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A B S T R A C T

This study validates the step potential electrochemical spectroscopy (SPECS) method and refines the associated
analysis for differentiating the contributions of electrical double layer (EDL) formation and Faradaic reactions
to the total charge storage in three-dimensional porous pseudocapacitive electrodes. The modified Poisson–
Nernst–Planck (MPNP) model coupled with the Frumkin–Butler–Volmer theory were used to numerically
reproduce experimental data obtained from the SPECS method accounting for interfacial, transport, and
electrochemical phenomena in porous electrodes consisting of monodisperse spherical nanoparticles ordered
in face-centered cubic (FCC) packing. The fitting analysis of the SPECS method was modified for the Faradaic
current. The new model can accurately predict the individual contributions of EDL formation and Faradaic
reactions to the total current. Moreover, the contributions of EDL formation at the electrode surface or
at the electrode/electrolyte interface within the porous electrode can be identified. Similarly, the Faradaic
reactions due to surface-controlled or diffusion-controlled mechanisms can be distinguished. Furthermore, the
capacitance associated with EDL formation obtained from SPECS was in good agreement with that obtained
from cyclic voltammetry. Finally, cyclic voltammograms were reconstructed using the multiple potential step
chronoamperometry (MUSCA) method, and the integral capacitance associated with each charge storage
mechanism was calculated for a range of scan rates.
1. Introduction

Electrochemical capacitors (ECs) form a promising category of elec-
trical energy storage systems thanks to their large power density and
long cycle life [1]. Based on the charging mechanism, ECs can be
classified as electrical double layer capacitors (EDLCs) or pseudoca-
pacitors [1,2]. Typically, EDLCs consist of carbon-based electrodes
immersed in a liquid electrolyte and store charge physically via the
electrical double layer (EDL) forming at the electrode/electrolyte inter-
face [1,2]. Hybrid pseudocapacitors consist typically of a carbon-based
and a redox-active electrode in a liquid electrolyte. In addition to EDL
formation, pseudocapacitors store charge chemically via fast reduc-
tion/oxidation (redox) reactions [2,3]. The latter can be accompanied
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by fast ion intercalation/deintercalation in/out of the redox-active ma-
terials without phase transition. Transition metal oxides (e.g., Nb2O5,
MnO2) have been widely studied as pseudocapacitive electrode mate-
rials due to their high theoretical capacity, chemical stability, and the
reversibility of their redox reactions [4–6].

The most prevalent electrochemical techniques for characterizing
the performance of ECs include cyclic voltammetry (CV), galvanostatic
cycling (GC), and electrochemical impedance spectroscopy (EIS) [7].
More recently, the step potential electrochemical spectroscopy (SPECS)
method has been proposed to determine the respective contributions
of EDL formation and Faradaic reactions to the total charge stor-
age in pseudocapacitive electrodes [8–10]. Furthermore, a method
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Nomenclature

𝐴 Surface area (nm2)
𝐴𝐵𝐸𝑇 Total electrode/electrolyte interfacial area

(nm2)
𝐴𝐵𝐸𝑇 ,1 Geometric surface area of the

electrode/electrolyte interface (nm2)
𝐴𝐵𝐸𝑇 ,2 Porous surface area of the

electrode/electrolyte interface (nm2)
𝐴𝑓𝑝 Footprint surface area (nm2)
𝑎𝑖 Effective ion diameter of species 𝑖 (nm)
𝐶1 Geometric surface EDL capacitance (μF

cm−2)
𝐶2 Porous surface EDL capacitance (μF cm−2)
𝐶𝑑𝑖𝑓𝑓 Differential capacitance (μF cm−2)
𝐶𝑖𝑛𝑡 Integral capacitance (μF cm−2)
𝐶𝑆𝑡𝑠 Stern layer capacitance (μF cm−2)
𝐶𝐸𝐷𝐿 Total EDL capacitance (μF cm−2)
𝑐1,𝑃 Li+ concentration in the electrode (mol L−1)
𝑐1,𝑃 ,0 Initial Li+ concentration in the electrode

(mol L−1)
𝑐1,𝑃 ,𝑚𝑎𝑥 Maximum Li+ concentration in the elec-

trode (mol L−1)
𝑐𝑖 Concentration of ion species 𝑖 in the

electrolyte (mol L−1)
𝑐∞ Ion concentration in the bulk electrolyte

(mol L−1)
𝐷1,𝑃 Diffusion coefficient of Li+ ions in the

electrode (m2 s−1)
𝐷𝑖 Diffusion coefficient of ion species 𝑖 in the

electrolyte (m2 s−1)
𝑒 Elementary charge, 𝑒 = 1.602 × 10−19 C
𝐹 Faraday constant, 𝐹 = 𝑒𝑁𝐴 = 9.648 ×

104 C mol−1

𝐻 Stern layer thickness (nm)
𝑗 Magnitude of current density (A m−2)
𝑗𝐹 ,0 Exchange current density due to Faradaic

reactions (A m−2)
𝑘0 Reaction rate constant (m2.5 mol−0.5 s−1)
𝑘𝐵 Boltzmann constant, 𝑘𝐵 = 1.38 ×

10−23 m2 kg s−2 K−1

𝐿 Electrolyte domain thickness (nm)
𝐿𝐶 Current collector thickness (nm)
𝐿𝑃 Electrode thickness (nm)
𝑁 Number of layers of electrode spherical

particles
𝑁𝐴 Avogadro number, 𝑁𝐴 = 6.022 × 1023 mol−1

𝐍𝑖 Molar flux vector of ion species 𝑖 (mol m−2

s−1)

associated with SPECS and named multiple potential step chronoam-
perometry (MUSCA) has been developed to reconstruct the electrode
cyclic voltammograms with minimized ohmic polarization effects [11].
These characterization techniques have been demonstrated on devices
ranging from small scale Swagelok cells [12] to large format pouch
cells [13]. Previously, we validated theoretically both the SPECS and
MUSCA methods for one-dimensional (1D) planar pseudocapacitive
electrodes [14]. However, the 1D model did not capture the microp-
orous and mesoporous structures prevailing in actual pseudocapacitive
electrode materials [15–17].
2 
𝑁𝑠 Number of data points per potential step
𝐧 Normal vector of a surface
𝑛𝑐 Cycle number
𝑛𝑠 Total number of potential steps
𝑝𝑠 Potential step number
𝛥𝑄𝐹 Total amount of charge stored due to the

Faradaic current (C)
𝑅1 Geometric surface electrical double layer

resistance (Ω cm2)
𝑅2 Porous surface electrical double layer resis-

tance (Ω cm2)
𝑅𝑐𝑡 Charge transfer resistance (Ω cm2)
𝑅𝑑 Diffusion resistance (Ω cm2)
𝑅𝐸𝐷𝐿 Total electrical double layer resistance (Ω

cm2)
𝑅𝑢 Universal gas constant, 𝑅𝑢 =

8.314 J mol−1 K−1

𝑟 Radius of electrode spherical particles (nm)
𝐫 Location in three-dimensional space (nm)
𝐫𝑐𝑙 Device centerline location (nm)
𝐫𝐶∕𝐸 Current collector/electrolyte interface loca-

tion (nm)
𝐫𝐸∕𝐸 Electrode/electrolyte interface location

(nm)
𝐫𝐻 Stern/diffuse layer interface location (nm)
𝑇 Temperature (K)
𝑡 Time (s)
𝑡𝑐𝑑 Charging/discharging cycle period (s)
𝑡𝑒 Equilibration time (s)
𝑡𝑡 Transition time (s)
𝑡𝜈 Time window in the MUSCA method (s)
𝛥𝑡 Time step (data acquisition time) (s)
𝑧𝑖 Valency of ion species 𝑖

Greek symbols

𝛼 Transfer coefficient
𝛿 Objective function
𝜖0 Vacuum permittivity,

𝜖0=8.854×10−12 F m−1

𝜖𝑟 Relative permittivity of the electrolyte
𝜂 Overpotential (V)
𝛬 Electrochemical Biot number
𝜈 Scan rate (V s−1)
𝜓 Electric potential (V)
𝜓𝑠 Potential vs. Ag/AgCl at the current collec-

tor/electrode interface (V)
𝜓𝑠,𝑚𝑖𝑛, 𝜓𝑠,𝑚𝑎𝑥 Minimum and maximum of the potential

window vs. Ag/AgCl (V)
𝛥𝜓𝑒𝑞 Equilibrium potential difference vs.

Ag/AgCl (V)

This study aims to numerically validate and, if necessary, modify
the SPECS method for three-dimensional (3D) mesoporous pseudoca-
pacitive electrodes. Numerical simulations were based on the modi-
fied Poisson–Nernst–Planck (MPNP) model coupled with the Frumkin–
Butler–Volmer theory. In addition, the SPECS method was combined
with the MUSCA method to identify the contributions of EDL formation
and Faradaic reactions to the total current density and to provide

physical interpretation of the fitting parameters.
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𝛥𝜓𝑒𝑞,0 Initial equilibrium potential difference vs.
Ag/AgCl (V)

𝛥𝜓𝐻 Potential drop across the Stern layer (V)
𝛥𝜓𝑠 Potential step (V)
𝜎𝐶 Current collector electrical conductivity (S

m−1)
𝜎𝑃 Electrode electrical conductivity (S m−1)
𝜏 Time constant (s)
𝜏𝑑 Diffusion time constant (s)

Superscripts and subscripts

𝐵𝐸𝑇 Refers to the electrode/electrolyte interface
𝐸𝐷𝐿 Refers to the electrical double layer
𝐸𝐷𝐿1 Refers to the geometric surface EDL
𝐸𝐷𝐿2 Refers to the porous surface EDL
𝐹 Refers to the Faradaic contribution
𝐹1 Refers to the surface-controlled Faradaic

contribution
𝐹2 Refers to the diffusion-controlled Faradaic

contribution
𝑓𝑝 Refers to the footprint surface
𝑀 Refers to the MUSCA method
𝑛 Refers to the normal component of a vector
𝑟 Refers to the residual component
𝑆 Refers to the SPECS method
𝑇 Refers to the total component

2. Background

2.1. SPECS method

Chronoamperometry is a family of techniques where a step function
is applied to the potential of the working electrode as the current
response is recorded. The current response to each potential step is typ-
ically a decay as a function of time and can be analyzed to distinguish
the various charge storage mechanisms of the working electrode [7].
The most common example is the double potential step chronoamper-
ometry where the imposed potential consists of a single step up and
step down in sequence [7]. Multiple variants of chronoamperometry
have also been developed over time, such as the double potential step
chronocoulometry. In this case, instead of the current response, the
integral of the current versus time is recorded corresponding to the
amount of charge passed. Here, the response in the charge passage can
equally be analyzed to separate the contributions of EDL formation and
Faradaic reactions to the total amount of charge storage [7]. One latest
adaptation of chronoamperometry is the SPECS method. The SPECS
method consists of imposing a series of small potential steps 𝛥𝜓𝑠 on
a pseudocapacitor within a potential window from 𝜓𝑠,𝑚𝑖𝑛 to 𝜓𝑠,𝑚𝑎𝑥 and

easuring the total footprint current density response 𝑗𝑇 (𝑡) (in A/m2)
t each potential step defined per unit footprint surface area 𝐴𝑓𝑝 of the
urrent collector [18–20]. This method has been developed to identify
he contributions of EDL formation and Faradaic reactions to the total
urrent in pseudocapacitive electrodes [8–10]. Dupont and Donne [8–
0] suggested that the total current density response to an imposed
otential step in a porous pseudocapacitive electrode should be fitted to
function 𝑗𝑆𝑇 (𝑡) expressed as the sum of an EDL current density 𝑗𝑆𝐸𝐷𝐿(𝑡),
Faradaic current density 𝑗𝑆𝐹 (𝑡), and a residual current density 𝑗𝑆𝑟 (𝑡),

.e.,
𝑆
𝑇 (𝑡) = 𝑗𝑆𝐸𝐷𝐿(𝑡) + 𝑗

𝑆
𝐹 (𝑡) + 𝑗

𝑆
𝑟 (𝑡). (1)

The EDL current density 𝑗𝑆𝐸𝐷𝐿(𝑡) was further divided into two con-
tributions from EDL formation (i) at the so-called geometric surface
3 
defined as the interface of the electrode with the bulk electrolyte and
(ii) at the interfacial surface of micropores and mesopores within the
porous electrode, represented by 𝑗𝑆𝐸𝐷𝐿1(𝑡) and 𝑗𝑆𝐸𝐷𝐿2(𝑡), respectively [8–
0]. Here, 𝑗𝑆𝐸𝐷𝐿1(𝑡) and 𝑗𝑆𝐸𝐷𝐿2(𝑡) were modeled based on an equivalent
ircuit of a resistor and a capacitor in series so that [8–10],

𝑆
𝐸𝐷𝐿(𝑡) = 𝑗𝑆𝐸𝐷𝐿1(𝑡)+ 𝑗

𝑆
𝐸𝐷𝐿2(𝑡) =

𝛥𝜓𝑠
𝑅1

exp
(

− 𝑡
𝑅1𝐶1

)

+
𝛥𝜓𝑠
𝑅2

exp
(

− 𝑡
𝑅2𝐶2

)

(2)

where 𝑅1, 𝐶1 and 𝑅2, 𝐶2 are the resistances and capacitances due
o EDL formation at the geometric surface denoted by 𝐴𝐵𝐸𝑇 ,1 and at

the inner porous electrode/electrolyte interface denoted by 𝐴𝐵𝐸𝑇 ,2 (see
Fig. 1 for illustration). Furthermore, the total EDL resistance 𝑅𝐸𝐷𝐿 and
the total EDL capacitance 𝐶𝐸𝐷𝐿 were expressed as [8–10],

𝑅𝐸𝐷𝐿 =
𝑅1𝑅2
𝑅1 + 𝑅2

and 𝐶𝐸𝐷𝐿 = 𝐶1 + 𝐶2. (3)

On the other hand, the Faradaic current density 𝑗𝑆𝐹 (𝑡) was modeled
based on Fick’s second law of diffusion in spherical coordinates as [8–
10],

𝑗𝑆𝐹 (𝑡) =
6𝛥𝑄𝐹
𝜏𝑑𝐴

∞
∑

𝑛=1
exp

(

− 𝑛
2𝜋2𝑡
𝜏𝑑

)

. (4)

Here, 𝐴 is the surface area over which the current density is averaged
(i.e., either the footprint surface area 𝐴𝑓𝑝 of the current collector or
the total electrode/electrolyte interfacial area 𝐴𝐵𝐸𝑇 ), while 𝛥𝑄𝐹 and
𝜏𝑑 are the total amount of charge stored due to the Faradaic reactions
and the diffusion time constant respectively expressed as [21,22],

𝛥𝑄𝐹 = ∫

𝑡+𝛥𝑡

𝑡
𝑗𝑆𝐹 (𝑡)𝐴d𝑡 = −

𝐹𝐴𝐵𝐸𝑇 𝑟𝛥𝑐1,𝑃
3

and 𝜏𝑑 = 𝑟2

𝐷1,𝑃
(5)

where 𝐹 = 𝑒𝑁𝐴 = 9.648 × 104 C mol−1 is the Faraday constant, 𝑟 is
he average radius of redox-active spherical particles making up the
lectrode, 𝛥𝑐1,𝑃 is the net concentration change of cations in the elec-

trode due to the potential step, and 𝐷1,𝑃 is the diffusion coefficient of
cations in the redox-active materials. After a sufficiently long relaxation
duration (i.e., 𝑡 ≫ 𝜏𝑑), the high order terms (𝑛 > 1) in Eq. (4) are
negligible leading to [22,23],

𝑗𝑆𝐹 (𝑡) =
6𝛥𝑄𝐹
𝜏𝑑𝐴

exp
(

−𝜋
2𝑡
𝜏𝑑

)

. (6)

This model is representative of diffusion-controlled Faradaic reactions
only.

Alternatively, Montella [22] proposed a model for 𝑗𝑆𝐹 (𝑡) accounting
or finite interfacial charge transfer kinetics given by,

𝑆
𝐹 (𝑡) =

6𝛥𝑄𝐹
𝜏𝑑𝐴

∞
∑

𝑛=1

𝛬2

𝛬2 − 𝛬 + 𝑏2𝑛
exp

(

−
𝑏2𝑛𝑡
𝜏𝑑

)

. (7)

Here, 𝑏𝑛 is the 𝑛th root of the following equation [22,24],

𝑏𝑛 cot 𝑏𝑛 + 𝛬 − 1 = 0 (8)

where 𝛬 is the electrochemical Biot number expressed as [22,24],

𝛬 = −
𝑟𝑗𝐹 ,0

𝐷1,𝑃𝑅𝑢𝑇
𝜕𝛥𝜓𝑒𝑞
𝜕𝑐1,𝑃

=
𝑅𝑑
𝑅𝑐𝑡

. (9)

Here, 𝑗𝐹 ,0 is the exchange current density, 𝑅𝑢 = 8.314 J mol−1 K−1 is
he universal gas constant, 𝑇 is the temperature, 𝛥𝜓𝑒𝑞 is the equilibrium

potential difference (i.e., the potential difference between the electrode
and the electrolyte across their interface at zero net reaction rate), 𝑐1,𝑃
is the concentration of cations in the electrode, 𝑅𝑑 and 𝑅𝑐𝑡 are the
diffusion and interfacial charge transfer resistances, respectively. Here
also, after a sufficiently long relaxation duration (i.e., 𝑡 ≫ 𝜏 ), the high
𝑑
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Fig. 1. (a) Schematic, coordinate system, and dimensions of the simulated 3D mesoporous pseudocapacitive electrode consisting of monodisperse spherical particles of radius 𝑟
ordered in face-centered cubic (FCC) packing supported by a planar current collector in an electrolyte containing Li+ ions in a three-electrode configuration with Ag/AgCl as the
reference electrode. (b) Geometric surface area 𝐴𝐵𝐸𝑇 ,1 and (c) porous surface area 𝐴𝐵𝐸𝑇 ,2 of the electrode/electrolyte interface.
order terms (𝑛 > 1) in Eq. (7) become negligible leading to [22,23],

𝑗𝑆𝐹 (𝑡) =
6𝛥𝑄𝐹
𝜏𝑑𝐴

𝛬2

𝛬2 − 𝛬 + 𝑏21
exp

(

−
𝑏21𝑡
𝜏𝑑

)

= 𝑃1 exp(−𝑃2𝑡) (10)

where the fitting parameters 𝑃1 and 𝑃2 can be identified as,

𝑃1 =
6𝛥𝑄𝐹
𝜏𝑑𝐴

𝛬2

𝛬2 − 𝛬 + 𝑏21
and 𝑃2 =

𝑏21
𝜏𝑑
. (11)

The value of 𝛬 characterizes the main limitation for the rate of Faradaic
reactions. For diffusion-controlled processes, 𝑅𝑑 ≫ 𝑅𝑐𝑡, 𝛬 ≫ 1, and
𝑏1 = 𝜋, so that Eq. (10) reduces to Eq. (6) [22,24]. By contrast,
when processes are controlled by finite interfacial charge transfer ki-
netics, 𝑅𝑑 ≪ 𝑅𝑐𝑡, 𝛬 ≪ 1, and 𝑏1 ⋍

√

3𝛬 [22,24]. Finally, the
residual current density 𝑗𝑆𝑟 (𝑡) is a constant accounting for electrolyte
decomposition reactions and/or parasitic reactions in the electrode
material [8–10]. Note, however, that the above expressions for the
different contributions to the total current density 𝑗𝑇 (𝑡) have been
previously validated theoretically for 1D homogeneous electrodes but
not for 3D heterogeneous porous pseudocapacitive electrodes.

2.2. MUSCA method

The MUSCA method aims to explicitly quantify the contributions
of different charge storage mechanisms to the total capacitance. It has
proved effective in correcting for ohmic polarization effects and the
drift of redox peaks with increasing scan rate typically observed in CV
measurements [11,14]. Similar to SPECS, MUSCA starts by imposing a
series of small potential steps 𝛥𝜓𝑠 within a potential window from 𝜓𝑠,𝑚𝑖𝑛
to 𝜓𝑠,𝑚𝑎𝑥 and measuring the total current density response 𝑗𝑇 (𝑡) to each
potential step. Then, for a given scan rate 𝜈, 𝑗𝑇 (𝑡) is averaged over a
certain time window 𝑡 defined from the beginning of the potential step
𝜈

4 
𝛥𝜓𝑠 to obtain the mean current density 𝑗𝐴𝑇 (𝜓𝑠) at potential 𝜓𝑠 as [11],

𝑗𝐴𝑇 (𝜓𝑠) =
1
𝑡𝜈 ∫

𝑡𝜈

0
𝑗𝑇 (𝑡)d𝑡 (12)

where superscript ‘‘𝐴’’ refers to the mean current density from the
MUSCA method, and 𝑡𝜈 is chosen according to [11],

𝑡𝜈 =
𝛥𝜓𝑠
𝜈
. (13)

Finally, cyclic voltammograms with minimized ohmic polarization ef-
fects are reconstructed by plotting 𝑗𝐴𝑇 (𝜓𝑠) vs. 𝜓𝑠 [11].

2.3. Application of the SPECS and MUSCA methods

Both the SPECS and MUSCA methods have been employed in a
wide range of applications. For example, Forghani et al. [12] used
the SPECS method to identify the geometric and porous capacitances
during the electrochemical characterization of symmetrical activated
carbon electrochemical capacitors with organic electrolyte. The MUSCA
method was used to quantify the performance over a range of scan
rates, both for the entire device and for each individual electrode. Sub-
sequently, the authors assembled prototype pouch cells using the same
electrode and electrolyte materials and evaluated their electrochemical
behavior [13]. Here, the temporal evolution of the fitting parameters
retrieved from SPECS and the rate performance from MUSCA were
combined to identify issues within the cell including leakage current,
cell degradation, and electrolyte depletion.

In another study, the SPECS and MUSCA methods were used to
optimize experimentally electrolytic amorphous carbon as electrode
materials by distinguishing and quantifying the EDL and pseudocapac-
itive contributions at different scan rates [25]. A similar study applied
the SPECS and MUSCA methods to demonstrate that the capacitive
charge storage in glassy carbon electrodes was better with non-aqueous
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electrolytes than with aqueous electrolytes due to ion solvation [26].
In fact, the study compared the fitted total EDL resistance 𝑅𝐸𝐷𝐿 and
total EDL capacitance 𝐶𝐸𝐷𝐿 between the same electrodes in different
electrolytes. Based on those results, the authors reasoned that the
solvation shells surrounding the adsorbing ions in aqueous electrolytes
not only increased resistance but also inhibited denser packing of ions
at the electrode surface, thus decreasing the capacitive charge storage.

Another study utilized both the SPECS and MUSCA methods in place
of conventional CV measurements to validate experimentally the two
methods and simultaneously investigate the charge storage mechanisms
in four electrochemical capacitor systems [27]. The Swagelok cells
consisted of activated carbon, RuO2, MnO2, or Ni(OH)2 working elec-
trodes and activated carbon counter electrodes in alkaline electrolytes.
In addition, Forghani et al. [28] used CV, EIS, SPECS, and MUSCA
methods to analyze the semiconducting properties of electrolytic MnO2
deposited on titanium substrates as electrodes for electrochemical ca-
pacitors. Here, SPECS combined with EIS enabled the determination of
electronic properties across the full potential window, identifying both
n-type and p-type behavior in the electrolytic MnO2 electrodes. Further-
more, in two separate studies the SPECS and MUSCA methods provided
mechanistic insights into the microstructures of various porous carbon
electrodes [29,30]. Of particular value was their ability to reveal the
capacitances associated with EDL formation at the geometric surface
or at the porous surface in each unique porous structure.

Overall, the SPECS and MUSCA methods give an unmatched ca-
pability to distinguish and quantify the charge storage contributions
from various mechanisms using relatively simple experimental proce-
dures applicable to most electrochemical systems. These methods have
been validated qualitatively using experimental data. This study aims
to rigorously validate the SPECS method and the MUSCA method,
using state-of-the-art physical modeling and numerical simulations,
to quantify the contributions, to the total current density, of EDL
formation and Faradaic reactions occurring at the surface or within 3D
pseudocapacitive electrodes.

3. Analysis

3.1. Schematic and assumptions

Fig. 1(a) shows the schematic of the simulated 3D mesoporous pseu-
docapacitive electrode consisting of monodisperse spherical particles of
radius 𝑟 ordered in face-centered cubic (FCC) packing supported by a
planar current collector in an electrolyte containing Li+ ions in a three-
electrode configuration with Ag/AgCl as the reference electrode. The
example shown here had a number of particle layers 𝑁 = 3.5. The
current collector, electrode, and electrolyte domain thicknesses were
denoted by 𝐿𝐶 , 𝐿𝑃 , and 𝐿, respectively. Fig. 1(b) shows the geometric
surface area 𝐴𝐵𝐸𝑇 ,1 corresponding to the exterior electrode surface
with direct access to the bulk electrolyte. Fig. 1(c) shows the interior
electrode/electrolyte interface also known as the porous surface area
𝐴𝐵𝐸𝑇 ,2 [8–10].

To make the problem mathematically tractable, the following as-
sumptions were made: (1) The electrolyte was binary and symmetric,
i.e., it consisted of two ion species of opposite valency ±𝑧. (2) Cations
and anions had the same effective diameter 𝑎 and diffusion coefficient
𝐷 in the electrolyte [31,32]. (3) The Stern layer contained no free
charge and its thickness 𝐻 was approximated as the effective radius
of the ions, so that 𝐻 = 𝑎∕2 [7,33,34]. (4) The transport properties of
the electrode and electrolyte were taken as constant and independent
of state-of-charge. (5) Bulk motion of the electrolyte was negligible.
(6) Ion intercalation/deintercalation in/out of the electrode spherical
particles was modeled as a diffusion process. (7) The temperature 𝑇
was uniform in the simulated domain and constant over time. (8)
Electrical contact resistance between the current collector and the
electrode, and between the electrode spherical particles, was negligible.
(9) Residual current density associated with electrolyte decomposition
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reactions and/or parasitic reactions in the electrode material was ig-
nored, i.e., 𝑗𝑆𝑟 (𝑡) = 0. (10) Current arising from EDL formation at the
current collector/electrolyte interface was negligible compared to that
at the electrode/electrolyte interface.

3.2. Governing equations

The modified Poisson–Nernst–Planck (MPNP) model coupled with
the Frumkin–Butler–Volmer theory were used to numerically reproduce
experimental data obtained from the SPECS method accounting for
interfacial, transport, and electrochemical phenomena in the simulated
domain [35]. The governing equations have been described in our
previous studies [36–38] and are reproduced in Supplementary Ma-
terials for the sake of completeness (see Section S.1). In brief, the
spatiotemporal evolution of (i) the local electric potential 𝜓(𝐫, 𝑡) in
the current collector, the electrode, and the electrolyte, as well as
(ii) the local concentrations 𝑐1(𝐫, 𝑡) of cations and 𝑐2(𝐫, 𝑡) of anions in
the electrolyte were governed by the MPNP model [36–38]. The local
concentration 𝑐1,𝑃 (𝐫, 𝑡) of Li+ ions in the electrode was governed by the
3D transient mass diffusion equation [39–41].

3.3. Initial and boundary conditions

All initial and boundary conditions necessary to solve the 3D tran-
sient governing equations are described in detail in Supplementary
Materials (see Section S.2). The potential at the current collector sur-
face (0, 𝑦, 𝑧) was imposed as a multi-step function for SPECS simulations
according to [14],

𝜓𝑠(0, 𝑦, 𝑧, 𝑡)

=

⎧

⎪

⎨

⎪

⎩

𝜓𝑠,𝑚𝑖𝑛 + (𝑝𝑠 − 1)𝛥𝜓𝑠 for 1 ≤ 𝑝𝑠 ≤ (𝑛𝑠 + 1)∕2 (charging)
𝜓𝑠,𝑚𝑎𝑥 −

(

𝑝𝑠 −
𝑛𝑠+1
2

)

𝛥𝜓𝑠 for (𝑛𝑠 + 1)∕2 ≤ 𝑝𝑠 ≤ 𝑛𝑠 (discharging)

(14)

where 𝜓𝑠,𝑚𝑖𝑛 and 𝜓𝑠,𝑚𝑎𝑥 are the minimum and maximum of the potential
window, respectively. Here, 𝑝𝑠 is the potential step number and 𝑛𝑠 is
he total number of potential steps 𝛥𝜓𝑠 to cover the entire potential

window, i.e., 𝑛𝑠 = [2(𝜓𝑠,𝑚𝑎𝑥 −𝜓𝑠,𝑚𝑖𝑛)∕𝛥𝜓𝑠] + 1, with each step lasting an
equilibration time of 𝑡𝑒.

On the other hand, for simulating cyclic voltammograms, the poten-
tial at the current collector surface (0, 𝑦, 𝑧) was imposed as a triangular
function of time 𝑡 given by [42],

𝜓𝑠(0, 𝑦, 𝑧, 𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜓𝑠,𝑚𝑖𝑛 + 𝜈[𝑡 − (𝑛𝑐 − 1)𝑡𝑐𝑑 ] for (𝑛𝑐 − 1)𝑡𝑐𝑑 ≤ 𝑡

< (𝑛𝑐 − 1∕2)𝑡𝑐𝑑 (charging)
𝜓𝑠,𝑚𝑎𝑥 − 𝜈[𝑡 − (𝑛𝑐 − 1∕2)𝑡𝑐𝑑 ] for (𝑛𝑐 − 1∕2)𝑡𝑐𝑑 ≤ 𝑡

< 𝑛𝑐 𝑡𝑐𝑑 (discharging)

(15)

here 𝑛𝑐 is the cycle number, 𝑡𝑐𝑑 is the cycle period, and 𝜈 is the scan
ate, i.e., 𝜈 = 2(𝜓𝑠,𝑚𝑎𝑥 − 𝜓𝑠,𝑚𝑖𝑛)∕𝑡𝑐𝑑 .

.4. Constitutive relationships

The present study used realistic material properties summarized
n Table 1 and taken from the literature for the current collector,
he porous pseudocapacitive electrode consisting of Nb2O5 nanopar-
icles [7,43–45], and the electrolyte consisting of 1 M LiClO4 salt in
ropylene carbonate (PC) solvent [46,47]. The thickness of the current
ollector was taken as 𝐿𝐶 = 10 nm with electrical conductivity 𝜎𝐶 = 5

S m−1 corresponding to carbon-based materials [48]. The electrodes
were made of spherical particles with radius 𝑟 = 3.75 nm, while the
number of particle layers 𝑁 varied between 2.5 and 4.5 for different
cases of the parametric study (3.5 for the baseline case), resulting in
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Table 1
Values or ranges of current collector, electrode, and electrolyte dimensions and properties used in the simulations reported in this study.

Variable Symbol Value Unit

Effective ion diameter 𝑎 0.67 nm
Initial ion concentration in the electrode 𝑐1,𝑃 ,0 6.58 mol L−1

Maximum ion concentration in the electrode 𝑐1,𝑃 ,𝑚𝑎𝑥 32.9 mol L−1

Ion concentration in the bulk electrolyte 𝑐∞ 1 mol L−1

Ion diffusion coefficient in the electrolyte 𝐷 2 × 10−11 m2 s−1

Ion diffusion coefficient in the electrode 𝐷1,𝑃 10−14–10−12 m2 s−1

Reaction rate constant 𝑘0 10−10–10−8 m2.5 mol−0.5 s−1

Electrolyte domain thickness 𝐿 100 nm
Current collector thickness 𝐿𝐶 10 nm
Electrode thickness 𝐿𝑃 14.4–25.0 nm
Number of layers of electrode spherical particles 𝑁 2.5–4.5
Radius of electrode spherical particles 𝑟 3.75 nm
Temperature 𝑇 293 K
Valency 𝑧 1
Transfer coefficient 𝛼 0.5
Relative permittivity of the electrolyte 𝜖𝑟 64.4

Potential window vs. Ag/AgCl 𝜓𝑠,𝑚𝑖𝑛 0 V
𝜓𝑠,𝑚𝑎𝑥 0.4 V

Electrical conductivity of the current collector 𝜎𝐶 5 S m−1

Electrical conductivity of the electrode 𝜎𝑃 10−4 S m−1
electrode thicknesses 𝐿𝑃 ranging from 14.4 to 25.0 nm (19.7 nm for the
aseline case). The capacitance of the electrodes quantitatively varied
ith both the radius of electrode spherical particles 𝑟 and the number

of particle layers 𝑁 . Note that the purpose of this study is to validate
the SPECS and MUSCA methods under numerically controlled condi-
tions. Therefore, the dimensions selected were smaller than typical
experiments in order to reduce the computational resources and time
required to perform the numerous simulations. The electrode electrical
conductivity was taken as 𝜎𝑃 = 10−4 S m−1 [15] and the reaction
rate constant 𝑘0 varied between 10−10 and 10−8 m2.5 mol−0.5 s−1 for
ifferent cases of the parametric study (10−10 m2.5 mol−0.5 s−1 for
he baseline case) [43,49,50]. For electrodes consisting of transition
etal oxides, the equilibrium potential difference 𝛥𝜓𝑒𝑞 is typically
etermined experimentally as a function of the state-of-charge (SOC)
efined as 𝑐1,𝑃 ∕𝑐1,𝑃 ,𝑚𝑎𝑥 by fitting experimental data for open-circuit
otential [51–53]. In the absence of experimental data for Nb2O5, 𝛥𝜓𝑒𝑞

was modeled as a linear function of SOC as measured for 100 μm
thick MnO2 dense films vs. Ag/AgCl reference electrode and expressed
as [44],

𝛥𝜓𝑒𝑞(𝑡) = 10.5[4 − 𝑐1,𝑃 (𝑡)∕𝑐1,𝑃 ,𝑚𝑎𝑥] − 39.9. (16)

Here, the maximum Li+ ion concentration 𝑐1,𝑃 ,𝑚𝑎𝑥 = 32.9 mol L−1

corresponded to fully lithiated manganese dioxide LiMnO2 [45], and
the initial Li+ ion concentration 𝑐1,𝑃 ,0 = 6.58 mol L−1 was such that
the initial equilibrium potential difference 𝛥𝜓𝑒𝑞,0 was zero. The transfer
coefficient 𝛼 in the Frumkin–Butler–Volmer equation was assumed to
be 0.5 to consider the ideal case of identical energy barriers for forward
and backward reversible redox reactions [7]. The diffusion coefficient
𝐷1,𝑃 of Li+ ions in transition metal oxides typically ranges from 10−16

to 10−10 m2 s−1 [43]. Here, 𝐷1,𝑃 varied between 10−14 and 10−12

m2 s−1 for different cases of the parametric study (10−14 m2 s−1 for
the baseline case). The thickness of the electrolyte domain was taken
as 𝐿 = 100 nm with bulk ion concentration 𝑐∞ = 1 mol L−1 and
valency 𝑧 = 1. The electrolyte relative permittivity was set to that of
PC with 𝜖𝑟 = 64.4 [46]. The effective ion diameter and the ion diffusion
coefficient of both Li+ and ClO−

4 ions were set to those of solvated Li+
ions in PC with 𝑎 = 0.67 nm and 𝐷 = 2×10−11 m2 s−1, respectively [47].
Finally, the temperature was set to 𝑇 = 293 K, and the potential
window ranged from 𝜓𝑠,𝑚𝑖𝑛 = 0 V to 𝜓𝑠,𝑚𝑎𝑥 = 0.4 V. This potential
window covered both the Faradaic and the capacitive regimes for the
simulated electrode [39]. Specifically, the Faradaic regime consisted of
potentials below 0.2 V where the interfacial charge transfer kinetics
was more favorable for Faradaic reactions to occur, and vice versa
for the capacitive regime. In fact, as the potential approached 0.4 V,
the area enclosed within the CV curves shrunk significantly indicating
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decreasing capacitance. Therefore, although simulating the potential
window beyond 0.4 V was possible, it would not meaningfully change
the main observations of the study, but it would further increase the
computational cost and time of the simulations.

3.5. Method of solution and data processing

The governing equations along with the initial and boundary con-
ditions were solved using finite element methods in the COMSOL
Multiphysics solver. The time-dependent solver proceeded at adaptive
time steps controlled by an absolute tolerance of 0.01 for SPECS
simulations and 0.001 for CV simulations.

The total current density 𝑗𝑇 ,𝑛(𝐫𝐸∕𝐸 , 𝑡) at the electrode/electrolyte
interface located at 𝐫𝐸∕𝐸 was expressed as the sum of the EDL current
density 𝑗𝐸𝐷𝐿,𝑛(𝐫𝐸∕𝐸 , 𝑡) and the Faradaic current density 𝑗𝐹 ,𝑛(𝐫𝐸∕𝐸 , 𝑡) so
that 𝑗𝑇 ,𝑛(𝐫𝐸∕𝐸 , 𝑡) = 𝑗𝐸𝐷𝐿,𝑛(𝐫𝐸∕𝐸 , 𝑡)+𝑗𝐹 ,𝑛(𝐫𝐸∕𝐸 , 𝑡). The EDL current density
𝑗𝐸𝐷𝐿,𝑛(𝐫𝐸∕𝐸 , 𝑡) was defined as [54],

𝑗𝐸𝐷𝐿,𝑛(𝐫𝐸∕𝐸 , 𝑡) = −𝜖0𝜖𝑟
𝜕2𝜓
𝜕𝑛𝜕𝑡

(𝐫𝐸∕𝐸 , 𝑡) (17)

where 𝜖0 = 8.854 × 10−12 F m−1 is the vacuum permittivity. On the
other hand, the Faradaic current density 𝑗𝐹 ,𝑛(𝐫𝐸∕𝐸 , 𝑡) was computed
from the generalized Frumkin–Butler–Volmer model evaluated at the
electrode/electrolyte interface according to [7],

𝑗𝐹 ,𝑛(𝐫𝐸∕𝐸 , 𝑡) = 𝑗𝐹 ,0(𝐫𝐸∕𝐸 , 𝑡)
{

exp
[ (1 − 𝛼)𝑧𝐹𝜂(𝐫𝐸∕𝐸 , 𝑡)

𝑅𝑢𝑇

]

− exp
[−𝛼𝑧𝐹𝜂(𝐫𝐸∕𝐸 , 𝑡)

𝑅𝑢𝑇

] }

(18)

where 𝑗𝐹 ,0(𝐫𝐸∕𝐸 , 𝑡) is the local exchange current density expressed
as [49,50],

𝑗𝐹 ,0(𝐫𝐸∕𝐸 , 𝑡) = 𝑧𝐹𝑘0[𝑐1(𝐫𝐸∕𝐸 , 𝑡)]1−𝛼[𝑐1,𝑃 ,𝑚𝑎𝑥−𝑐1,𝑃 (𝐫𝐸∕𝐸 , 𝑡)]𝛼[𝑐1,𝑃 (𝐫𝐸∕𝐸 , 𝑡)]𝛼 .

(19)

In addition, the surface overpotential 𝜂(𝐫𝐸∕𝐸 , 𝑡) necessary to drive the
redox reactions at the electrode/electrolyte interface [Eq. (18)] was
expressed as [7],

𝜂(𝐫𝐸∕𝐸 , 𝑡) = 𝛥𝜓𝐻 (𝐫𝐸∕𝐸 , 𝑡) − 𝛥𝜓𝑒𝑞(𝑡) (20)

where 𝛥𝜓𝐻 (𝐫𝐸∕𝐸 , 𝑡) is the local potential drop across the Stern layer
at the electrode/electrolyte interface and 𝛥𝜓𝑒𝑞(𝑡) is the equilibrium
potential difference.

Finally, the current density 𝑗(𝑡) (in A/m2) averaged over the foot-
print surface area 𝐴 of the current collector was defined as [55],
𝑓𝑝
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𝑗(𝑡) =
∬𝐴𝐵𝐸𝑇 𝑗𝑛(𝐫𝐸∕𝐸 , 𝑡)d𝐴𝐵𝐸𝑇

𝐴𝑓𝑝
. (21)

From the numerically simulated cyclic voltammograms, the differ-
ential capacitances associated with EDL formation at the geometric
surface 𝐶𝑑𝑖𝑓𝑓 ,1(𝜓𝑠) and at the porous surface 𝐶𝑑𝑖𝑓𝑓 ,2(𝜓𝑠), defined per
unit surface area 𝐴𝑓𝑝 of the current collector, were determined as [42],

𝐶𝑑𝑖𝑓𝑓 ,𝑖(𝜓𝑠) =
|

|

|

|

∬𝐴𝐵𝐸𝑇 ,𝑖 𝑗𝐸𝐷𝐿,𝑛(𝐫𝐸∕𝐸 , 𝜓𝑠)d𝐴𝐵𝐸𝑇 ,𝑖
𝐴𝑓𝑝𝜈

|

|

|

|

with 𝑖 = 1 or 2. (22)

oreover, the differential total EDL footprint capacitance 𝐶𝑑𝑖𝑓𝑓 ,𝐸𝐷𝐿(𝜓𝑠)
as simply the sum of 𝐶𝑑𝑖𝑓𝑓 ,1(𝜓𝑠) and 𝐶𝑑𝑖𝑓𝑓 ,2(𝜓𝑠), i.e.,

𝐶𝑑𝑖𝑓𝑓 ,𝐸𝐷𝐿(𝜓𝑠) = 𝐶𝑑𝑖𝑓𝑓 ,1(𝜓𝑠) + 𝐶𝑑𝑖𝑓𝑓 ,2(𝜓𝑠). (23)

3.6. SPECS fitting model

In the absence of residual current density (i.e., 𝑗𝑆𝑟 (𝑡) = 0) and
combining Eqs. (2) and (10), the original fitting function of the SPECS
method for the total footprint current density response to an imposed
potential step 𝛥𝜓𝑠 in a porous pseudocapacitive electrode is such
that [8–10],

𝑗𝑆𝑇 (𝑡) =
𝛥𝜓𝑠
𝑅1

exp
(

− 𝑡
𝑅1𝐶1

)

+
𝛥𝜓𝑠
𝑅2

exp
(

− 𝑡
𝑅2𝐶2

)

+ 𝑃1 exp(−𝑃2𝑡). (24)

Here, superscript ‘‘𝑆’’ refers to fitting functions of the different current
densities in the original SPECS method in order to distinguish them
from the numerical evaluations of 𝑗𝐸𝐷𝐿(𝑡), 𝑗𝐹 (𝑡) and 𝑗𝑇 (𝑡) obtained from
simulations [Eqs. (17), (18), and (21)]. The fitting parameters 𝑅1(𝜓𝑠),
𝑅2(𝜓𝑠), 𝐶1(𝜓𝑠), 𝐶2(𝜓𝑠), 𝑃1(𝜓𝑠), and 𝑃2(𝜓𝑠) were determined by nonlinear
least squares fitting of the footprint current densities at each potential
step by minimizing the objective function 𝛿 defined as [56],

𝛿 =
𝑁𝑠
∑

𝑖=1

{

[

𝑗𝑇 (𝑡𝑖) − 𝑗𝑆𝑇 (𝑡𝑖)
] 𝛥𝑡𝑖
𝑡𝑒

}2
(25)

here 𝛥𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 is the adaptive time step. This definition of
ensured that the results were unaffected by the exact size of the

daptive time steps taken by the time-dependent solver.
A genetic algorithm solver was used for this optimization prob-

em [57]. For each fitting trial, the algorithm randomly generated
n initial population of 200 fitting parameter values. During each
eneration, a portion of the existing population was selected, based on
he objective function 𝛿, to generate a new population of 200 fitting
arameter values. Convergence was reached if (i) the average relative
hange in the best objective function 𝛿 over 200 generations was less
han 10−5, or (ii) 105 generations had been produced [57].

. Results and discussion

.1. SPECS simulation and original SPECS fitting model

Fig. 2(a) plots the temporal evolution of the imposed potential
𝑠(0, 𝑦, 𝑧, 𝑡) given by Eq. (14) during a charging/discharging cycle for
umerical simulations of the SPECS method. It involved a series of
mall potential steps of 𝛥𝜓𝑠 = 0.04 V with equilibration time 𝑡𝑒 = 0.4
. To avoid discontinuity in the potential 𝜓(𝐫, 𝑡) and the associated
umerical instabilities at the transition from one step to another,
he potential step was smoothed using a polynomial function with a
ontinuous second order derivative during a transition time 𝑡𝑡 = 0.5 ms,
s developed previously [14].

Fig. 2(b) plots the numerically simulated total footprint current
ensity 𝑗𝑇 (𝑡) resulting from the imposed potential 𝜓𝑠(0, 𝑦, 𝑧, 𝑡). Fig. 2
lso plots the simulated footprint current densities due to (c) EDL
ormation 𝑗 (𝑡) [Eqs. (17) and (21)] and (d) Faradaic reactions 𝑗 (𝑡)
𝐸𝐷𝐿 𝐹 d
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Eqs. (18) and (21)] such that 𝑗𝑇 (𝑡) = 𝑗𝐸𝐷𝐿(𝑡) + 𝑗𝐹 (𝑡). Here, the current
ensities were recorded at intervals based on adaptive time steps,
iving 129 data points per potential step for the fitting analysis of the
PECS method.

Fig. 3 compares the numerically simulated Faradaic footprint cur-
ent density 𝑗𝐹 (𝑡) [Eqs. (18) and (21)] with the fitted current density
𝑆
𝐹 (𝑡) using the original SPECS fitting function [Eq. (10)] (a) at 𝜓𝑠 =
.4 V during charging and (b) at 𝜓𝑠 = 0 V during discharging, with
otential steps 𝛥𝜓𝑠 = 0.04 V. Here, the simulated current density 𝑗𝐹 (𝑡)

showed significant discrepancies with the fitted current density 𝑗𝑆𝐹 (𝑡) at
oth potentials. At 𝜓𝑠 = 0 V in particular, the fitted Faradaic current
ensity 𝑗𝑆𝐹 (𝑡) failed to capture the spike and the rapid decay of the
imulated current density 𝑗𝐹 (𝑡) within 0.02 s after the imposed potential
tep. Fig. 3 then plots log|𝑗𝐹 (𝑡)| as a function of time 𝑡 (c) at 𝜓𝑠 = 0.4

during charging and (d) at 𝜓𝑠 = 0 V during discharging. In both
ases, log|𝑗𝐹 (𝑡)| featured a clear change in slope during the potential
tep, and it approached separate asymptotes (dashed lines) on either
ide of this inflection point. This suggests that the Faradaic footprint
urrent density 𝑗𝐹 (𝑡) in a porous pseudocapacitive electrode featured
wo distinct relaxation time constants. Thus, the expression of Eq. (10),
alidated for planar electrodes, should be modified.

.2. Modified SPECS fitting model

In light of the previous observations, the original SPECS fitting
unction given by Eq. (10) for the Faradaic footprint current density
as revised to include two exponential decays, i.e.,
𝑀
𝐹 (𝑡) = 𝑗𝑀𝐹1(𝑡) + 𝑗

𝑀
𝐹2(𝑡) = 𝑃1 exp(−𝑃2𝑡) + 𝑃3 exp(−𝑃4𝑡) (26)

here superscript ‘‘𝑀 ’’ refers to the modified SPECS fitting model.
ere, 𝑗𝑀𝐹1(𝑡) represents the surface-controlled Faradaic footprint current
ensity due to reversible redox reactions occurring at or near the
lectrode/electrolyte interface and limited by interfacial charge transfer
inetics [5,58]. Similarly, 𝑗𝑀𝐹2(𝑡) represents the diffusion-controlled
aradaic footprint current density due to ion intercalation/deintercalatio
n/out of the electrode spherical particles and limited by solid state ion
iffusion [5,58]. Thus, the fitting function of the SPECS method for the
otal footprint current density response to an imposed potential step
𝜓𝑠 in a porous pseudocapacitive electrode is now written as,

𝑀
𝑇 (𝑡) =

𝛥𝜓𝑠
𝑅1

exp
(

− 𝑡
𝑅1𝐶1

)

+
𝛥𝜓𝑠
𝑅2

exp
(

− 𝑡
𝑅2𝐶2

)

+ 𝑃1 exp(−𝑃2𝑡) + 𝑃3 exp(−𝑃4𝑡).
(27)

The rest of the fitting procedure was the same as that previously
described. Here, Eq. (27) included four time constants namely (i) the
EDL time constant 𝜏𝐸𝐷𝐿1(𝜓𝑠) = 𝑅1(𝜓𝑠)𝐶1(𝜓𝑠) associated with fast EDL
formation at the so-called geometric surface, (ii) the EDL time constant
𝜏𝐸𝐷𝐿2(𝜓𝑠) = 𝑅2(𝜓𝑠)𝐶2(𝜓𝑠) associated with slower EDL formation at
he electrode/electrolyte interface within the porous electrode, (iii)
he Faradaic time constant 𝜏𝐹1(𝜓𝑠) = 1∕𝑃2(𝜓𝑠) depending on the rate
f interfacial charge transfer kinetics in surface-controlled Faradaic
eactions, and (iv) the Faradaic time constant 𝜏𝐹2(𝜓𝑠) = 1∕𝑃4(𝜓𝑠)
epresenting the diffusion time constant 𝜏𝑑 associated with diffusion-
ontrolled Faradaic reactions [14]. As such, 𝜏𝐸𝐷𝐿1(𝜓𝑠) and 𝜏𝐹1(𝜓𝑠) were
xpected to be smaller than 𝜏𝐸𝐷𝐿2(𝜓𝑠) and 𝜏𝐹2(𝜓𝑠), respectively. The
itting parameters 𝑅1(𝜓𝑠), 𝑅2(𝜓𝑠), 𝐶1(𝜓𝑠), 𝐶2(𝜓𝑠), 𝑃2(𝜓𝑠), and 𝑃4(𝜓𝑠)
ere positive real numbers, while 𝑃1(𝜓𝑠) and 𝑃3(𝜓𝑠) were positive
uring charging and negative during discharging.

Fig. 4 compares the numerically simulated (a, b) total 𝑗𝑇 (𝑡), (c, d)
DL 𝑗𝐸𝐷𝐿(𝑡), and (e, f) Faradaic 𝑗𝐹 (𝑡) footprint current densities (same
s in Fig. 2) with their respective fit (a, b) 𝑗𝑀𝑇 (𝑡), (c, d) 𝑗𝑀𝐸𝐷𝐿(𝑡), and
e, f) 𝑗𝑀𝐹 (𝑡) using the modified SPECS fitting function [Eq. (27)] at
𝑠 = 0.4 V during charging and 𝜓𝑠 = 0 V during discharging, with
otential steps 𝛥𝜓𝑠 = 0.04 V. Here, the numerically simulated current
ensities 𝑗 (𝑡), 𝑗 (𝑡), and 𝑗 (𝑡) were closely matched by the fitted
𝑇 𝐸𝐷𝐿 𝐹
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Fig. 2. Temporal evolution of (a) the imposed potential 𝜓𝑠(0, 𝑦, 𝑧, 𝑡) [Eq. (14)] with step size 𝛥𝜓𝑠 = 0.04 V and equilibration time 𝑡𝑒 = 0.4 s and resulting (b) total 𝑗𝑇 (𝑡), (c) EDL
𝐸𝐷𝐿(𝑡), and (d) Faradaic 𝑗𝐹 (𝑡) footprint current densities [Eqs. (17), (18), and (21)] obtained with the SPECS method.
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a

urrent densities 𝑗𝑀𝑇 (𝑡), 𝑗𝑀𝐸𝐷𝐿(𝑡), and 𝑗𝑀𝐹 (𝑡) retrieved from the modified
PECS fitting function at both potentials within the entire time range,
nlike from the original SPECS fitting function (Fig. 3).

Fig. 5 plots the EDL footprint current densities at the geometric
urface 𝑗𝑀𝐸𝐷𝐿1(𝑡) and at the porous surface 𝑗𝑀𝐸𝐷𝐿2(𝑡) as well as the

surface-controlled 𝑗𝑀𝐹1(𝑡) and diffusion-controlled 𝑗𝑀𝐹2(𝑡) Faradaic foot-
print current densities [Eq. (27)] predicted by the modified SPECS
fitting function at 𝜓𝑠 = 0.4 V during charging and 𝜓𝑠 = 0 V during
discharging, with potential steps 𝛥𝜓𝑠 = 0.04 V. Note that the fitted
EDL 𝑗𝑀𝐸𝐷𝐿(𝑡) and Faradaic 𝑗𝑀𝐹 (𝑡) footprint current densities are such that
𝑗𝑀𝐸𝐷𝐿(𝑡) = 𝑗𝑀𝐸𝐷𝐿1(𝑡) + 𝑗𝑀𝐸𝐷𝐿2(𝑡) and 𝑗𝑀𝐹 (𝑡) = 𝑗𝑀𝐹1(𝑡) + 𝑗𝑀𝐹2(𝑡). Immediately
after imposing a potential step, the footprint current densities featured
a spike due to EDL formation, redox reactions, and ion intercala-
tion/deintercalation in/out of the electrode spherical particles [14].
This spike was not captured by the fitting function due to the truncation
performed to obtain Eq. (10) from Eq. (7). Afterwards, 𝑗 (𝑡) decayed
𝐸𝐷𝐿1 |

8 
faster than 𝑗𝐸𝐷𝐿2(𝑡) with respect to time 𝑡 as EDL was forming or
dissolving faster at the geometric surface than at surfaces within the
porous electrode. Therefore, as expected, the time constants were such
that 𝜏𝐸𝐷𝐿1(𝜓𝑠) < 𝜏𝐸𝐷𝐿2(𝜓𝑠) [8–10]. In addition, 𝑗𝐹1(𝑡) decayed rapidly
t low potentials due to fast interfacial charge transfer kinetics in the
aradaic regime but slowly at high potentials due to slow kinetics in
he capacitive regime [39]. By contrast, 𝑗𝐹2(𝑡) decayed slowly at all
otentials due to consistently slow ion intercalation/deintercalation
n/out of the electrode spherical particles and the relatively large time
onstant 𝜏𝐹2(𝜓𝑠).

.3. SPECS fitting parameters interpretation

Fig. 6 plots the fitting parameters 𝑅1(𝜓𝑠), 𝐶1(𝜓𝑠), 𝑅2(𝜓𝑠), and 𝐶2(𝜓𝑠)
ssociated with EDL formation while Fig. 7 plots |𝑃1(𝜓𝑠)|, 𝑃2(𝜓𝑠),
𝑃 (𝜓 )|, and 𝑃 (𝜓 ) associated with Faradaic reactions of the modified
3 𝑠 4 𝑠
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Fig. 3. Numerically simulated Faradaic footprint current density 𝑗𝐹 (𝑡) [Eqs. (18) and (21)] and fitted current density 𝑗𝑆𝐹 (𝑡) using the original SPECS fitting function [Eq. (24)] (a)
at 𝜓𝑠 = 0.4 V during charging and (b) at 𝜓𝑠 = 0 V during discharging, with potential steps 𝛥𝜓𝑠 = 0.04 V. (c, d) Data of (a, b) plotted as log|𝑗𝐹 (𝑡)| vs. time 𝑡.
).
SPECS model as functions of potential 𝜓𝑠 during a charging/discharging
cycle between 𝜓𝑠,𝑚𝑖𝑛 = 0 V and 𝜓𝑠,𝑚𝑎𝑥 = 0.4 V with potential steps 𝛥𝜓𝑠 =
0.04 V. First, all eight fitting parameters retrieved independently at each
step formed continuous functions of 𝜓𝑠 and their values obtained for the
charging phase were similar to those of the discharging phase across the
potential window. They were also approximately continuous functions
of 𝜓𝑠, consistent with the results reported in our previous study [14].

Fig. 6(a) and (c) indicate that the footprint resistance 𝑅2(𝜓𝑠) as-
sociated with the porous surface EDL was two orders of magnitude
larger than 𝑅1(𝜓𝑠) associated with the geometric surface EDL. Indeed,
ions from the bulk electrolyte had to transport along tortuous paths
through the porous electrode structure before reaching the surface of
the particles, while they could reach the geometric surface from the
bulk electrolyte without much resistance [8–10]. Similarly, Fig. 6(b)
and (d) indicate that the porous surface EDL footprint capacitance
𝐶2(𝜓𝑠) was one order of magnitude larger than the geometric surface
EDL footprint capacitance 𝐶1(𝜓𝑠). In fact, compared to the geometric
surface, the porous surface accounted for the vast majority of the total
9 
electrode/electrolyte interfacial area [8–10]. These results were con-
sistent with the observations by Dupont and Donne [8–10]. Finally,
Fig. 6(e) and (f) plot the geometric EDL time constant 𝜏𝐸𝐷𝐿1(𝜓𝑠) =
𝑅1(𝜓𝑠)𝐶1(𝜓𝑠) and the porous EDL time constant 𝜏𝐸𝐷𝐿2(𝜓𝑠) = 𝑅2(𝜓𝑠)𝐶2(𝜓𝑠
Here also, the values of each time constant were not only similar
between charging and discharging but also relatively consistent across
the entire potential window. This suggests that the kinetics of EDL
formation, either at the interface of the electrode with the bulk elec-
trolyte (geometric surface) or at the interfacial surface of micropores
and mesopores within the porous electrode (porous surface), did not
vary significantly with changing potential. Moreover, as expected, the
geometric surface was more accessible than the porous surface such
that at any potential 𝜏𝐸𝐷𝐿1(𝜓𝑠) < 𝜏𝐸𝐷𝐿2(𝜓𝑠).

In order to investigate the influence of electrode particle layer
number 𝑁 on the fitting parameters, three cases were compared with
𝑁 = 2.5, 3.5, and 4.5, respectively. Figure S5 in Supplementary Ma-
terials plots the four fitting parameters associated with EDL formation
at the electrode/electrolyte interface: (a) 𝑅 (𝜓 ), (b) 𝐶 (𝜓 ), (c) 𝑅 (𝜓 ),
1 𝑠 1 𝑠 2 𝑠
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Fig. 4. Numerically simulated (a, b) total 𝑗𝑇 (𝑡), (c, d) EDL 𝑗𝐸𝐷𝐿(𝑡), and (e, f) Faradaic 𝑗𝐹 (𝑡) footprint current densities [Eqs. (17), (18), and (21)] along with their respective fit
(a, b) 𝑗𝑀𝑇 (𝑡), (c, d) 𝑗𝑀𝐸𝐷𝐿(𝑡), and (e, f) 𝑗𝑀𝐹 (𝑡) using the modified SPECS fitting function [Eq. (27)] at 𝜓𝑠 = 0.4 V during charging and at 𝜓𝑠 = 0 V during discharging, with potential
steps 𝛥𝜓𝑠 = 0.04 V. Insets show the rapid changes between 0 and 0.02 s.
s
f
b
w

and (d) 𝐶2(𝜓𝑠). Here, the porous surface area 𝐴𝐵𝐸𝑇 ,2 increased with
larger particle layer number [Fig. 1(c)]. For example, the three cases
provided 𝐴𝐵𝐸𝑇 ,2 of 176.7, 265.1, and 353.4 nm2, respectively. As the
porous surface area available for EDL formation increased, the porous
surface EDL footprint capacitance 𝐶2(𝜓𝑠) increased correspondingly
[Figure S5(d)]. By contrast, the geometric surface area 𝐴𝐵𝐸𝑇 ,1 remained
the same at 44.2 nm2 regardless of particle layer number [Fig. 1(b)].
Therefore, all three cases had similar geometric surface EDL footprint
capacitances 𝐶1(𝜓𝑠) [Figure S5(b)]. The same applied for the footprint
resistances associated with the geometric surface 𝑅1(𝜓𝑠) and the porous
surface 𝑅2(𝜓𝑠) EDL [Figures S5(a) and S5(c)], chiefly because the main
factors contributing to the resistance of EDL formation, such as ion
transport properties in the electrolyte, or the tortuosity of the porous
i

10 
pseudocapacitive electrode, remained the same regardless of particle
layer number.

Fig. 7(a) and (b) indicate that |𝑃1(𝜓𝑠)| and 𝑃2(𝜓𝑠) were strongly
dependent on the rate of interfacial charge transfer kinetics but were
the same at any given potential 𝜓𝑠 during charging and discharging.
Indeed, the diminishing kinetics rate with increasing potential and the
transition from the Faradaic to the capacitive regime led to a sharp
decrease in both |𝑃1(𝜓𝑠)| and 𝑃2(𝜓𝑠). In fact, according to our previous
tudy [14] validating the original SPECS fitting function [Eq. (24)]
or 1D planar pseudocapacitive electrodes, |𝑃1(𝜓𝑠)| was a function of
oth 𝛬 and 𝑏1, while 𝑃2(𝜓𝑠) was a function of 𝑏1 only. Specifically,
ith increasing potential, the interfacial charge transfer resistance 𝑅𝑐𝑡

ncreased but the diffusion resistance 𝑅 was relatively constant, such
𝑑
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Fig. 5. EDL footprint current densities at the geometric surface 𝑗𝑀𝐸𝐷𝐿1(𝑡) and at the porous surface 𝑗𝑀𝐸𝐷𝐿2(𝑡) as well as surface-controlled 𝑗𝑀𝐹1(𝑡) and diffusion-controlled 𝑗𝑀𝐹2(𝑡) Faradaic
ootprint current densities [Eq. (27)] predicted by the modified SPECS fitting function (a, c) at 𝜓𝑠 = 0.4 V during charging and (b, d) at 𝜓𝑠 = 0 V during discharging, with potential
teps 𝛥𝜓𝑠 = 0.04 V. Note that the fitted EDL 𝑗𝑀𝐸𝐷𝐿(𝑡) and Faradaic 𝑗𝑀𝐹 (𝑡) footprint current densities are such that 𝑗𝑀𝐸𝐷𝐿(𝑡) = 𝑗𝑀𝐸𝐷𝐿1(𝑡) + 𝑗

𝑀
𝐸𝐷𝐿2(𝑡) and 𝑗𝑀𝐹 (𝑡) = 𝑗𝑀𝐹1(𝑡) + 𝑗

𝑀
𝐹2(𝑡).
b
d

hat 𝛬 decreased according to Eq. (9). This meant that 𝑏1, as the first
oot of Eq. (8), decreased as well. As a result, both |𝑃1(𝜓𝑠)| and 𝑃2(𝜓𝑠)
ecreased sharply with increasing potential, according to Eq. (11).
inally, a parametric study was performed where the reaction rate con-
tant 𝑘0 varied between 10−10 and 10−8 m2.5 mol−0.5 s−1 for different
ases. Here, increasing 𝑘0 increased the rate of interfacial charge trans-
er kinetics and resulted in faster surface redox reactions. Consequently,
oth |𝑃1(𝜓𝑠)| and 𝑃2(𝜓𝑠) increased. These results are described in detail
n Supplementary Materials (see Section S.3.1).

Fig. 7(c) and (d) indicate that |𝑃3(𝜓𝑠)| and 𝑃4(𝜓𝑠) did not vary signif-
icantly with changing potential. This suggests that the transport rate of
ion intercalation/deintercalation in/out of the electrode spherical par-
ticles and the associated time constants were relatively constant across
the entire potential window [39]. Indeed, the local concentration of Li+
ions in the electrode 𝑐1,𝑃 (𝐫, 𝑡) was governed by the 3D transient mass

diffusion equation (see Supplementary Materials) and the ion diffusion

11 
coefficient was assumed to be constant with 𝐷1,𝑃 = 10−14 m2 s−1 for the
aseline case. Finally, a parametric study was performed where the ion
iffusion coefficient 𝐷1,𝑃 varied between 10−14 and 10−12 m2 s−1 for

different cases. Here, increasing 𝐷1,𝑃 increased the rate of solid state
ion diffusion. Consequently, both |𝑃3(𝜓𝑠)| and 𝑃4(𝜓𝑠) increased. These
results are described in detail in Supplementary Materials (see Section
S.3.2).

Fig. 8(a) plots the numerically simulated cyclic voltammograms
after imposing the potential 𝜓𝑠(0, 𝑦, 𝑧, 𝑡) given by Eq. (15) in the same
porous pseudocapacitive electrode as that simulated in Figs. 6 and
7. The potential window ranged from 𝜓𝑠,𝑚𝑖𝑛 = 0 V to 𝜓𝑠,𝑚𝑎𝑥 =
0.4 V, and the scan rate was chosen as 𝜈 = 𝛥𝜓𝑠∕𝑡𝑒 = 0.1 V s−1,
both consistent with the conditions in the SPECS simulations. The
overall shapes of the simulated cyclic voltammograms were similar
to those typically measured experimentally [59]. Fig. 8(b) and (c)

compare the EDL footprint capacitances for the geometric surface
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Fig. 6. Fitting parameters of the modified SPECS model associated with EDL formation (a) 𝑅1(𝜓𝑠), (b) 𝐶1(𝜓𝑠), (c) 𝑅2(𝜓𝑠), and (d) 𝐶2(𝜓𝑠) along with EDL time constants (e)
𝐸𝐷𝐿1(𝜓𝑠) = 𝑅1(𝜓𝑠)𝐶1(𝜓𝑠) and (f) 𝜏𝐸𝐷𝐿2(𝜓𝑠) = 𝑅2(𝜓𝑠)𝐶2(𝜓𝑠) as functions of potential 𝜓𝑠 during a charging/discharging cycle between 𝜓𝑠,𝑚𝑖𝑛 = 0 V and 𝜓𝑠,𝑚𝑎𝑥 = 0.4 V with potential
teps 𝛥𝜓𝑠 = 0.04 V.
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1(𝜓𝑠) and the porous surface 𝐶2(𝜓𝑠) obtained from SPECS using the
odified fitting function with the differential capacitances 𝐶𝑑𝑖𝑓𝑓 ,1(𝜓𝑠)

nd 𝐶𝑑𝑖𝑓𝑓 ,2(𝜓𝑠) calculated from cyclic voltammograms [Eq. (22)]. Good
greement was obtained between the two independent methods during
oth charging and discharging. Moreover, Fig. 8(d) compares the total
DL footprint capacitance 𝐶𝐸𝐷𝐿(𝜓𝑠) calculated as the sum of 𝐶1(𝜓𝑠) and
2(𝜓𝑠) [Eq. (3)] with the differential total EDL footprint capacitance
𝑑𝑖𝑓𝑓 ,𝐸𝐷𝐿(𝜓𝑠) calculated from cyclic voltammograms [Eq. (23)]. Here
lso, 𝐶𝐸𝐷𝐿(𝜓𝑠) was in good agreement with 𝐶𝑑𝑖𝑓𝑓 ,𝐸𝐷𝐿(𝜓𝑠) during both
harging and discharging. These results demonstrate that the modified
PECS method [Eq. (27)] can accurately predict the contributions from
DL formation both at the geometric surface and at the porous surface
o the differential EDL capacitance.
12 
.4. MUSCA method

The MUSCA method was applied to the various fitted footprint
urrent densities 𝑗𝑀𝑖 (𝑡) at a given scan rate 𝜈 to obtain the mean
ootprint current densities 𝑗𝐴𝑖 (𝜓𝑠) at potential 𝜓𝑠 expressed as,

𝐴
𝑖 (𝜓𝑠) =

1
𝑡𝜈 ∫

𝑡𝜈

0
𝑗𝑀𝑖 (𝑡)d𝑡 (28)

ith subscript 𝑖 = 𝑇 , 𝐸𝐷𝐿, 𝐸𝐷𝐿1, 𝐸𝐷𝐿2, 𝐹 , 𝐹1, or 𝐹2. Then, cyclic
oltammograms were reconstructed by plotting 𝑗𝐴𝑖 (𝜓𝑠) vs. 𝜓𝑠. Finally,
he integral footprint capacitance 𝐶𝐴𝑖𝑛𝑡,𝑖(𝜈) associated with each charge
torage mechanism at scan rate 𝜈 was determined as [42],

𝐴
𝑖𝑛𝑡,𝑖(𝜈) = ∮

𝑗𝐴𝑖 (𝜓𝑠)
2𝜈(𝜓𝑠,𝑚𝑎𝑥 − 𝜓𝑠,𝑚𝑖𝑛)

d𝜓𝑠. (29)
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Fig. 7. Fitting parameters of the modified SPECS model associated with Faradaic reactions (a) |𝑃1(𝜓𝑠)|, (b) 𝑃2(𝜓𝑠), (c) |𝑃3(𝜓𝑠)|, and (d) 𝑃4(𝜓𝑠) as functions of potential 𝜓𝑠 during
charging/discharging cycle between 𝜓𝑠,𝑚𝑖𝑛 = 0 V and 𝜓𝑠,𝑚𝑎𝑥 = 0.4 V with potential steps 𝛥𝜓𝑠 = 0.04 V.
Fig. 9(a) indicates that the total 𝑗𝐴𝑇 (𝜓𝑠), EDL 𝑗𝐴𝐸𝐷𝐿(𝜓𝑠), and Faradaic
𝐴
𝐹 (𝜓𝑠) mean footprint current densities obtained from the MUSCA
ethod within the potential window from 𝜓𝑠,𝑚𝑖𝑛 = 0 V to 𝜓𝑠,𝑚𝑎𝑥 =

0.4 V at scan rate 𝜈 = 0.1 V s−1 were comparable with the nu-
erically simulated cyclic voltammograms during both charging and
ischarging. Fig. 9(b) and (c) proceed to plot the reconstructed cyclic
oltammograms associated with each charge storage mechanism at
can rates 𝜈 = 0.1 V s−1 and 𝜈 = 10 V s−1. Finally, Fig. 9(d)
lots the corresponding integral footprint capacitance 𝐶𝐴𝑖𝑛𝑡,𝑖(𝜈) for scan

rates 𝜈 from 0.1 to 10 V s−1 [Eq. (29)]. Note that the chosen scan
rates were higher than those typically imposed in experimental mea-
surements. This was attributed to the fact that the simulated elec-
trode was thin and the influence of resistive losses and ion diffusion
limitations only became apparent at such high scan rates. In fact,
similar behavior was also observed in our previous studies simulating
CV measurements in planar pseudocapacitive electrodes [37] and in
13 
ordered carbon spheres EDLC electrodes [55]. Fig. 9(d) suggests that
the integral total footprint capacitance 𝐶𝐴𝑖𝑛𝑡,𝑇 (𝜈) decreased with increas-
ing scan rate. The integral geometric surface EDL footprint capacitance
𝐶𝐴𝑖𝑛𝑡,𝐸𝐷𝐿1(𝜈) remained nearly constant across the range of scan rates
considered. This was due to the fast transport and adsorption of ions
at the geometric surface [60]. By contrast, the integral porous surface
EDL footprint capacitance 𝐶𝐴𝑖𝑛𝑡,𝐸𝐷𝐿2(𝜈) decreased monotonously with
increasing scan rate due to slower ion transport through the tortuous
porous electrode. On the other hand, the integral surface-controlled
Faradaic footprint capacitance 𝐶𝐴𝑖𝑛𝑡,𝐹1(𝜈) first remained constant, then
decreased as the scan rate increased above 0.2 V s−1 when the rate of
interfacial charge transfer kinetics became limiting. Finally, the integral
diffusion-controlled Faradaic footprint capacitance 𝐶𝐴𝑖𝑛𝑡,𝐹2(𝜈) decreased
monotonously with increasing scan rate due to rate-limited transport
associated with solid state ion diffusion in the particle [60]. At low
scan rates, EDL formation and diffusion-controlled Faradaic reactions
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Fig. 8. (a) Numerically simulated cyclic voltammograms after imposing the potential 𝜓𝑠(0, 𝑦, 𝑧, 𝑡) given by Eq. (15) in the porous pseudocapacitive electrode within a potential
indow from 𝜓𝑠,𝑚𝑖𝑛 = 0 V to 𝜓𝑠,𝑚𝑎𝑥 = 0.4 V at scan rate 𝜈 = 0.1 V s−1. Comparison of capacitances (b) 𝐶1(𝜓𝑠), (c) 𝐶2(𝜓𝑠), and (d) 𝐶𝐸𝐷𝐿(𝜓𝑠) obtained from SPECS using the modified

itting function with differential capacitances (b) 𝐶𝑑𝑖𝑓𝑓 ,1(𝜓𝑠), (c) 𝐶𝑑𝑖𝑓𝑓 ,2(𝜓𝑠), and (d) 𝐶𝑑𝑖𝑓𝑓 ,𝐸𝐷𝐿(𝜓𝑠) calculated from cyclic voltammograms [Eqs. (22) and (23)].
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ithin the porous electrode contributed to the majority of the total
harge storage. However, as the scan rate increased, EDL formation
nd Faradaic reactions at the geometric surface became the dominant
harge storage mechanism.

. Conclusion

In a previous study, we numerically validated the SPECS method
roposed by Dupont and Donne [8–10] against numerical simulations
or 1D planar pseudocapacitive electrodes. However, in this follow-up
tudy, numerical simulations showed that the original SPECS fitting
unction could not adequately describe the current response in 3D
orous pseudocapacitive electrodes. Therefore, the SPECS method was
odified with a new fitting function to account for contributions from
DL formation at the electrode surface or at the electrode/electrolyte
nterface within the porous electrode, and from surface-controlled or

iffusion-controlled Faradaic reactions. The modified SPECS method

14 
as successfully validated against numerical simulations for 3D porous
seudocapacitive electrodes, based on the modified Poisson–Nernst–
lanck (MPNP) model coupled with the Frumkin–Butler–Volmer theory
o reproduce experimental data obtained from the SPECS method.
pecifically, the numerically simulated total 𝑗𝑇 (𝑡), EDL 𝑗𝐸𝐷𝐿(𝑡), and
aradaic 𝑗𝐹 (𝑡) current densities were properly fitted by the current
ensities 𝑗𝑀𝑇 (𝑡), 𝑗𝑀𝐸𝐷𝐿(𝑡), and 𝑗𝑀𝐹 (𝑡) retrieved from the modified SPECS
itting function. Furthermore, the capacitances associated with EDL
ormation obtained from SPECS were in good agreement with those ob-
ained from CV simulations. Finally, cyclic voltammograms were recon-
tructed from the MUSCA method. The integral capacitances associated
ith various charge storage mechanisms illustrated the faster kinetics
f EDL formation at the geometric surface vs. at the porous surface,
nd the faster kinetics of surface-controlled vs. diffusion-controlled
aradaic reactions. Overall, this modified fitting function makes the
PECS method more accurate in distinguishing the different charge
torage mechanisms in actual porous pseudocapacitive electrodes.
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Fig. 9. (a) Comparison of total 𝑗𝐴𝑇 (𝜓𝑠), EDL 𝑗𝐴𝐸𝐷𝐿(𝜓𝑠), and Faradaic 𝑗𝐴𝐹 (𝜓𝑠) mean footprint current densities obtained from the MUSCA method [Eqs. (13) and (28)] with the
umerically simulated cyclic voltammograms at scan rate 𝜈 = 0.1 V s−1. Reconstructed cyclic voltammograms associated with each charge storage mechanism at scan rates (b)
𝜈 = 0.1 V s−1 and (c) 𝜈 = 10 V s−1. (d) Corresponding integral footprint capacitance 𝐶𝐴

𝑖𝑛𝑡,𝑖(𝜈) for scan rates 𝜈 from 0.1 to 10 V s−1 [Eq. (29)].
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