
user control. For example, if the AI is too powerful,
it may improve low-performance control but be dele-
terious at high-performance control. (2) Faster and

more efficient ballistic and fine movements. The AI
should be capable of making movements faster and
more efficient. Further, the AI should improve both
large (ballistic) movements, such as moving across
the workspace, as well as precise (fine) movements,
such as dialing in to select a target. (3) Agnostic
to recordingmodality. Although neural information
could potentially be used to increase AI performance,
we chose to design an AI that does not use any neural
information to improve performance. In thismanner,
the AI unit could be combined with BCIs across dif-
ferent recording modalities. We test our method on
a simulator for intracortical BCIs (Cunningham et al
2011), where synthetic spikes are generated via a Pois-
son process velocity tuning (PPVT) model (Georgo-
poulos et al 1986, Cunningham et al 2011) and are
decoded using a velocity Kalman filter (VKF) (Wu
et al 2006, Kim et al 2008, Gilja et al 2012, Hochberg
et al 2012). Our AI unit is also designed to perform
all computations within 1 ms on a standard x86 pro-
cessor, so that it can be used with the fastest reported
intracortical BCIs (Shanechi et al 2017).

We achieve these design goals through a deep
learning based AI for BCI cursor control. Our AI-BCI
is applied to a typing task, where the BCI user con-
trols a virtual cursor to type on a keyboard (Pandar-
inath et al 2017), although principles of the AI-BCI
ought extend to other cursor control and selection
tasks. We call this task the ‘Keyboard Task,’ and we
use an optimized keyboard proposed by Pandarinath
and colleagues (Pandarinath et al 2017), shown in
figure 1(c). Our design is based on the insight that
there are two types of information which must be
accounted for to beneficially improve the cursor’s tra-
jectory. First, there are long-term temporal depend-
encies that extend over multiple trials. This reflects
that selections extending over previously typed words
and even sentences (i.e. several tens of trials), will
influence the probability of the next character selec-
ted. To model these long-term dependencies, we use
long short-term memory (LSTM) recurrent neural
networks (RNNs), which have been demonstrated in
natural language processing (NLP) to achieve state-
of-the-art character and word prediction (Karpathy
et al 2015, Merity et al 2018, Radford et al 2019).
Second, there are short-term temporal dependencies
that influence cursor trajectory within a trial. Move-
ments towards some targets and away from oth-
ers should influence future cursor movements. For
example, if the user has already typed ‘WHE’, highly
probable next characters include ‘R’ and ‘N’. If the
user is moving away from ‘R’ and towards ‘N’, then
the AI shared control system should cause the tra-
jectory to move more strongly towards ‘N.’ We model
this short-term dependency based on a potential field
(Borenstein and Koren 1989, Rimon and Koditschek
1992, Canny and Lin 1993, Aigner and McCarra-
gher 1997), so that within a trial, the cursor is drawn
towards targets based on proximity.
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Figure 1. (a) A traditional BCI system. (b) AI-BCI architecture: the traditional BCI is augmented by an external AI unit.
(c) Keyboard configuration. (d) AI unit architecture. The AI unit takes prior selected characters and outputs a distribution over
next probable characters (‘char probs’). The delete key probability is shown in light blue. Additional mechanisms to assign charge
to the delete key, as well as hovering over targets, adjust the charge associated with each selectable character. Positive charges are
shown on the keyboard in green, negative in red, with sizes corresponding to magnitude. (e) Character RNN architecture. The
character RNN comprises three long short-term memories (LSTMs), each with 512 hidden units. The output of the last LSTM
passes through a fully connected layer, which leads to softmax probabilities over next characters. (f) The character RNN achieves
0.58 accuracy in predicting the next character when it is early in the word (first four characters) and 0.75 accuracy for characters
late in the word (5th and later characters).

We detail our augmenting AI-BCI for cursor con-
trol below and we show, in BCI simulation, that it
achieves our three stated goals, improving perform-
ance in all reported control metrics across poor to
proficient control levels. As discussed further below,
we demonstrate our results in a previously valid-
ated BCI simulation framework Cunningham et al
(2011). This BCI simulator generates synthetic neural
activity through a tuning model and Poisson process,
which has been previously used to optimize a velo-
city KF (VKF) in agreement with macaque intracor-
tical BCI experiments. We therefore also used a VKF
in this study. We trained the simulator using recor-
ded intracortical spiking activity from a macaque,
and show that it achieves similar performance to an
intracortical BCI. Importantly, a simulator frame-
work enables validation that incorporates a BCI user’s
closed-loop control strategy, a critical component of
BCI control (Chase et al 2009, Koyama et al 2010,
Cunningham et al 2011, Merel et al 2016, Willett
et al 2016, 2019). It also enables more rapid optim-
ization of the AI-BCI. This proof-of-concept study

demonstrates that AI-BCIs are a promising approach
to further increasing BCI performance in a comple-
mentary fashion to existing methods.

2. Methods

Our methods are organized as follows. In section 2.1,
we discuss the BCI simulator used to evaluate our
AI-BCI architecture, including an overview, fol-
lowed by details on how we generated artificial
neural signals (neural encoder) and decoded them.
In section 2.2, we discuss our AI-augmentation sys-
tem. In section 2.3, we discuss the task and closed-
loop experiments.

2.1. Closed-loop simulator
2.1.1. Closed-loop simulation overview
The BCI simulator is a closed-loop, non-invasive,
experimental setting where human motor actions are
encoded into neural signals that are subsequently
decoded by a BCI decoder. As closed-loop systems,
BCIs rely on feedback. BCI decoders are imperfect,
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and when a BCI user observes a decoded BCI out-
put, the user updates his or her motor commands to
better achieve the goal. A body of literature shows it
is important to account for this closed-loop feedback
to accurately simulate BCI performance (Chase et al
2009, Koyama et al 2010, Cunningham et al 2011,Wil-
lett et al 2016, 2019, Zhang and Chase 2018). While
decoding previously collected neural data (called ‘off-
line decoding’) can be informative, it critically does
not incorporate the user’s ‘online’ response to feed-
back (Chase et al 2009, Koyama et al 2010, Cunning-
ham et al 2011, Merel et al 2016, Willett et al 2016,
2019). Offline decodingmay therefore result in incor-
rect conclusions (Chase et al 2009, Cunningham et al
2011, Willett et al 2016). This has led to BCI simu-
lators that aim to predict BCI decoder performance
while incorporating human control policies through
experiments or modeling (Cunningham et al 2011,
Willett et al 2016, 2019). In this study, we use the BCI
simulator proposed by Cunningham and colleagues,
where a user interacts with a simulated BCI in real-
time. We chose this simulator because (1) it incor-
porates a human-in-the-loop, thereby accounting for
the closed-loop nature of BCI systems, and (2) this
simulator accurately predicted BCI decoder perform-
ance as a function of bin width, and was validated
through comparison to intracortical BCI experiments
with macaques (Cunningham et al 2011).

The input to the BCI simulator was the user’s
hand velocity, and the output was the computer
cursor’s decoded velocity. As described in more
detail below, the user’s hand velocity was encoded
into synthetic neural activity according to a cosine
tuning Poisson process model (Georgopoulos et al
1986, Dayan and Abbott 2001, Cunningham et al
2011, Zhang and Chase 2018, Liang and Kao 2020).
The parameters of this neural encoding model were
learned from intracortical recordings from macaque
primarymotor cortex (M1) and dorsal premotor cor-
tex (PMd). This synthetic neural activity was then
decoded via a VKF, trained using the same intra-
cortical recordings. The output of the VKF was a
decoded cursor velocity. The BCI cursor position
was updated by integrating this decoded cursor velo-
city. In this manner, the user controlled the simu-
lated BCI in real-time. When the decoded BCI out-
put did not follow the user’s initial intentions, the
user made corrective kinematic movements, reflect-
ing a changing motor policy in response to observing
the imperfectly decoded BCI output. These changing
motor commands would then be encoded into syn-
thetic neural activity and subsequently decoded. The
simulated BCI updated every 25 ms, enabling rapid
feedback on timescales consistent with intracortical
BCIs.

To obtain robust estimates of simulated BCI
performance, we performed all experiments in this
study with nine human subjects, each using the BCI

simulator. All human experimental protocols were
approved by UCLA’s Institutional Review Board, and
all participants provided informed consent. Experi-
ments were implemented using the Linux Comodular
Realtime Interactive Computation Engine (Mehrotra
et al 2018).

2.1.2. Encoder
We used the neural encoding model reported by
Cunningham et al (2011), the ‘Poisson process velo-
city tuning’ (PPVT) model. The encoder’s input was
the user’s hand velocity, and its output was the syn-
thetic spiking activity encoding the user’s kinemat-
ics. To generate synthetic neural activity, we modeled
each artificial neuron’s firing rate with a preferred dir-
ection (PD) cosine tuning model (Georgopoulos et al
1986), scaling the firing rate based on the speed of the
reach. The firing rate of the kth neuron is calculated
as:

λ
(k)
t = (λ(k)

max −λ(k)
o )c(k) ·ut +λ(k)

o . (1)

In this model, ut was the BCI user’s 2D hand velo-
city at time t used to compute the kth neuron’s fir-

ing rate at time t, λ(k)
t . Synthetic neuron k’s PD was

represented by a unit vector in 2D Cartesian space,

c(k) ∈ R2, while λ
(k)
o was a baseline firing rate, and

λ
(k)
max was the maximum firing rate in the PD model

when the reach angle was aligned to the PD. To fit the

parameters (λ(k)
o ,λ

(k)
max,c(k)), we used data fromwhere

a macaque performed a center-out-and-back task,
with Utah electrode arrays implanted in PMd and
M1, described further in Gilja et al (2012), Kao et al
(2015).Wemodeled the activity of 192 total recording
electrodes from two Utah electrode arrays. The para-
meters were found using the techniques of (Geor-
gopoulos et al 1982), where firing rates were aver-
aged from 200 to 500ms after trial initialization. Kin-
ematics were recorded using overhead optical posi-
tion tracking (Polaris Vega, Northern Digital, Water-
loo, Ontario). We scaled ut so that firing rates, when
decoded, produced reasonable trajectories.We gener-
ated binned spike counts by treating the PPVTmodel
firing rate as the underlying rate of an inhomogen-
eous Poisson process. We drew spikes counts with
rates lower bounded by 0, i.e. with rate max(0,λt)
because neural firing rate cannot be negative. The
equation to generate binned spike counts, yt , is:

y(k)t |λ(k)
t ∼ Poisson

(
max(0,λ(k)

t )
)
. (2)

Here, y(k)t were the kth neuron’s binned spike counts
in a 25mswindow. In thismanner, the neural encoder
ultimately took the user’s 2D hand velocity, ut, and
generated binned spike counts for 192 neurons yt =
{ykt }k=1,...,192 every 25 ms.
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2.1.3. Decoder
We decoded synthetic neural activity, yt, into 2D
cursor velocity, x̂t, using a VKF (Wu et al 2003, Kim
et al 2008). We modeled a linear dynamical system
where the state was cursor kinematics, xt, and the
observation was neural activity yt. yt was a 192D vec-
tor containing the binned spike counts of 192 artificial
neurons at time t, and xt was a 2D vector representing
the cursor’s x- and y-velocity. The VKF estimated the
state of the dynamical system, x̂t, given the observed
spike counts yt, using the Kalman filter algorithm.
The dynamical system is:

xt = Axt−1 +wt (3)

yt = Cxt + qt, (4)

where wt ∼N (0,W) and qt ∼N (0,Q) are Gaus-
sian noise. The parameters of this model, θ =
{A,C,W,Q}, were inferred using maximum-
likelihood from the same macaque dataset used
to train the PPVT encoder. Further details of the
maximum-likelihood solution are detailed in Wu
et al (2006), Kim et al (2008), Gilja et al (2012) and
Kao et al (2014). We subsequently used the Kalman
filter algorithm to recursively infer the state, x̂t, from
the encoded neural activity, yt, and the previously
decoded state x̂t−1.

2.2. AI-augmentation system
Our goal is to demonstrate an augmentative AI to
improve cursor control trajectories. The most com-
mon use of a computer cursor is to move to a tar-
get of interest (such as an icon, a link, or a button
within an application) and click it. In the Keyboard
Task, the targets of interest are English characters.
An AI-augmenting system would help aid in mov-
ing the cursor to these characters, and subsequently
select them. As mentioned earlier in section 1, there
is information at both long-term and short-term
timescales to model in the cursor selection task. The
long-term dependencies reflect that characters over
the past words or sentences influence the probabil-
ity of the next character selected. We modeled these
long-term temporal dependencies using LSTMs. The
short-term dependencies reflect how movements
towards some targets should increase the probability
of the target being selected. We modeled these short-
term dependencies by using a potential (or charge)
field.

2.2.1. Modeling long-term dependencies
We use long-term dependencies to refer to how task
actions over the last tens of trials impact the user’s
next actions. In the Keyboard Task, past words and
sentences influence the estimate of the next character.
Shannon showed that a larger character history (e.g.
over 100 characters in the past) significantly increases
human prediction of the next character (Shannon

1951). Prior work in NLP has shown that LSTMs
are particularly effective at performing character
(Karpathy et al 2015, Merity et al 2018) and word
prediction (Merity et al 2018, Radford et al 2019).
Bengio et al (2003) showed that neural networks
can achieve better perplexity than traditional n-gram
models on word-level text prediction. Researchers
have also shown that LSTMs achieve better perform-
ance on character level text generation than other
models, including the HMM and n-gram (Zaremba
et al 2014, Adouane et al 2018). We therefore pre-
ferred LSTMs over both HMM and n-gram models
to maximize performance over next character predic-
tion.

Our architecture, the ‘Character RNN’, uses a cas-
cade of three LSTMs, followed by a fully connec-
ted neural network, and finally a softmax output to
obtain probabilities of next target selections. This is
diagrammed in figure 1(e). Our training dataset was
the Penn Tree Bank dataset (Marcus et al 1993). This
dataset comprises 2499 articles from the Wall Street
Journal with a total vocabulary of 10 000 words and
a character vocabulary of 50. To be consistent with
the character vocabulary used in our keyboard task,
wemodified the dataset by replacing punctuation like
periods, commas, and colons with spaces. Further,
any numeric characters were removed from the data-
set. This dataset modification would not be necessary
if the user’s keyboard included numeric characters
and punctuation, unlike the onewe used (figure 1(c)).

The details of our character RNN architecture are
as follows. Each LSTM layer has a hidden layer size
of 512. In training, we provided the prior 128 char-
acters to seed the hidden state of the LSTM before
evaluating its performance on the next character, as
Shannon reported that performance in next charac-
ter prediction increases even at 100 character his-
tory in humans (Shannon 1951). The output of the
final LSTM layer was input to a fully connected layer,
which output scores for 50 characters in the PTBdata-
set. We used a softmax layer to turn these scores into
character probabilities.We then extracted the 26 char-
acter and space’s probabilities from the 50 character
PTB vocabulary and re-normalized each probability
so that they sum to 1. We found that this led to bet-
ter performance than re-training the PTB removing
the remaining 23 characters. We trained the Char-
acter RNN model using stochastic gradient descent
with the Adam optimizer with learning rate of 0.001
(Kingma and Ba 2014). In between all layers, we used
dropout with 50% of neurons dropped to regularize
the network. We trained the model on the training
set for 1000 epochs and achieved a top one training
accuracy of 0.66 in predicting the next character. The
top one testing accuracy was 0.60. These results are
close to the accuracy achieved by humans (Shannon
1951). In general, we found that we could use as little
as 10% of the PTB dataset and still achieve a top one
testing accuracy of over 0.52. The model parameters
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were chosen in such a way that the Character RNN
had sufficient expressivity, and yet had a forward pass
that could be executed in under 1 ms to aid the fast-
est latency BCIs. More powerful language models,
such as GPT-2 (Generative Pre-trained Transformer),
require much more processing time (Radford et al
2019). On a standard x86 architecture, we found that
one step inference of GPT-2 required, on average,
900ms. These latencies are longer than required for
BCI systems.

2.2.2. Modeling short-term dependencies
To model short-term dependencies in our task, we
used a potential field (also called a charge field). The
potential field has been used in robotics for autonom-
ous obstacle avoidance (Borenstein and Koren 1989,
Rimon and Koditschek 1992, Canny and Lin 1993)
and approaching targets (Aigner and McCarragher
1997). In the potential field, artificial charges repel
or attract an agent according to Coulomb’s law, so
that the velocity is proportional to the strength of
the charge and inversely proportional the squared
distance between charges. For example, in obstacle
avoidance, an agent and obstacle may be coated with
the same charge, so that they repel each other. We
adopted this idea for AI-BCI by assigning the cursor
and targets to have opposite charges, attracting each
other. The cursor was assigned a negative charge. Tar-
gets were either assigned a positive charge based on
how probable the target was, as inferred via the char-
acter RNN. More likely next characters were assigned
larger positive charges, more strongly attracting the
cursor.

Our baseline potential field uses Coulomb’s law to
modify the velocity of the cursor. The velocity of the
cursor due to the potential field is therefore:

vcf,baseline =
Nk∑
i=1

αqiqcursor
d2i

, (5)

where Nk is the number of targets, qi is the charge
assigned to target i, qcursor is the charge assigned to
the cursor, α is a proportionality constant, and di is
the distance between target i and the cursor. In our
baseline implementation, the charge qi is equal to the
probability of that target under the Character RNN
(which we also refer to as the LSTM), pi. Without loss
of generality, we set qcursor = 1.

We found that this baseline potential field sig-
nificantly degraded BCI performance. In particular,
we observed anecdotal performance issues: (1) when
the LSTM was confident in incorrect characters, it
was very difficult to select a different character, (2)
many lowprobability characters, in sum, could exert a
noticeable effect on the cursor’s trajectory to the cor-
rect target, and (3) it was difficult to assign appro-
priate charge to the delete key, which was not pre-
dicted by our LSTM. Together, this baseline poten-
tial field AI-BCI was frustrating to use, and would

occasionally fail: at times, the user would not be able
to type any correct characters, resulting in a typing
rate of zero characters per minute. To address these
performance issues, we made changes to the baseline
potential field. Our changes address these three per-
formance issues, which are detailed further below. In
brief, we (1) designed a ‘hover mechanism’ to over-
come LSTM overconfidence, increasing the charge
for characters where the cursor hovered, (2) assigned
negative charge to low probability characters so that
they were repulsive, and (3) designed a mechanism
to increase the charge of the delete key if the prior
selected character had a low Character RNN probab-
ility. We did not perform a rigorous hyperparameter
optimization, and therefore our system performance
may be further increased with a rigorous hyperpara-
mater search.

2.2.2.1. Overcoming LSTM overconfidence
While the LSTM achieves reasonable performance in
next character prediction, it is far from perfect. First,
LSTMaccuracy is relatively low at the start of theword
than the end of the word (figure 1(f)). The LSTM is
therefore more likely to be overconfident in an incor-
rect character at the start of a new word, while its pre-
dictions in themiddle and end of a word are relatively
better. To address this, we scaled all charges, qi, based
on the number of characters since the beginning of a
new word (i.e. the last selection of a space key). The
scaling was according to a logistic function, given by:

γ(s) =
1

1+ e−rs
, (6)

where s is the number of characters typed since the
beginning of a new word, and r is the growth rate.
This reduced the effect of LSTMoverconfidence at the
start of a word.

Second, when the LSTM was overconfident in an
incorrect character, it was difficult to select any other
character. The user should be able to override the AI
when its inference of the user’s intent is incorrect. To
build this into the potential field, we allowed a por-
tion of the charge on each character to be dynam-
ically reassigned based on how long the user hovers
over the charge. As with charge assigned by neural
network predictions, the amount of charge assigned
by the hover charge system is finite. In our closed-
loop simulator, which runs at 1000 Hz, we increased
the charge on whichever target the user was hover-
ing on every millisecond. After the charge on a target
was incremented, all charge in the hover charge sys-
temwas normalized to sum to 1. The increment of the
charge added to a key every millisecond was a hyper-
parameter, with larger increments allowing the user
to shift the charge assigned by the hover charge sys-
tem around the keyboard more quickly. We chose a
value of 0.0005 for the charge increment. We denoted
the cumulative charge due to hovering, for target i, as
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hi. Together, these changes can be summarized in the
following equation:

vcf =
Nk∑
i=1

αγ(s)pi +βhi
d2i

. (7)

Here, α and β are hyperparameters that allowed us
to adjust the balance between the RNN and hover
charges, pi is the LSTM probability for target i, and
γ(s) is the logistic function of equation (6). Overall,
this system effectively acted to give the usermore con-
trol over which target would be selected, by increasing
the charge on targets in the cursor’s vicinity.

2.2.2.2. Charge adjustment for trajectory improvement
In the baseline implementation of the potential field,
the charge of target i was equal to its LSTM probabil-
ity, qi = pi. We observed that this could result in trials
where it was hard to select the correct character, even
though the RNN was confident in the next character.
Because the force of the charge is inversely propor-
tional to the distance to each target squared, nearby
incorrect targets could exert significant influence on
the cursor’s movement. To address this, we assigned
a slight negative charge to low probability characters,
so that they repelled the cursor away from low prob-
ability targets. We did so by taking the charge of the
character at the 15th percentile, and subtracting that
charge fromall characters with less charge.Wewanted
these negative charges to be relatively small with two
considerations in mind: (1) to avoid overwhelming
repulsion in the charge field, and (2) so that in the
event that the user wanted to select a low probability
target, it was possible through the hover mechanism.

2.2.2.3. Delete key charge assignment
The delete key does not occur in the PTB training set.
We therefore assigned charge for the delete key in two
ways. First, charge for the delete key can be accumu-
lated through the hover mechanism. Second, we also
add an increment of charge to the delete key depend-
ing on the probability of the previously typed key. If
there were k keys with higher predicted probabilities,
we add k increments of charge to the delete key, up
to a maximum of k= 5. The delete key increment is a
hyperparameter.

After calculating the velocity due to the potential
field, we performed a vector addition with the velo-
city from the VKF to arrive at the final cursor velo-
city. We performed an anecdotal ablation experiment
sweep, finding that the AI-BCI outperformed the T-
BCI as long as theAI incorporated theCharacter RNN
and the hover mechanism. Although ablating the
delete key charge, negative charge, and logistic scal-
ing of probabilities may decrease AI-BCI perform-
ance, we observed that the AI-BCI still outperformed
the T-BCI. The hyperparameters used in our study are
described in table 1.

Table 1.Hyperparameters used in this study.

Hyperparameter Value

α 13
β 10
r 1.3
Hover increment (per 1 ms) 0.0005
Delete key increment 0.0005

2.3. Closed-loop experiments
2.3.1. Task description
In all experiments, we evaluated performance on the
Keyboard Task used to quantify communication rates
in monkey BCIs (Nuyujukian et al 2017) and human
BCIs (Pandarinath et al 2017). In this task, the user
controls a 2D computer cursor on a virtual keyboard
to write text. We used the configuration of the key-
board used by Pandarinath et al 2017), which modi-
fied the location of keys to reduce the distance the user
needed to move the cursor to type text in the English
language. This keyboard is illustrated in figure 1(c).
When performing the task, the user used the sim-
ulated BCI to control the position of a cursor on a
computer. To select a key, the user had to hold the
cursor over the key for 750 ms contiguously. If the
user selected the incorrect key, they would have to
select the delete key to undo their incorrect selec-
tion. If the user never corrected a mistakenly typed
character, we excluded it from character per minute
calculations. The keyboard was 20.2 cm× 16.9 cm,
in a 41.1 cm× 32.9 cm workspace. The work-
space was bounded so the cursor could not move
offscreen.

2.3.2. Use of BCI simulator in closed-loop experiments
We briefly comment on the use of the BCI simu-
lator, and its baseline performance, in closed-loop
experiments. We first emphasize that Cunningham
et al (2011) previously demonstrated that this experi-
mental BCI simulator performs comparably to intra-
cortical BCIs controlled by monkeys. They showed
that the failure rates between the BCI simulator
and intracortical BCIs were similar, while the simu-
lator achieved slightly better time-to-target andmean
integrated-distance to target (compare their figures 4
and 5). Critically, Cunningham et al (2011) showed
that BCI simulation predicted similar performance
trends as in intracortical BCIs when varying the bin
width of the decoder, unlike offline analysis of previ-
ously recorded activity (their figures 6 and 7). From
these results, they concluded that BCI simulation can
inform BCI system design.

In addition to the established validation of this
BCI simulation framework from Cunningham et al
(2011), we compared the performance of our BCI
simulator to intracortical BCI experiments per-
formed by themonkey whose neural activity was used
to fit our encoder. Although our tasks differed, with
our keyboard task having longer hold times than in
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intracortical experiments, we were able to compare
the trajectories of our BCI simulator to intracortical
BCI experiments. We computed the path efficiency
(PE) (Williams and Kirsch 2008), defined as:

PE=
straight line distance between targets

BCI cursor traveled distance
× 100%,

(8)

over experimental blocks of velocity KF control in
both BCI simulation and intracortical BCIs. PE,
which takes on values between 0 and 100%, quanti-
fies similarity in trajectory efficiency en route to the
target. BCI simulation with a velocity KF had a PE of
47.1% while macaque intracortical BCI control had
a PE of 50.7%, indicating that trajectory paths were
similar.

We also compared bitrate between BCI simula-
tion and intracortical BCI.Wepreviously reported the
relationship between bitrate and the characters typed
per minute in a typing task on a task with targets laid
out on a grid (Nuyujukian et al 2017). We found that
the typing rate in words per minute was approxim-
ately 2.7× the bitrate in bits per second (bps). As
we later report, our BCI simulator VKF achieved on
average 22.7 characters per minute, which is approx-
imately 4.1 words per minute (at 5.5 characters per
word). Using this conversion, our BCI simulator
approximate bitrate is 1.52 bps. In an intracortical
BCI controlled by the same monkey, we estimated his
achieved to be bitrate of 1.32 bps, after setting hold
times to be 750ms (instead of 450ms in experiments).
These results show that the BCI simulator and intra-
cortical BCI performance was quantitatively sim-
ilar. Finally, video of the BCI simulator qualitatively
resembles intracortical BCI control of a VKF (see sup-
plementary videos (available online at stacks.iop.org/
JNE/18/046053/mmedia)). Together, these comparis-
ons and prior validation by Cunningham et al (2011)
provide confidence that the BCI simulation system is
reasonable for simulating BCI control.

2.3.3. Experimental protocol and conditions
We performed the following experiments with a total
of N = 9 subjects, evaluating the performance of the
AI-BCI vs a traditional BCI without AI augmentation
(T-BCI). To acclimate users to the BCI simulator and
provide practice, each subject was given a warmup
session where they typed a provided sentence using
(1) direct cursor control (cursor controlled by hand),
(2) the T-BCI under a BCI simulator, (3) the T-BCI
under impaired control, with 6 important neurons
dropped, and (4) the AI-BCI. Following this warmup,
we performed experimental block comparisons of the
AI-BCI vs T-BCI under no perturbations (baseline), a
noise perturbation (AWGN), and a neuron dropping
perturbation.

Each experimental blockwas 7min long, compar-
ing AI-BCI vs T-BCI performance. We evaluated the

performance of AI-BCI and T-BCI for approximately
3.5min each. We did not observe any statistically sig-
nificant performance increase over the course of an
experimental block, suggesting there was no learn-
ing occurring. In every experimental block, the order
of AI-BCI vs T-BCI was randomized (i.e. either AI-
BCI or T-BCI was evaluated first, randomly). In each
block, the subject was instructed to type a randomly
selected sentence from a pool of previously selected
sentences from New York Times articles. The length
of the sentence was chosen so that it could not be
completed within 3.5 min. We subsequently analyzed
the performance of the AI-BCI vs T-BCI in each of
these experimental blocks. After each block, the user
received a break, typically 30–60 s, although if desired,
the user was allowed a longer rest. In the baseline
block, we measured AI-BCI vs T-BCI performance
without any perturbations. We also asked the user
to perform the baseline block under direct cursor
control to measure the possible peak performance
without a BCI.

Following the baseline block, we performed
experiments where simulated BCI performance was
impaired in one of two ways. The first perturbation
was a noisy perturbation to the encoding of a par-
ticular velocity in the neural encoder. We performed
this perturbation by adding white Gaussian noise to
the user’s velocity, which was subsequently processed
by the BCI simulator encoder to produce simulated
spikes. We intentionally perturbed the user’s hand
velocity, and not the neural spikes directly, so that
perturbations were correlated across neurons. In this
manner, the perturbation could be viewed as a noisy
encoding of velocity in the neural population. Addit-
ive Gaussian noise was added with differing stand-
ard deviations to both the x and y velocity input to
the encoder. The noise were drawn from zero mean
Gaussian distributions with standard deviations of
(128.5, 257.0, 385.5, 514.1) cm s−1. These noise levels
were chosen to significantly impair the decoded out-
put. We performed experimental blocks comparing
the AI-BCI and the T-BCI at all noise levels. The
ordering of the blocks was randomized. Further, in
each block, a new random sentence was chosen. As
mentioned before, the ordering of AI-BCI and T-BCI
was also randomized in each block.

The second perturbation was a neuron drop-
ping perturbation, which has been previously used
to quantify robustness of closed-loop BCIs (Sussillo
et al 2016a). Following our prior study (Sussillo
et al 2016a), we quantified the mutual information
between each neuron’s recorded activity and the tar-
get identity during a center-out-and-back task, using
the method described in Fan et al (2014). This gave a
ranking of how informative the neurons were of reach
direction. In the neuron dropping perturbation, we
subsequently performed experimental blocks were we
dropped the (3, 6, 9, 12, 15) next most informative
neurons after the most informative neuron, as the
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Figure 2. AI-BCI performance across varying performance levels. (a) AI-BCI performance vs T-BCI performance on the
Keyboard task under the neuron dropping perturbation. Performance is measured in typed characters per minute (cpm). Error
bars are s.e.m. (b) Same as (a), but for the simulated noise perturbation. Noise standard deviation units are cm s−1.

most informative neuron was essential for maintain-
ing any control over the cursor. We subsequently fol-
lowed the same experimental protocol as the AWGN
experiment, randomizing neuron dropping blocks
and assessing the performance of the AI-BCI vs T-
BCI.

3. Results

We tested the AI-BCI vs T-BCI in the Keyboard Task
previously reported by Pandarinath and colleagues
(Pandarinath et al 2017). In the Keyboard Task, the
user controls a cursor’s position and velocity, much
like a computer mouse, to type on a virtual key-
board. This task has no strict timing rules as in dis-
crete selection tasks; rather, the user has autonom-
ous control over the cursor to perform the task when
desired. If the user hovers over any target for 750
contiguous milliseconds, then that character is selec-
ted. Our results are organized as follows. Section 3.1
presents results demonstrating an AI-BCI signific-
antly increases typing rate across both proficient and
poor control conditions. Section 3.2 details how the
AI-BCI improves both the ballistic and fine aspects of
the cursor’s trajectory. Finally, section 3.3 details that
the AI-BCI results in cursor trajectories with better
path efficiency.

3.1. The AI-BCI significantly increases typing rate
in both proficient and poor control conditions
We performed experiments with nine human sub-
jects, who controlled the AI-BCI and the T-BCI in
randomized blocks. In each block, the BCI user was
instructed to type a sentence randomly selected from
a collection of articles in the New York Times using
both the AI-BCI and T-BCI. The order of the AI-BCI
and T-BCI was randomized every block, ruling out
order effects. We also did not observe any perform-
ance improvement over the course of the block, ruling
out learning effects (p> 0.05, performance at start
vs end of block, Wilcoxon signed-rank test). Further
details of our experimental paradigm are discussed in
section 2.3.3. Unless specified otherwise, p values are
calculated using the two-sided Wilcoxon signed-rank

test, and we consider p values less than 0.05 to be stat-
istically significant.

We evaluated the performance of the AI-BCI and
the T-BCI on the Keyboard task. Across all nine sub-
jects, the average T-BCI performance was 22.7± 1.13
(mean± s.e.m.) characters per minute (cpm). This
simulated BCI performance is consistent with prior
experiments (see section 2.3.2). When using the
AI-BCI, users on average achieved 26.7± 1.90 cpm
(higher than T-BCI, p= 0.0109). Averaging the per-
cent improvement across all nine subjects, we saw a
17.1%±4.88% increase in performance (p= 0.0152,
figure 2(a), left panel under ‘0 dropped’). This is
important because, for example, if the AI was too
strong, then it may impede proficient BCI control.
Our results show that this was not the case. An
example side-by-side comparison of T-BCI and AI-
BCI control is shown in supplementary video 1. Fur-
ther, performance metrics for each of the nine sub-
jects is reported in supplementary tables. These res-
ults indicate that our AI-BCI architecture improves
proficient BCI control.

We next evaluated whether AI-BCI improves per-
formance during poorer BCI control. To degrade BCI
performance, we first performed a neuron dropping
perturbation used in prior studies to test BCI robust-
ness (Stavisky et al 2015, Sussillo et al 2016a). The
most important neurons to the decoder, determined
by mutual information (Fan et al 2014), had their fir-
ing rate set to zero, mimicking those neurons being
lost during the experiment (see section 2). While T-
BCI performance degraded as neurons were dropped,
we observed that the AI-BCI consistently increased
performance at all performance levels, with an aver-
age increase of 5.08 cpm across all drop conditions
(p< 0.01, figure 2(a), left panel). This increase in typ-
ing rate was sustained across all neuron drop levels:
the trend of AI-BCI vs T-BCI typing rate is approxim-
ately linear and shifted up relative to the unity line in
figure 2(a). At the lowest T-BCI performance, the AI-
BCI on average increased typing rate by 120%±41.6%
(p= 0.0109). A video comparing T-BCI and AI-BCI
performance at this level is shown in supplementary
video 2.
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We also performed an additional perturbation
to assess if the AI-BCI increased performance under
qualitatively different degraded control. We per-
turbed BCI control by adding noise to the velo-
city input of the neural encoding model, with levels
chosen to significantly impede performance (meth-
ods). Under this perturbation, the AI increased BCI
performance across all levels, as shown in figure 2(b).
A side-by-side video comparison is shown in supple-
mentary video 3. Across all perturbation conditions
and averaging across all nine users, we found that the
T-BCI achieved 6.58 cpm while the AI-BCI achieved
13.1 cpm (p< 0.01). At the lowest T-BCI perform-
ance, the AI-BCI achieved on average a 815%±302%
increase in performance (p= 0.0209, denoted by red
dots and break in figure 2(b)). Together, these results
demonstrate that across a spectrum of poor to pro-
ficient control, the AI-BCI can dramatically increase
the information throughput (typing rate) of a BCI
system.

3.2. The AI-BCI improves ballistic and fine cursor
control
How does the AI-BCI augment cursor trajectories?
We quantified the AI-BCI’s effects on large move-
ments across the workspace (ballistic control) and
small movements to acquire a target (fine control)
through two metrics. For fine control, we quantified
the ‘dial-in’ time (DIT).DIT is the time betweenwhen
the cursor first and last enters the boundary of the
eventually selected key (Gilja et al 2012). This is illus-
trated in figure 3(a). If the user hovers over and suc-
cessfully holds (selects) the target after first enter-
ing the target, then DIT is zero (figure 3(a), Traj. 2
in red). If the cursor exits the target and later re-
enters, then DIT is positive (figure 3(a), Traj. 1 in
blue). DIT therefore quantifies how difficult it is to
stop and hold over a target once the user has reached
it, reflecting fine control (Gilja et al 2012). For bal-
listic control, we quantified the time to first acquire
(TFA) the target. TFA is the time from the last tar-
get selection to the first time the cursor enters the
boundary of the eventually selected key. This quan-
tifies how quickly the user can move the cursor to the
correct target location, reflecting ballistic control over
the workspace (Gilja et al 2012). This is illustrated in
figure 3(b).

We quantified DIT across all experimental con-
ditions. Across all neuron dropping conditions, the
AI-BCI had smaller DIT, indicating more precise fine
control (p< 0.01), as shown in figure 3(c). In the
most severe conditions, the mean DIT for the T-
BCI was 5028 ms ± 1376 ms, as opposed to 713 ms
± 145 ms for AI-BCI (p< 0.01). It is noteworthy
that AI-BCI dial-in time appeared to plateau around
700 ms, even when the T-BCI had DIT around 5 s,
as shown in figure 3(c) (right-most panel). These res-
ults were robust for the simulated noise perturbation
as well, with the AI-BCI achieving significantly lower

DIT than the T-BCI across all conditions (p< 0.01).
Finally, under no perturbation, the AI-BCI achieved
significantly smaller DIT (AI-BCI: 234 ms± 33.0 ms
vs T-BCI: 553 ms ± 39.6 ms, p< 0.01, figure 3(d),
left most red bars). These results indicate that the
AI-BCI helped improve fine cursor control. This is
likely because of accumulated positive charge over the
selected target, attributed to both the Character RNN
and hover mechanism. Near larger charges, the same
neural signals produce smallermovements, leading to
more precise and fine cursor movements.

While the AI-BCI’s potential field mechanism
helps with finer movements, there is a concern that
charges on incorrect targets may have a deleteri-
ous effect on ballistic movements, slowing the TFA.
We therefore quantified TFA across all perturba-
tions and without perturbation. We observed that
the AI-BCI on average had smaller TFA across all
drop conditions, as shown in figure 3(e), indicating
faster ballistic reaches to the desired target. These dif-
ferences, however, were only significant up to and
including the 9 neurons dropped condition, where
we observed the greatest improvement (AI-BCI: 1236
ms ± 66.7 ms, T-BCI: 1755 ms ± 99.7 ms, aver-
age improvement 45.9%±10.1% p< 0.01). At 12
(15) neurons dropped, two (four) subjects out of
nine had higher TFA for the AI-BCI than the T-
BCI (p= 0.0858, p= 0.441 for 12 and 15 neurons
dropped, respectively). In the simulated noise per-
turbation, we observed consistent results shown in
figure 3(f), with only the most severe noise perturba-
tion having insignificant differences (p< 0.01 for all
conditions except the most severe, where p= 0.858
with three of nine subjects having higher TFA for the
AI-BCI). Finally, under no perturbation, the AI-BCI
achieved significantly smaller TFA (AI-BCI: 788 ms
± 25.1 ms vs T-BCI: 1076 ms ± 35.3 ms, p< 0.01,
figure 3(f), left most red bars).

Together, these results demonstrate that the AI-
BCI significantly improves fine control across poor
to proficient control. Further, the AI-BCI generally
improves ballistic control, except potentially when
BCI performance has degraded so significantly that
potential benefit from the AI is overcome by inaccur-
ate control.

3.3. AI-BCI cursor trajectories are more efficient
We next examined whether AI-BCI cursor trajector-
ies were more efficient. A potential AI-BCI concern is
that incorrect characters with high probabilities could
result in inefficient trajectories towards the correct
target. Example trajectories for the T-BCI and AI-
BCI are shown in figure 4 under (a) no perturba-
tions, (b) a moderate neuron drop perturbation, and
(c) a simulated noise perturbation. We observed that
AI-BCI trajectories were generally straighter on each
trial. This improved efficiency was noticeable under
proficient control (figure 4(a)) as well as perturbed
control (figures 4(b and c)).
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Perturbation 1: dropping neurons

Perturbation 2: simulated noise

AI-BCI improves fine control (dial-in time)

e
Perturbation 1: dropping neurons

AI-BCI improves ballistic control (time to first acquire)

f Perturbation 2: simulated noise

a Fine control (dial-in time) b Ballistic control (time to first acquire)
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Figure 3. AI-BCI improves fine and ballistic cursor control. (a) Illustration of dial-in time (DIT). Traj. 1 (blue) enters the desired
target (H) but due to poor fine control, exits and re-enters, leading to DIT= 300 ms. Traj. 2 (red) enters, and with fine control, is
able to acquire the target, leading to DIT= 0 ms. (b) Illustration of time to first acquire (TFA) the target. Traj. 1 (blue) enters the
desired target (U) at TFA= 600 ms. Although it exits and re-enters at 1000 ms, this does not affect the TFA. Traj. 2 (red) enters
the desired target more quickly at TFA= 550 ms. (c) T-BCI (left bars) vs AI-BCI (right bars) dial-in time across all levels of the
neuron drop perturbation. Gray lines are individual subjects; bars are the mean across subjects. Right most scatter plot shows
T-BCI dial-in time vs AI-BCI dial-in time, for each dot corresponding to an experimental block for each subject. (d) Same as
(c) but for the simulated noise perturbation. (e and f) Same as (c and d) but for time of first acquisition (TFA) of the target.

We quantified this increase in efficiency via path
efficiency (PE), which measures the straightness of
the cursor’s path to the target (Williams and Kirsch
2008) (see equation (8)). At proficient control, the T-
BCI achieved an average PE of 47.1%±0.839% while
the AI-BCI 62.1%±0.876% (p< 0.01, figure 5(b),
left red bars for 0 cm s−1 perturbation). Further,
these results were upheld at all perturbation levels

in all experimental blocks across all subjects. Under
neuron dropping, AI-BCI PE was higher than T-BCI
PE at all neuron drop conditions (p< 0.01), with an
improvement of almost 2× at themost severe neuron
drop condition (AI-BCI: 46.0% vs T-BCI: 24.2%, p<
0.01). These results are shown in figure 5(a). Under
simulated noise, AI-BCI PE was also higher across
all conditions (p< 0.01), as shown in figure 5(b).
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Figure 4. AI-BCI trajectories are qualitatively more efficient. (a) Under no perturbation, the BCI user types ‘ACTIVITY.’ Green
arrow denotes start of trajectory, and purple arrow the end of the trajectory. The trajectory is darker for later trials. The AI-BCI
(red) has straighter trajectories than the T-BCI (blue). (b) Same as (a), but under perturbation with six dropped neurons. The
typed word is ‘THREE.’ (c) Same as (a), but under the simulated noise perturbation. The typed word is ‘INCREASED.’

Figure 5. AI-BCI increases trajectory path efficiency (PE). (a) T-BCI (left bars) vs AI-BCI (right bars) path efficiency across all
levels of neuron drop perturbations. Gray lines are individual subjects; bars are the mean across subjects. Right most scatter plot
shows T-BCI path efficiency vs AI-BCI path efficiency, with each dot corresponding to an experimental block for each subject. (b)
Same as (a) but for the simulated noise perturbation.

Together, these results demonstrate that the AI-BCI
improves the trajectories of the BCI between targets.

4. Discussion

Our results testing an AI-BCI in BCI simulation
demonstrate that there are considerable performance

gains to be realized by including augmentative
external AI into BCI systems. For cursor control in a
typing task, our AI-BCI enabled subjects to take faster
andmore efficient trajectories to each target, improve
fine control to select the target, and overall increase
typing rate. Further, these results were robust across
a wide performance range, from proficient to poor
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control levels. We also note that our AI did not make
use of any neural signals, being recording modality
agnostic. Hence, this AI-BCI approach could be com-
bined with both high-performance intracortical BCIs
(Hochberg et al 2006, Gilja et al 2015, Pandarinath
et al 2017), as well as lower performance systems
driven by ECoG or EEG (Wolpaw and McFarland
2004, LaFleur et al 2013, Edelman et al 2019, Silver-
smith et al 2021). Further, our advances are comple-
mentary to other techniques used to increase BCI per-
formance, including decoder optimization (Gilja et al
2012, Sussillo et al 2012, 2016a, Kao et al 2015, 2017,
Shanechi et al 2017) and neural adaptation (Gan-
guly et al 2009, 2011, Orsborn et al 2014, Sadtler
et al 2014, Shenoy and Carmena 2014). Future work
should assess and optimize AI-BCIs with intracortical
or non-invasive BCI experiments.

Our AI-BCI benefited from advances in deep
learning, where our character RNN (based on
LSTMs) was able to achieve accurate next charac-
ter prediction. Our AI likely benefited from super-
ior deep learning based architectures, which achieve
state-of-the-art character and word prediction in
NLP tasks (Merity et al 2018, Radford et al 2019).
We note that prior studies also used prediction meth-
ods, including hidden Markov models and neural
networks, to aid in the selection of next characters
or complete words in discrete P300 spellers (Cecotti
and Graser 2011, Speier et al 2012, 2014, Kundu and
Ari 2020). Further, a prior cursor control BCI used
the native word completion in the Android Operat-
ing System to increase typing rates (Nuyujukian et al
2018).

However, we emphasize that a key component of
our AI-BCI system is that we incorporate a poten-
tial field to augment the trajectories of the AI-BCI.
In general, trajectory augmentation faces several chal-
lenges. Our goal was to increase path efficiency and
speed to reach the target (lower TFA), while also
decreasing dial-in time. In general, cursor movement
speeds and DIT face a tradeoff. For example, increas-
ing the cursor speed through a multiplicative gain
factor may lead to lower TFAs, but also signific-
antly increases DIT, since it is more difficult to stop
over a target (Sussillo et al (2012), supplementary
figure 1). The potential field is able to both increase
cursor speed and decrease DIT, circumventing the
tradeoff. It increased cursor speed by exerting an
attractive force on the cursor; further, this attractive
force decreased dial-in time by making it more dif-
ficult for the user to leave the target. Critically, this
charge field was not deleterious: it did not exert so
much control over movements such that the user was
unable to make particular selections, but was instead
tuned to augment performance.

We also emphasize that the baseline charge field,
implemented naïvely, did not increase BCI perform-
ance. Indeed, without the modifications we made,
we found the AI-BCI to be frustrating to use. The

hover mechanism, in particular, was critical to an
augmenting AI-BCI. Our AI-BCI therefore extends
upon prior studies by introducing a mechanism for
improving cursor trajectories at all times during con-
tinuous cursor control. Further, by modeling short-
term dependencies using a potential field with a kin-
ematic hover modification, we were able to design
an AI-BCI with more efficient, quicker, and fine-
tuned movements. Our real-time implementation,
using LiCoRICE (Mehrotra et al 2018), is able to per-
form all AI unit computations in under 1 ms, mean-
ing that it can be used in real-time systems with short
latencies, including fast intracortical BCIs (Cunning-
ham et al 2011, Shanechi et al 2017). We note that
studies using word prediction to increase typing rate
(e.g. Nuyujukian et al (2018)) are complementary
to this work. Such systems would similarly lead to
increased typing rates; however we also emphasize
that these systems do not augment the continuous
trajectories of the BCI.

One area where cursor control AI-BCIs could fur-
ther benefit from is in the design of more advanced
short-term dependency models. While our modified
potential field was effective in increasing perform-
ance, future work may consider improved short-term
dependency models that may use more sophisticated
algorithms to account formovement (kinematic) his-
tory. In our work, kinematic history is only incorpor-
ated through the hover mechanism. Future work may
also optimize AI-BCIs within a recording modality,
for example, by receiving neural activity as additional
input information.We note that these advances could
be combined with this potential field approach to fur-
ther increase system performance.

In this work, we focused on developing an AI-
BCI for the keyboard typing task. We note that our
system has the potential to generalize to a variety
of different cursor control BCI tasks, not just typ-
ing. For example, rather than typing characters, the
AI-BCI could be used to select desktop icons, but-
tons in an application, or links on a webpage. Each
of these potential items is a ‘target’ that can be selec-
ted, much like a character on the virtual keyboard. To
train the AI-BCI to perform such tasks would require
training data from each application capturing a user’s
sequence of selections. This data could be acquired
by: (1) recording cursor movements and selections as
an able-bodied user uses an application, (2) training
an LSTM to predict selection k given the history of
selections k− 1,k− 2, . . . , and (3) using these predic-
tions to assign charge to selectable items on a page,
just as the Character RNN assigned charge to select-
able keys on a virtual keyboard. In this manner, the
LSTM could then model the sequence of selections
to predict a probability distribution over next select-
able targets. The same potential field concept would
then be used to assign charge to selectable targets with
high predicted probability. In some tasks, like using
a search engine, targets are never before seen items.
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However, it is still possible to use heuristics to guide
cursor movements even in these cases. For example,
when performing a search engine query, the most
likely selected items are near the top of the webpage,
or else the next page option. These items could be
assignedmore charge in the potential field. The hover
mechanism we used is also likely to help increase per-
formance in such tasks. It is worth noting that in par-
ticular applications where the AI cannot reasonably
infer a distribution over next targets (e.g. the user’s
next selections are random and cannot be learned by
an LSTM), the AI-BCI may not be augmentative and
would simply reduce to a T-BCI. But when the AI
can infer such structure, the AI-BCI ought further
increase performance.

The performance of our AI-BCI could likely be
significantly improved from further optimization.We
emphasize that in this study, our goal was to achieve
an AI-BCI that (1) increased performance in both
proficient and poor control; (2) increased the effi-
ciency and speed of ballistic and fine movements;
and (3) was agnostic to recording modality. How-
ever, we did not perform a rigorous hyperparameter
optimization to maximize these performance differ-
ences, nor did we change hyperparameters per sub-
ject. Such optimizationmay therefore further increase
AI-BCI performance. For example, it was sometimes
difficult for subjects to select a character because
the character RNN assigned high probability to an
adjacent, but incorrect, character. While this prob-
lem was largely mitigated by the hover charge mech-
anism, additional hyperparameter optimization may
have further improved control in this scenario. We
also note that depending on the control qualities of
the BCI (e.g. intracortical versus ECoG driven BCIs),
hyperparameters and architectures of the AI-BCImay
have different optimal settings.
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