Dependent Scattering Effects in Aggregates with Touching or Overlapping Non-Absorbing Spherical Particles Supporting Information

Tiphaine Galy and Laurent Pilon⁺ Mechanical and Aerospace Engineering Department Henry Samueli School of Engineering and Applied Science University of California, Los Angeles ⁺Corresponding Author: Phone: +1 (310)-206-5598, Fax: +1 (310)-206-2302 Engineering IV 420 Westwood Plaza, Los Angeles, CA 90095-1597 E-mail: pilon@seas.ucla.edu

October 14, 2021

	ror	$ g^f - g^o /g^o$ (%)	0.7	0.06	3.3	2.22	1.47	0.9	3.9	3	3	5.7	1.1	0.9	1.56	8.5	7.5	6.2	4.2	28.1	22	31.5	34.4	30.1	1.25	9.76	0.29	2.69	0.9	0.1	0.13
	Relative e	$ Q_{sca}^{f} - Q_{sca}^{o} /Q_{sca}^{o}$ (%) ^a	0.26	0	0.8	0.6	0.11	0.1	0.8	0.5	0.7	0.05	5.3	6.3	2.5	1.15	6.42	8.5	13.6	6.76	9.52	24.3	16	12.1	0.96	2.65	2.62	16.7	0.17	0.3	0.006
	ntation	g^a	0.083	0.1	0.11	0.04	0.11	0.11	0.26	0.46	0.46	0.74	0.87	0.82	0.92	0.74	0.75	0.76	0.77	0.68	0.74	0.64	0.61	0.64	6.64×10^{-2}	0.7	0.792	0.797	0.284	0.482	0.781
	Fixed orie	Q^a_{sca}	0.014	0.018	0.024	0.00239	0.017	0.016	0.064	0.146	0.146	0.835	1.28	1.4	5	5.4	6.5	7.05	7.42	4.67	5.56	3.78	4.1	4.38	7.44×10^{-3}	0.957	1.7	6.74	1.319×10^{-2}	0.288	1.5441
	averaged	g^a	0.082	0.1	0.12	0.039	0.11	0.11	0.25	0.45	0.45	0.79	0.86	0.81	0.91	0.81	0.81	0.81	0.8	0.69	0.68	0.67	0.65	0.65	6.72×10^{-2}	0.776	0.789	0.775	0.283	0.481	0.782
	Orientation-	Q^a_{sca}	0.013	0.018	0.024	0.00237	0.017	0.016	0.064	0.147	0.147	0.835	1.35	1.49	4.89	5.34	6.11	6.5	6.54	5	5.1	5	4.88	5	7.36×10^{-3}	0.932	1.75	5.78	1.316×10^{-2}	0.287	1.5442
	Porosity	φ (%)	66	66.2	66.1	67.3	66.8	67	67.1	66.8	67	67	67.1	66.5	67	66.5	66.8	67.6	67.3	66.1	66.9	66.4	67.2	67.1	67.7	66.6	66.3	66.1	94.8	49.4	49.6
	Aggregate size	parameter χ_s	0.72	0.79	0.85	0.47	0.78	0.78	1.17	1.56	1.56	3.12	3.9	3.9	7.8	7.8	9.35	10.9	12.5	14	15.6	17.9	19.5	21	0.63	3.11	3.89	10.9	1.56	1.56	3.12
method.	Particle size	parameter x_s	0.031	0.031	0.031	0.031	0.031	0.063	0.063	0.063	0.13	0.25	0.25	0.63	0.63	1.26	1.26	1.26	1.26	2.51	2.51	2.51	2.51	2.51	0.063	0.25	0.63	1.25	0.063	0.063	0.13
ig the 1-matrix	Aggregate	type	Point-contact	Surface-contact	Surface-contact	Surface-contact	Surface-contact	Surface-contact	Surface-contact	Surface-contact																					
iputed usir																															

Table S1: Orientation-averaged and fixed scattering efficiency factor and asymmetry factor of aggregates with point-contact and surface-contact particles computed using the T-matrix method.

 $^{a\, \rm to}{}^{\rm v}$ refers to orientation-averaged and "f" refers to fixed orientation.

Particle size	Aggregate size	Point-	-contact part	icles	Surface	+contact pa	rticles		Relative	error
arameter x_s	parameter χ_s	(%) <i>\phi</i>	C^a_{sca} (nm ²)	g^a	φ (%)	$C^a_{sca} \; (\mathrm{nm}^2)$	g^a	$ C_{sca}^{PC} -$	$C^{SC}_{sca} /C^{SC}_{sca}$ (%) ^a	$ g^{PC} - g^{SC} /g^{SC}$ (%)
1.26	3.9	66.4	$3.01 \mathrm{x} 10^{5}$	0.63	68.9	$2.83\mathrm{x}10^{5}$	0.71	1	9	10
1.26	5.9	67.2	$1.21 \mathrm{x} 10^{6}$	0.77	67.8	$1.35\mathrm{x}10^{5}$	0.82		10	9
1.26	7.8	66.5	$3.11 \mathrm{x} 10^{6}$	0.81	67.6	$3.09\mathrm{x}10^{6}$	0.81		0.6	0
1.26	10.9	67.6	$7.26 \mathrm{x} 10^{6}$	0.81	66	$6.66\mathrm{x}10^{6}$	0.78		6	ъ
1.26	12.5	67.3	$9.61 \mathrm{x} 10^{6}$	0.8	66.6	$8.62\mathrm{x}10^{6}$	0.76		11	9
0.63	3.9	66.5	$2.18\mathrm{x}10^{5}$	0.81	66.2	$2.56\mathrm{x}10^{5}$	0.79		15	33
0.63	6.3	67.5	$1.26 \mathrm{x} 10^{6}$	0.88	67.7	$1.39\mathrm{x}10^{6}$	0.86		6	33
0.63	7.8	67	$2.82 \mathrm{x} 10^{6}$	0.91	66.9	$3.01 \mathrm{x} 10^{6}$	0.88		9	c.
0.25	3.11	67	$7.71 \mathrm{x} 10^{4}$	0.79	66.6	$8.67\mathrm{x}10^4$	0.78		11	2
0.25	3.9	67.1	$1.95 \mathrm{x} 10^5$	0.86	67.9	$2.05\mathrm{x}10^{5}$	0.85		5	1
0.13	1.56	66.8	$3.38 \mathrm{x} 10^3$	0.45	66.7	$3.74 \mathrm{x} 10^{3}$	0.43		10	4
0.063	0.62	65.9	28.4	0.07	67.7	26.8	0.67		9	5

es
Ū.
÷:
ar
ä
t
ğ
p
8
Ā
õ
÷.
3
00
th
-1-
~
ĕ
at
60
Ĕ
80
5 D
0
-
SL
Æ
ĩ
8.
õ
Ϋ́Ω
hnd
s and
es and
icles and
rticles and
articles and
particles and
ct particles and
tact particles and
ntact particles and
contact particles and
t-contact particles and
int-contact particles and
oint-contact particles and
point-contact particles and
th point-contact particles and
with point-contact particles and
s with point-contact particles and
ces with point-contact particles and
ates with point-contact particles and
egates with point-contact particles and
sregates with point-contact particles and
ggregates with point-contact particles and
aggregates with point-contact particles and
to aggregates with point-contact particles and
s to aggregates with point-contact particles and
ers to aggregates with point-contact particles and
efers to aggregates with point-contact particles and
refers to aggregates with point-contact particles and
\mathcal{V} refers to aggregates with point-contact particles and
^o C" refers to aggregates with point-contact particles and

 $x_s = 2.51$

Figure S1: (a) Absorption cross-section ratio $C^a_{abs}/N_s C^M_{abs}$, (b) scattering cross-section ratio $C^a_{sca}/N_s C^M_{sca}$, and (c) asymmetry factor ratio g^a/g^M as functions of the aggregate size parameter χ_s for aggregates with particle size parameter $x_s = 2.51$, particle volume fraction $f_v = 33\pm2\%$, and relative refractive index m between 1.5 and 1.5+i0.5.

Figure S2: Relative errors (a) $|C_{sca}^a - C_{sca}^{EEP}|/C_{sca}^a$ and (b) $|g^a - g^{EEP}|/g^a$ between numerical simulations and EEP approximation predictions for aggregates with particle volume fraction $f_v = 33\pm 2\%$ and with point-contact particles with m = 1.5 as functions of the particle size parameter x_s and aggregate size parameter χ_s .

Figure S3: Relative errors (a) $|C_{sca}^a - C_{sca}^{EV}|/C_{sca}^a$ and (b) $|g^a - g^{EV}|/g^a$ between numerical simulations and EV approximation predictions for aggregates with particle volume fraction $f_v = 33\pm 2\%$ and with point-contact particles with m = 1.5 as functions of the particle size parameter x_s and aggregate size parameter χ_s .

Figure S4: Scattering coefficient σ_s predicted by the EEP approximation for aggregates with $f_v = 33\pm 2\%$ and m = 1.5 as a function the aggregate size parameter χ_s .

Figure S5: Scattering cross-section of aggregates as a function of aggregate particle volume fraction f_v or porosity ϕ for either point-contact or surface-contact particles with radius $r_s = 2.5$, 5, and 10 nm.