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Abstract
Radiation characteristics of fused quartz containing bubbles (10 % porosity) are determined using
inverse method based on theoretical and experimental bi-directional transmittances and reflectances.
The Discrete Ordinates Method is used to solve the RTE. The internal and external interfaces are
assumed to be optically smooth. The importance of the choice of the interpolation law has been
shown, exponential law is appropriate in directions near the normal where there are large variations of
intensity. The influence of thickness on the results are studied.

Nomenclature

g Henyey-Greenstein phase function parameter
I � intensity of the collimated incident beam
I spectral intensity of radiation

y
�

sample thickness

n real part of the complex index of refraction of
       the quartz continuous phase
P phase function
r12 reflectivity at the interface air-foam
r21 reflectivity at the interface foam-air

T transmittance or reflectance

Greek symbols
�
 volumetric extinction coefficient

���
i,
�

j Kronecker's delta function
            

���
i,
�

j =1 if � i= � j and 0 otherwise� volumetric absorption coefficient� cosine of the polar angle	
angle defined between the incident and

scattering direction	 

divergence angle of incident beam� volumetric scattering coefficient

� volumetric scattering albedo coefficient

Subscripts

e experimental
t theoretical

monochromatic wavelength

1. Introduction

Foams and cellular materials bear practical importance in many applications. Examples
range from food processes where foams can disrupt the process to space and building
applications where they are used as insulating materials. In materials processing and
manufacturing situations such as ceramics and glass manufacturing, gas bubbles can form in
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the liquid and solid phases thus affecting the product quality. Thermal radiation in cellular
materials is a predominant mode of energy transfer in most of these applications. Thus, the
modeling of radiative transfer in cellular materials is of primary importance for the
optimization of the performance of the engineering applications. An extensive review of
radiative transfer in dispersed media was carried out by Viskanta and Mengüç in 1989 [1],
and by Baill is and Sacadura in 2000 [2]. A porous medium is often treated as continuous,
homogeneous, absorbing, and scattering medium. In order to evaluate the radiative heat
transfer, radiation characteristics such as the extinction coeff icient, the scattering albedo, and
the single scattering phase function are required. They can be determined by different
approaches :
- radiation characteristics can be predicted from porosity and bubble size distribution by

considering a random arrangement of particles using for example Mie theory or geometric
optics laws assuming independent scattering [3,4,5,6,7];

- Other methods consist of determining the radiation characteristics from a Monte Carlo
approach at the local microscopic scale, taking into account the complex morphology of
the porous medium [8, 9, 10, 11]

- Finally, other approaches are based on experimental measurements of reflectance and
transmittance of the medium at macroscopic scale combined with an inverse method [12,
13, 14].

The present study is concerned with radiation characteristics of fused quartz containing
bubbles (figure 1). Only a few studies have been reported on such media. Pilon and Viskanta
[6] have studied the effect of volumetric void fraction and of the bubble size distribution on
the radiation characteristics of semitransparent media containing gas bubbles using the model
proposed by Fedorov and Viskanta [7] using the anomalous-diffraction approximation. Wong
and Mengüç [11] used a ray-tracing method in a porous medium made of air spheres in a
substrate to study the depolarization of radiation by the medium. Moreover the earlier model
of water foam by Dombrovsky [15] can be also mentioned. The objective of this work is to
determine the radiation characteristics of such media using an inverse method. Until now,
studies have been concerned only with high porosity media (larger than 80 %) with negligible
reflection at the interfaces. In this work the porosity is approximately 10 % and reflectivities
must be accounted for in the model of the inverse method. The porosity being small, the effect
of open bubbles at the interfaces is neglected and the surface is assumed to be optically
smooth. Note that Wong and Mengüç [11] also treated surfaces were as optically smooth.
Moreover in the study by Fedorov and Viskanta [7] the external surface reflectivity (r12)
between the air and the foam layer was also calculated assuming interfaces optically smooth
using the Fresnel equations. However, due to the presence of scatterers (bubbles) in the foam
layer, the radiation field inside the layer was assumed to be isotropic and the internal surface
reflectivity r21 was calculated by considering a diffuse foam/air interface.

The present study focuses on the inverse method applied to cellular materials with small
porosities. First, the inverse method using experimental and theoretical transmittance and
reflectance is briefly described. Then the model used to calculate transmittances and
reflectances, based on the Discrete Ordinates Method (DOM) to solve the RTE is described
taking into account reflectivities at the interfaces. Due to the optically smooth interfaces with
Fresnel equations, interpolation laws are used to calculate intensity in the directions of the
quadrature. Finally results obtained for three samples with different thicknesses (3 mm, 5 mm,
and 9.9 mm) are given. The influence of the different types of interpolations on the inversion
results is studied. Moreover, the condition number indicating the ability of the inverse method
to identify radiation characteristics is studied as a function of the sample thickness. The



comparison between experimental and theoretical transmittances and reflectances enables one
to study the validity of the modeling of the boundary conditions at the interfaces.

2. Parameter identification method

The radiative characteristics of semitransparent media are the single scattering albedo � ,
the extinction coefficient 

�
 and single scattering phase function P. The scattering phase

function was assumed to follow the Henyey-Greenstein form involving the asymmetry factor
g �  and expressed as:� � � �
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gg
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As a result, there are three unknown parameters: (pk)k=1,3 =(  , � , g)

For a given sample, the parameter identification method used is based upon:
- the experimental data of bi-directional transmittances and reflectances (Tei) obtained for

several measurement directions (i),
- the theoretical bi-directional transmittances and reflectances (Tti) calculated for the same

directions than the ones of the experimental data

For each wavelength the goal is to determine the radiative parameters (pk)k=1,3 =(  , � , g),
which minimize the quadratic relative differences (F) between the measured and calculated
transmittances over the N measurements:� �� � 2

1
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The transmittances or reflectances � ( � ) for normal incidence are defined by the following
expression:� � � �

00 �
��

dI

I
T � (3)

where I is the transmitted or reflected intensity and I
0
 the intensity of the collimated beam

normally incident onto the sample within a solid angle d �
0.

The method adopted to achieve this minimization is the Gauss linearization method [16]
which minimizes F by setting to zero the derivatives with respect to each of the unknown
parameters. As the system is non-linear, an iterative process is performed over m iterations:
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The resolution of the system of equations (4) permits to obtain the parameter variationG
pk

m to add to each parameter pk
m for each iteration m. The converged solution is reached

when m
kp

G
<10-3. The matrix on the left hand side consists of the products of the sensitivity



coefficients (
k

ti

p

T�
�

) calculated from the theoretical model. The condition number CN of this

matrix (M) can be calculated from the following relation:
 � � MMMCN .1�� (5)

where M  is the norm of the matrix, calculated from the elements aij of the matrix as

follows: �� �� n

jni
ijaM

1,1
max (6)

The condition number CN is always larger than one. The larger the condition number the
worse ill-conditioned the system is and small changes in the measurements, result in very
large changes in the solution vector (� pk); it is then difficult to simultaneously determine all
the unknown parameters. A bad condition number occurs when at least two of the sensitivity
coefficients are quasi-linearly interdependent or when at least one is very small or very large
compared to the others. The analysis of sensitivity coefficients and condition number is a
powerful tool for understanding the physical behavior of the problem and for studying the
feasibility of simultaneous determination of the unknown parameters [17].

The experimental spectral bi-directional transmittance data are obtained from an
experimental setup that includes a Fourier-transform infrared spectrometer (FTS 60 A, Bio-
Rad Inc) [14, 18]. The radiation emitted by the source is modulated and the incident radiation
is normal to the sample with a divergence of half-angle 	 0=1.27o.

3. Theoretical model

The theoretical spectral bi-directional transmittances and reflectances are computed by
solving the RTE based on the following assumptions: the radiation transfer is assumed to be
(i) one-dimensional, (ii ) azimuthal symmetry prevails, (iii) the medium emission term can be
disregarded thanks to the radiation modulation and the phase sensitive detection.

3.1 RTE and boundary conditions

With these conditions, the radiative transfer equation can be written as follows:
 � 
 �
','',
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� ������� ������
dPyII

y

I
(7)

The boundary conditions are obtained by assuming that the interfaces are optically smooth,
i.e., surface roughness is small compared with the wavelength of radiation and reflections are
specular. Moreover, the void fraction is small and the effect of open bubbles at the sample
surface is neglected. Then, the boundary conditions associated with the RTE for normal
incident radiation are the following:� � � � � � � �

0,12

2

21 ,01,0,0
0 ���� ����� � IrnIrI � !"#$%&'(      )  >0 (8)* + , +-- .. /0 ,, 21 yy IrI 11      2 <0 (9)

where r12 and r21 are the interfacial reflectivities at the air/foam foam/air interfaces,
respectively. The Kronecker' s delta function is denoted 3 4 0, 4  (=1 if 5 = 5 0 and =0 otherwise)
with 5 =cos( 6 ) and 5 0=1 in the case of normal incidence.

When the absorption index is negligible the reflectivities are determined entirely from the
refractive index n7  [19]. This is the case for fused quartz in the spectral range of interest from



1.67 to 4.76 � m. The external reflectivity (r12) can be calculated by the Fresnel’s law of
reflection. In the case of normal incident radiation it simpli fies to [19]:� �

� �2
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�
n

n
r (10)

Due to the presence of a large number of scatterers (bubbles) in the condensed phase, the
radiation field inside the layer does not reach the face normally. Thus the internal surface
reflectivity r21 is given by [19]:� �� � � �� � ���
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the slab and A  is the refraction angle at the interface. The angles B and A  are defined by Snell' s

law: CDE sinsin Fn

3.2 Method of solution of the RTE

The discrete ordinates method with a quadrature over 24 directions is applied to solve the
integro-differential radiative transfer equation (Eq. 7). The quadrature used is a combination
of two Gaussian quadratures and allows a concentration of ordinates in the neighborhood of
the incident direction suitable for forward scattering materials. The spherical space is
discretized into 12 directions for the positive range of G  and 12 other symmetric directions for
the negative G . More details about this quadrature can be found in Ref. [18]. By writing the
radiative transfer equation (Eq.7) for each direction of the quadrature and by replacing the
integral term by a sum over the 24 directions of the quadrature, a system of partial differential
equations is obtained. Previous studies [14, 18] neglected reflection at the interfaces by virtue
of the fact that porosity was fairly large. Thus, a simpler system of equations could be solved
analytically by separating collimated radiation and scattered radiation. In the present study,
the space is discretized in order to solve numerically the above system of partial differential
equations with the associated boundary conditions [Equations (7) to (9)] by the control
volume method. A linear scheme (diamond) is employed to evaluate the radiative intensity in
the control volume [20]. For a number of control volumes larger than 190 the numerical
results were shown to be independent of the number of control volumes.

3.3 Transmitted and reflected intensity calculations

The transmitted and reflected intensities leaving the sample and used to calculate
transmittance and reflectance required in the inverse procedure (Eq. 4), take into account
reflectivities and refraction at the interfaces. They are the following:
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where X i correspond to the direction of the quadrature and X  correspond to the refraction
angle defined by Snell' s law [[\ sinsin W

in



In general, the direction �  is not a direction in the quadrature, except the directions � = � 1.
Moreover, the direction �  depends on the wavelength. To circumvent this difficulty,
interpolation is used to approximate the intensity in the quadrature directions. Different
interpolation laws such as linear and exponential laws are tested their influence on the results
is studied.

4. Results

4.1 Data

Three samples of different thicknesses (3, 5, and 9.9 mm) are studied, all having an
average void fraction of 9.4%. Larger thickness has not been measured due to the assumption
of one dimensional radiative transfer in the medium which could be no longer valid. Figure 1
shows a photograph of a typical sample. The average bubble radius is 14.1�r  mm. As one
can see in figure 1, the bubbles are spherical in shape and randomly distributed. Radiation
characteristics are identified for 337 different wavelengths in the spectral region from 1.67

� m to 4.76 � m. The sample thickness and the real part of the fused quartz complex index of
refraction n�  are required as input data in the identification process. Over the spectral range
from 0.21 to 3.71 � m at 20°C, Malitson [21] fitted experimental data with the following
three-term Sellmeier equation,
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Finally, due to the lack of energy in directions far from the normal direction of the sample
only eight forward directions and three backward directions have been used in the inverse
method.

4.2 Transmittances and reflectances-Influence of interpolation laws

As discussed in part 3, transmittances and reflectances leaving the sample are calculated
for quadrature directions using interpolation laws. The variations of intensity are very
important in directions near the normal direction. Three different intensity variation laws are
tested: (1) linear variation law for all direction intervals, (2) exponential variation law for all
direction intervals, and (3) exponential law to calculate intensity for the two forward
directions nearest to the normal ( � =1.85° and: 3.32°) and the two backward directions nearest
to the normal ( � =178° and176°), where there is great variation of intensity, and linear
variation to calculate intensity in the others directions. Experimental transmittances and
reflectances are compared with theoretical results obtained from inverse method using these
different laws. The results are similar for the three different sample thicknesses. For example,
figure 2 shows the results obtained for the 5 mm thick sample. The transmittance and
reflectance are defined as the ratio of the energy transmitted or reflected by the incident
energy. It can be observed that even if the three first directions are very close to each other
there is great influence of the choice of the interpolation laws to calculate intensity in these
directions due to the great intensity variations. The exponential law is more appropriate to
calculate intensity in the two forward and backward directions nearest to the normal direction,
It induces smallest deviations between experimental and theoretical transmittance and
reflectance. For the intensity calculation in the other directions an exponential law as well as a
linear law can be chosen, it has not great importance. It can be noticed that in the backward
normal direction ( � =180°) deviation remains large. This deviation can be due to the
uncertainty on the refraction index (n� ) value. Indeed the influence of n�  on reflectance in the
normal direction is very significant and a small variation of n�  induces a high variation on the
reflectance.



Remarks:

- The cubic spline interpolation, used by Liou and Wu [22] to calculate radiative transfer in a
multi-layer medium with Fresnel interfaces, has been also tested to approximate the angular
distribution of intensity. This interpolation is not appropriate in this case due to the high
variation of intensity in directions near the normal direction where it induces negative
intensity values.
- The great variation of transmittance observed in the directions near the normal direction and
the anisotropic behavior tends to confirm that internal surface reflectivity r21 should not be
calculated considering a diffuse foam/air interface as assumed by Fedorov and Viskanta [7].

4.3 Radiative characteristics

Radiative characteristics retrieved by inverse method for three samples of different
thickness are shown in figure 3. Only results for the case of exponential interpolation law are
shown, but calculations have shown that deviation between results obtained from exponential
interpolation law and exponential-linear law remains weak, less than 2.5 %. The extinction
coefficient presents a peak around wavelength of 2.7 � m, it is attributed to hydroxyl groups
present as impurities in the fused quartz. It can be observed that the Henyey-Greenstein
parameter remains nearly the same for the three sample thicknesses. In contrast, extinction
coefficient and single scattering albedo are significantly larger for the 3 mm thick sample than
for the 5 and 9.9 mm thick samples. Moreover for 5 and 9.9 mm, results are similar although
they are more oscillations for 5 mm thickness. Consequently, results for 3 mm thick sample
should be considered with caution. In that case, the sample may be too thin to be treated as
homogeneous. Deviation could also be attributed to the fact that the effect of open bubbles at
the sample surface is no longer negligible, i.e., interfaces cannot be treated as optically
smooth. Moreover it has been verified that the uncertainty on the refraction index value is not
responsible for this deviation. Indeed, similar deviations have been observed using different
refraction indices. As discussed before, if the condition number is too large there could be
significant uncertainties on the results. Therefore the values of the condition number are
studied.

4.4 Condition number

Figure 3 shows the condition number calculated for the three sample thicknesses based on
the radiation characteristics determined by inverse method. The condition number varies
greatly as a function of the sample thickness and wavelengths (figure 4). It is more
appropriate for the 9.9 mm thick sample (it is less than 5x104), for the two other sample
thickness it is higher reaching 107 for wavelengths less than 1.8 � m. Figures 3 and 4 indicate
that larger Henyey-Greenstein parameter induces significantly larger condition number. For
wavelengths larger than 2.7 � m, the condition number is satisfactory for the three samples.
Moreover the bad condition number cannot explain the large values of the extinction
coefficient and of the single scattering albedo obtained for the 3 mm thick sample at all
wavelengths.

4. Conclusion

Recently, radiation characteristics of porous medium containing gas bubbles have been
predicted using anomalous-diffraction [6] or using a ray-tracing method [10, 11]. In this work
the determination of radiation characteristics of such media using inverse method is studied.
Until now, radiation characteristics identification method from bi-directional transmittance
and reflectance have been used only for high porosity media (larger than 80 %) with no
reflectivity at the interface. In the present study, the porosity is around of 10 % and
reflectivities at the interfaces are modeled in the radiative model of the inverse method. The



internal and external interfaces are assumed to be optically smooth with specular reflections.
The effect of open bubbles at the sample surface is neglected.

The Discrete Ordinates Method is used to solve the RTE. Due to the refraction at the
interfaces the transmittances and reflectances in the quadrature directions are approached
using interpolation laws. Even if directions near the normal are very close, the importance of
the choice of the interpolation law has been shown, exponential law is more appropriate in
directions near the normal where there are large variations of intensity.

The great variation of transmittance observed in the directions near the normal and the non
isotropic comportment tends to confirm that internal surface reflectivity cannot be calculated
considering a diffuse foam/air interface

The study of the condition number shows the great influence of Henyey-Greenstein
parameter on the condition number.

Some limits of the model have been shown. Indeed if for 5 mm and 9.9 mm sample
thickness, identified radiative parameters are close and tend to show that the model is correct,
the case of 3 mm sample thickness tend to over-estimate extinction and albedo values. The 3
mm sample thickness could be too thin to be treated as homogeneous. Deviation could be also
attributed to the fact that the effect of open bubbles at the sample surface have been neglected
assuming that the interfaces are optically smooth. Such an assumption could be not valid for
small thickness.

In the future it will be interesting for a theoretical model to predict the spectral radiation
characteristics of fused quartz containing gas bubbles and compare them with experimental
data.
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Figure 2. Experimental and theoretical transmittance and reflectance calculated using the three
different types of interpolations (5 mm thick sample).
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