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ABSTRACT
Nanoporous materials consist of nanosize voids embedded

in a solid matrix. The pores can be closed or open and have
various shapes and sizes. Their applications range from optical
and optoelectronics devices to biosensors. In order to effectively
utilize and characterize nanoporous media for these various ap-
plications, models that describe their effective optical properties
are necessary. Numerous effective medium models have been
proposed. However, validations of these models against exper-
imental data are often contradictory and inconclusive. This is-
sue was numerically investigated by solving the two-dimensional
Maxwell’s equations in absorbing nanoporous silicon thin-films.
All interfaces are assumed to be optically smooth and character-
istic pore size is much smaller than the wavelength of incident
radiation so electromagnetic wave scattering by pores can be
safely neglected. The envelope method was then used to retrieve
the effective index of refraction and absorption index from the
computed transmittance. The numerical results agree very well
for both the index of refraction and the absorption index with a
recent model obtained by applying the Volume Averaging The-
ory (VAT) to the Maxwell’s equations. However, commonly used
models such as the Maxwell-Garnett, Bruggeman, parallel, and
series models systematically and sometimes significantly under-
predict the numerical results.

NOMENCLATURE
A,B variables in Equations (9) and (10).

∗Address all correspondence to this author.

c speed of light.
�E electric field vector.
�H magnetic field vector.
k absorption index.
L thickness of a thin-film.
m complex index of refraction, m = n− ik.
n real part of the complex index of refraction.
�n normal vector.
t time.
T transmittance.
N variable in Equation (28).
x x-direction.
y y-direction.
z z-direction.
ε electric permitivity.
φ porosity.
λ wavelength of the electromagnetic wave.
µ magnetic permeability.
�π Poynting vector.
σ electrical conductivity.
ω angular frequency of electromagnetic wave (rad/s).
Subscript
0 refers to vacuum, or an incident property.
1 refers to surroundings in thin-film system.
2 refers to thin-film in thin-film system.
3 refers to substrate in thin-film system.
avg refers to time-averaged value.
c refers to continuous phase.
d refers to dispersed phase (nanopores).
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e f f refers to effective properties.
max refers to envelope of maximum transmittance.
min refers to envelope of minimum transmittance.
x refers to x-direction.
y refers to y-direction.
z refers to z-direction.
c continuous phase.
d dispersed phase.
λ wavelength.

INTRODUCTION
In recent years, porous silicon made by electrochemical

etching of doped single crystal silicon has been the subject of
intense study. Potential applications include biosensors [1–3]
and optical devices including waveguides [4–6], Bragg reflec-
tors [7–13], and Fabry-Perot filters [7, 9, 11, 12, 14]. These op-
tical devices take advantage of interferences and total reflec-
tion caused by differences in optical properties between adja-
cent media. For example, in order to confine and propagate
electromagnetic radiation within a waveguide, the guide region
itself must have a higher index of refraction than the surround-
ing cladding [15]. Bragg reflectors and Fabry-Perot filters are
built by generating alternating layers with prescribed thickness
and index of refraction. This geometry uses constructive and de-
structive interferences to selectively reflect or transmit at desired
wavelengths. In each of these optical applications, the index of
refraction is tuned by controlling the morphology and porosity of
the nanosize voids. Optimizing the performance of a given com-
ponent requires accurate knowledge of the effect of porosity and
of each phase on the overall optical properties of the nanoporous
medium. Numerous effective medium models treating heteroge-
neous media as homogeneous media with some effective prop-
erties have been suggested. However, validation of the various
models against experimental data often yields contradictory re-
sults [16].

The present study aims at numerically simulating electro-
magnetic wave transport in nanoporous silicon. In particular,
spectral transmittance and reflectance are computed and used
to retrieve the effective index of refraction and absorption in-
dex. The numerical results are then compared with the effective
medium models.

CURRENT STATE OF KNOWLEDGE
Numerous effective media models have been suggested in-

cluding (1) the Maxwell-Garnett Theory [17], (2) the Bruggeman
effective medium approximation [18], (3) the parallel and (4) se-
ries models, and (5) those recently derived from the volume av-
eraging method [19, 21].

The Maxwell-Garnett Theory (MGT) [17] was first devel-
oped to model the effective electric permittivity of heterogeneous

media consisting of monodispersed spheres arranged in a cubic
lattice structure within a continuous matrix and of diameter much
smaller than the wavelength of the incident EM wave. Then, the
effective dielectric constant εr,e f f is expressed as,

εr,e f f = εr,c

[
1− 3φ(εr,c − εr,d)

2εr,c + εr,d +φ(εr,c − εr,d)

]
(1)

where εr,c and εr,d are the dielectric constants of the continu-
ous and dispersed phases, respectively, while φ is the porosity.
Moreover, the MGT model is not valid over the entire range of
porosities since the spheres start overlapping for porosity values
of π/6 � 52% for 3D cubic lattice arrangement.

To address this issue, Bruggeman [18] considered a simi-
lar situation of polydispersed spheres distributed in a continuous
medium. The effective property εr,e f f is obtained by solving the
following implicit equation,

1−φ =
(εr,e f f /εr,c − εr,d/εr,c)[(εr,e f f
εr,c

)1/3
(1− εr,d/εr,c)

] (2)

Despite applicability to the full range of porosity (0 ≤ φ ≤ 1)
[20], Bruggeman’s model is not used as often as MGT in the
literature.

Other commonly encountered models are the parallel and
series models. The parallel model gives the effective property
ψe f f as a linear function of the properties of the continuous and
dispersed phases, i.e.,

ψe f f = (1−φ)ψc +φψd (3)

The series model on the other hand, gives

1
ψe f f

=
1−φ

ψc
+

φ
ψd

(4)

A more rigorous approach, albeit more mathematically in-
volved, was recently derived [19, 21] by applying the volume
averaging theory (VAT) to the Maxwell’s equations. The authors
predicted the effective dielectric constant εr,e f f , relative perme-
ability µr,e f f , and electrical conductivity σe f f of a two-phase
mixture of arbitrary morphology as [19],

εr,e f f = (1−φ)εr,c +φεr,d (5)

σe f f = (1−φ)σc +φσd (6)

The range of validity of these expressions, and a set of inequali-
ties to be satisfied was developed [19, 21]. The authors conclude
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that “the constraints [posed by these inequalities] are very severe
and are not satisfied for many processes.”

Moreover, all the above models disregard the shape, the size
distribution, and/or the spatial distribution of the pores. However,
these characteristics were stated to affect the effective proper-
ties of the heterogeneous medium [22, 23]. Attempts have been
made to account for non-spherical cell geometry by modifying
the Maxwell-Garnett [24] and the Bruggeman [25, 26] models.
For example, Schultz [26] generalized the Bruggeman model for
dispersions of randomly oriented spheroids. This model also ac-
counts for the orientation of the cells by incorporating the angle
between the revolution axis of the spheroid and the incident en-
ergy direction. Models such as these are difficult to use in prac-
tice because they require specific knowledge of the shape and
orientation of the cells.

Finally, note that the above models have been used to pre-
dict properties for which they were not necessarily derived. For
example, the MGT model developed for the electric permittiv-
ity ε has been used for the index of refraction [27, 28] and for
the thermal conductivity (see Ref.[ [20]] and references therein).
Overall, it is not always clear to the user which model is the most
appropriate for any particular situation and property. Experimen-
tal data could be used to evaluate the various models, however,
the conclusions drawn can be contradictory [16]. For example, Si
et al. [29] concluded that the series model best describes the di-
electric constant of nanoporous silica thin-films with uniformly
distributed closed voids. Krause et al. [22], on the other hand,
concluded that the Maxwell-Garnett model is more appropriate
for polymeric closed-cell nanofoam. This apparent contradiction
may be attributed to the difficulties and uncertainties in measur-
ing the film porosity, the pore size and shape, and also the optical
properties of a nanoporous thin-film. To address this issue, the
present study aims at numerically simulating EM wave transport
in non-absorbing nanoporous media in order to determine: (1)
the range of validity of the effective medium approach and (2) the
most appropriate effective property model for the dielectric con-
stant and for the index of refraction of non-absorbing nanoporous
media.

ANALYSIS

Optical Properties from Volume Averaging Theory

For a homogeneous material the index of refraction n and
the absorption index k can be written in terms of the real part
of the dielectric constant εr and of the electrical conductivity σ

as [15],

n2 =
1
2


εr +

√
ε2

r +
(

λσ
2πc0ε0

)2

 (7)

k2 =
1
2


−εr +

√
ε2

r +
(

λσ
2πc0ε0

)2

 (8)

where λ is the wavelength of the incident radiation, c0 is the
speed of light in vacuum, and ε0 is the permittivity of free space.
The expression derived by Del Rio and Whitaker [19] for the ef-
fective dielectric constant εr,e f f and electrical conductivity σe f f

of a two-phase nanoporous medium [Equations (5) and (6)] can
be used to express the effective optical properties of a two-phase
nanocomposite material as,

n2
e f f =

1
2

[
A+

√
A2 +B2

]
(9)

k2
e f f =

1
2

[
−A+

√
A2 +B2

]
(10)

where

A = εr,e f f = φ(n2
d − k2

d)+(1−φ)(n2
c − k2

c) (11)

and B =
λσe f f

2πc0ε0
= 2ndkdφ+2nckc(1−φ) (12)

Governing Equations and Numerical Implementation
In order to develop the numerical model let us first consider

a surrounding environment (medium 1, n1, k1 = 0) from which
the incident electromagnetic wave is incident on an absorbing
thin-film (medium 2, n2, k2) deposited onto an absorbing dense
substrate (medium 3, n3, k3). A linearly polarized plane wave
in transverse electric (TE) mode is incident normal to the film
top surface and propagates through the two-dimensional thin-
film along the x-direction (see Figure 1). As the wave propagates
in the x-y plane, it has only one electric field component in the
z-direction, while the magnetic field has two components in the
x-y plane (i.e. perpendicularly polarized), such that in a general
time-harmonic form,

�E(x,y, t) = Ez(x,y)eiωt�ez (13)

and �H(x,y, t) = [Hx(x,y)�ex +Hy(x,y)�ey]eiωt (14)

Here, �E is the electric field vector, �H is the magnetic field vector,
and ω = 2πc0/λ is the angular frequency of the wave. For gen-
eral time-varying fields in a conducting medium, the Maxwell’s
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Figure 1. SCHEMATIC OF TWO-DIMENSIONAL (a) DENSE AND (b)

POROUS SILICON THIN-FILM EXPOSED TO A LINEARLY POLARIZED

PLANE WAVE.

Equations can be written as,

1
µrµ0

∇× [∇×�E(x,y, t)]−ω2ε∗r ε0�E(x,y, t) = 0 (15)

1
ε∗r ε0

∇× [∇× �H(x,y, t)]−ω2µrµ0�H(x,y, t) = 0 (16)

where µ0 and µr are the magnetic permeability of vacuum and
the magnetic relative permeability, respectively, while ε∗r (=
n2 − k2 − i2nk) is the complex dielectric constant. The associ-
ated boundary conditions are,

�n× (�H1 − �H2) = 0 at the surroundings-film interface (17)

�n× �H = 0 at symmetry boundaries (18)

µ1/2
0

ε1/2
0

(�n× �H)+(ε∗r )
1/2�E = 0 at the film-substrate interface (19)

µ1/2
0

ε1/2
0

(�n× �H)+ ε∗1/2
r �E = 2ε∗1/2

r �E0 at the source surface (20)

where �n is the normal vector to the appropriate interface. Equa-
tion (19) corresponds to a semi-infinite substrate while Equation
(20) models the source surface where the incident electromag-
netic wave �E0 is emitted and that is transparent to the reflected
waves.

Moreover, the Poynting vector�π is defined as the cross prod-
uct of the electric and magnetic vectors, �π = �E × �H. Its mag-
nitude corresponds to the energy flux carried by the propagat-
ing electromagnetic wave. Solving Maxwell’s equations for the
nonzero component of the electric field vector Ez, and relating it
to the magnetic field yields,

Hy =
n

µrµ0c0
Ez (21)

Averaging the Poynting vector over an appropriate time interval
yields [15],

|π|avg =
n

2µrµ0c0
|Ez|2avg (22)

The incident electric field E0z and therefore the incident time-
averaged Poynting vector |π0|avg are imposed at all locations
along the source surface. The values of the Poynting vector
along the film-substrate interface are then calculated numeri-
cally and averaged along the boundary to yield |πt |avg. The
transmittance of the thin-film is then recovered by taking the ra-
tio of the transmitted to the incident average Poynting vectors,
i.e, Tf ilm = |πt |avg/|π0|avg. Similarly, the magnitude of the re-
flected time-averaged Poynting vector |πr|avg is computed nu-
merically, and the reflectance of the film is computed according
to R f ilm = |πr|avg/|π0|avg.

Finally, the above equations were solved numerically us-
ing a commercially available finite element solver (FEMLAB
3.0) applying the Galerkin finite element method on unstructured
meshes. The two-dimensional Maxwell’s equations are solved in
the frequency domain using a 2D transverse electric (TE) wave
formulation as described by Equation (13). In particular, the dis-
cretization uses second order elements to solve for the electric
field.

In order to validate the numerical implementation of this
system of equations, a system composed of a dense absorbing
film (n2 = 1.7, k2) of thickness L deposited on a perfectly re-
flective substrate (n3 = k3 → ∞) in air (n1 = 1, k1 = 0) was sim-
ulated. The value of k2 was varied over 3 orders of magnitude
from 0.001 to 1, and the infinitely large optical constants of the
substrate were approximated as n3 = k3 = 106. Normal reflec-
tivity of the system was computed and plotted as a function of
πL/λ [16]. The numerical solutions match the analytical solu-
tions found in Ref. [15].
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Figure 2. SCHEMATIC OF MODEL COMPOSED OF TEN ALTERNAT-

ING COLUMNS OF VACUUM AND SILICON ALONG WITH BOUNDARY

CONDITIONS AND PROPERTIES.

Simulations of Porous Silicon Thin-Films
Figure 1b schematically shows the geometry of the PS thin-

film on a semi-infinite silicon substrate. Polarization effects are
disregarded since (1) the incident EM wave is normal to the sur-
face, i.e., the plane of incidence is not defined and the compo-
nents of the polarization cannot be distinguished [15], and (2)
we assume the medium to be axisymetric so that it can be mod-
elled as a two-dimensional structure as shown in Figure 1b. Non-
linear optical effects are neglected. We also assume that all inter-
faces (in the pores and at the PS surfaces) are optically smooth,
i.e., surface roughness is much smaller than the incident wave-
length. This may not be satisfied in practice due to the synthe-
sis process [30–32]. Moreover, characteristic pore size is much
smaller than the wavelength of incident radiation so electromag-
netic wave scattering (i.e., diffraction, reflection, and refraction)
by pores can be safely neglected. In addition, non-linear opti-
cal effects are neglected. Finally, surface phonon and plasmon
polaritons are not observed in the current situation as resonance
modes were not excited for the materials and wavelengths con-
sidered.

The Maxwell’s equations are solved in both phases sepa-
rately as previously described. Equation (17) is used as the
boundary condition not only at the incident vacuum-film inter-
face but also at all silicon-pore interfaces. Figure 2 is a schematic
representation of an actual model consisting of 10 columnar
pores alternating between silicon and vacuum corresponding to a
porosity φ=0.70. In this specific geometric configuration, the au-
thors showed that the effective properties can be defined for any
film thickness [33]. Here, the nanoporous thin-film thickness was

arbitrarily chosen to be 1 µm and the width of the silicon and vac-
uum columns were varied depending on the porosity. The figure
also indicates material properties of the various domains and the
locations at which each of the boundary conditions are applied.

It is important to note that Maxwell’s equations are gener-
ally applied to macroscopic averages of the fields which can vary
widely in the vicinity of individual atoms where they undergo
quantum mechanical effects. These effects are neglected in the
present study and all phases are treated as homogeneous and
isotropic media for which index of refraction n and absorption
index k are defined. This is a reasonable assumption for length
scales on the order of ten lattice constants or about 5 nm (see
Ref. [34] p. 387).

Index of Refraction of Silicon
Simulations were conducted for porous silicon composed

of alternating parallel columns of silicon (mc = nc − ikc) and
vacuum (md = 1). The surrounding medium was also vacuum,
and the substrate was bulk silicon with m3 = mc = nc − ikc.
The optical properties of lightly doped (doping concentration
≤ 1015cm−3) single crystal silicon used in the simulations were
expressed as functions of wavelength λ and temperature T [35],

nc(λ,T ) = n0(λ)+ γ(λ)T (23)

where n0(λ) =

√
4.565+

97.3
3.6482 − (1.24/λ)2 (24)

and γ(λ) = −1.864×10−4 +
5.394×10−3

3.6482 − (1.24/λ)2(25)

On the other hand, the expression for the absorption index is
given by [35],

kc(λ,T ) = k0,λ exp

[
T

369.9− exp(−12.92+6.831/λ)

]
(26)

where

k0,λ = −0.0805+ exp

[
−3.189+

7.946
3.6482 − (1.24/λ)2

]
(27)

In both cases, λ is expressed in microns and T in oC. The temper-
ature T is set to 20oC. These models have been shown to provide
good accuracy in the spectral interval from 400 to 840 nm and
temperatures between 20 and 490oC [35].

Retrieval of Effective Complex Index of Refraction
The envelop method is a straightforward and accurate

method to retrieve the optical properties for weakly absorbing
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films [36]. It takes advantage of the interference pattern dis-
played in the transmission spectrum of an absorbing thin-film.
Two continuous functions can be deduced from the transmission
spectrum: (1) Tmin(λ) is the envelope function of the local min-
ima, and (2) Tmax(λ) is that of the local maxima. The index of
refraction ne f f and absorption index ke f f of the film can then be
calculated from,

ne f f = [N +(N2 −n2
1n2

3)
1/2]1/2 (28)

where N =
n2

1 +n2
3

2
+

2n1n3(Tmax −Tmin)
TmaxTmin

(29)

and

ke f f =
−λ
4πL

ln
(ne f f +n1)(n3 +ne f f )[1− (Tmax/Tmin)1/2]
(ne f f −n1)(n3 −ne f f )[1+(Tmax/Tmin)1/2]

(30)

Here the subscripts 1 and 3 refer to the the media above and be-
low the nanoporous thin-film, respectively. Validation of the en-
velope method combined with the simulated transmittance and
reflectance was performed by retrieving the spectral complex in-
dex of refraction of a known thin-film.

The retrieved values for n2 and k2 fall within 0.2% and 2.5%
of the input values, respectively [16]. Finally, it should be noted
that if the optical constants of the thin film vary as a function of
λ, the envelope method allows for the direct and accurate deter-
mination of both the effective spectral index of refraction ne f f (λ)
and the absorption index ke f f (λ) of nanocomposite media.

RESULTS AND DISCUSSION
Effect of Porosity on the Index of Refraction

To assess the validity of the commonly used models, simu-
lations were performed for porous silicon with various porosity
and with open and closed pores of various shape, size, and spa-
tial distribution [16, 33]. The conclusions drawn can be listed as
follows:

1. There exists a critical film thickness Lcr below which the ef-
fective index of refraction is a function of (i) the film thick-
ness, (ii) the pore shape, (iii) their size, (iv) their spatial
distribution, and (v) the wavelength considered. For film
thicknesses less than Lcr, the effective medium approach is
not applicable and the heterogeneous nature of the medium
should be taken into account.

2. For films thicker than the critical thickness Lcr, the effective
medium approach is valid and an effective index of refrac-
tion can be defined only as a function of porosity φ and of
the indices of refraction of the constituent phases. In other
words, the pore shape, size, and spatial distribution have no

effect on the effective index of refraction of the nanoporous
medium.

3. For porous silicon with columnar pores, the retrieved index
of refraction is independent of the film thickness and pore
size and the effective medium approximation is always valid.

For silicon, the incident wavelength was chosen to be λ = 2.71
µm at which the complex index of refraction is mSi = 3.44 −
i2.5×10−9 [15]. Thus, the absorption coefficient can also safely
be neglected. Figure 3 shows the converged values of the effec-
tive index of refraction plotted versus porosity along with pre-
dictions of the above discussed models. The predictions from
Bruggeman model differed from the MGT model by a maximum
of only 2.3%. Thus, the Bruggeman model will not be discussed
further.

The numerical values retrieved for ne f f match those pre-
dicted by the volume averaging technique [Equation (7)] within
rounding error. The relative difference between the parallel,
Maxwell-Garnett, and series models and the numerical results
for porous silicon was up to 16.4%, 22.4%, and 39.5%, respec-
tively. Thus, the common models described by Equations (1) to
(4) should not be used for predicting the effective index of re-
fraction of nanoporous silicon regardless of the pore geometry.
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Figure 3. NUMERICAL RESULTS FOR THE EFFECTIVE INDEX OF

REFRACTION OF POROUS SILICON AT λ = 2.71 µm AS A FUNCTION

OF POROSITY.

Numerical Validation of the VAT Model
Using the above procedure, simulations of electromagnetic

wave transport in porous silicon (PS) were conducted for various
porosities. For the sake of simplicity, porous silicon with colum-
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nar pores was simulated as the simulations converge faster than
for other pore morphology.

Optical properties of dense silicon reported by Jellison and
Modine over the spectral region from 240 nm to 840 nm [35]
were used. The envelope method was used to retrieve the effec-
tive index of refraction ne f f and absorption index ke f f . Figures
4 and 5 show the evolution of the effective index of refraction
ne f f (λ) and absorption index ke f f (λ) as functions of wavelength
λ for several values of porosity φ. The solid curves corre-
spond to the VAT models given by Equations (9) and (10). The
data points represent the values retrieved from the numerically
computed transmittance using the envelope method. It is clear
that the VAT model provides an accurate prediction of the ef-
fective optical properties of porous silicon. The slight deviation
between numerical results and the VAT predictions for ke f f (λ)
at larger wavelengths can be attributed to the error associated
with the envelope method and more specifically to the accuracy
of the Tmin(λ) and Tmax(λ) fits. Indeed, for larger wavelengths
the fringe spacing increases, and therefore the accuracy of the
Tmin(λ) and Tmax(λ) fits is reduced. This can be observed for
φ = 0.1 where accurate Tmin(λ) and Tmax(λ) functions are ob-
tained for wavelength less than 640 nm. In addition, at smaller
wavelengths (λ < 500 nm) the magnitude of the fringes decreases
to zero making inaccurate the retrieval of the optical properties.
This can be attributed to the fact that the absorption index of
silicon kc increases to values on the order of 0.01, and the wave-
length decreases significantly relative to the film thickness.

Figures 6 and 7 are drawn from the same data as Figures
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LENGTHS EQ. (9)].

4 and 5, but instead shows the changes in optical properties as
a function of porosity at three arbitrarily chosen wavelengths
namely λ = 520, 700, and 840 nm. The solid curves correspond
to the VAT models, and the points to numerical results. Overall,
the VAT models provide accurate predictions of the numerically
retrieved effective optical properties of porous silicon.

7 Copyright c© 2005 by ASME



1.E-04

1.E-03

1.E-02

1.E-01

0.0 0.2 0.4 0.6 0.8 1.0

Porosity, φ

E
ff

ec
ti

ve
  A

b
so

rp
ti

o
n

 In
d

ex
, k

ef
f

VAT Model

λ = 520 nm
λ = 700 nm
λ = 840 nm

Figure 7. EFFECTIVE ABSORPTION INDEX OF POROUS SILICON

AS A FUNCTION OF POROSITY FOR DIFFERENT WAVELENGTHS

EQ. (10)].

CONCLUDING REMARKS
The VAT model for the effective dielectric and electrical

properties of two-phase media [19] has been used to derive the
effective index of refraction ne f f and absorption index ke f f of
nanoporous silicon. Moreover, a numerical scheme has been de-
veloped and implemented to solve the Maxwell’s equations for
TE electromagnetic wave transport through porous silicon. The
envelope method was then used to retrieve the effective optical
properties for the simulated porous silicon. The results are in
excellent agreement with the predictions made from the VAT
model for the complex index of refraction. It also indirectly
validate the expression for the effective dielectric constant and
electric conductivity given by Equation (5) and (6), respectively.
Note that this is well known for the columnar pores. However,
the VAT model has been proven valid for much more complex
pore geometries including spheres, ellipsoids, connected spher-
ical pores [16, 33]. Therefore, the above results are anticipated
to be valid for any pore geometries provided that the effective
medium approximation is valid. Finally, the results can be ex-
tended to normally incident transverse magnetic (TM) waves as
polarization effect were not considered.
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tical properties of porous silicon. Part III: Comparison of
experimental and theoretical results. submitted to Optical
Materials.

[31] Ferrand, P., and Romestain, R., 2000. “Optical losses in
porous silicon waveguides in the near-infrared: Effects of
scattering”. Applied Physics Letters, 77 , pp. 3535–3537.

[32] Lerondel, G., and Romestain, R., 1997. “Quantitative
analysis of light scattering effects on porous silicon opti-
cal measurements”. Thin Solid Films, 297 , pp. 114–117.

[33] Braun, M., and Pilon, L., 2005. “Effective optical proper-
ties of non-absorbing nanoporous thin-films”. Thin Solid
Films (in review) .

[34] Kittel, C., 1996. Introduction to Solid State Physics. John
Whiley and Sons.

[35] Jellison, G., and Modine, F., 1994. “Optical functions of sil-
icon at elevated temperatures”. Journal of Applied Physics,
76 (6) , pp. 3758–3761.

[36] Manifacier, J., Gasiot, J., and Fillard, J., 1976. “A simple
method for the determination of the optical constants n, k
and the thickness of a weakly absorbing thin film”. Journal
of Physics E: Scientific Instruments, 9 , pp. 1002–1004.

9 Copyright c© 2005 by ASME


