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Abstract

This paper presents the modified method of characterisiicsirhulating multidimensional transient ra-
diation transfer in absorbing and scattering media. Theifieddmethod of characteristics transforms
the integro-differential equation for radiative transégpressed in terms of both space and time into four
ordinary differential equations with respect to time. Itkesuse of an arbitrary set of points and, unlike
the conventional method of characteristics follows thetph® backward in space along their charac-
teristics curves (or pathline). First, the principle andattages of the numerical scheme are presented.
Then, test problems for diffuse and collimated irradiatiorone- and three-dimensional participating
media with various boundary conditions are considered. fitmaerical results show good agreement
with analytical and numerical solutions reported in litara. The scheme is fast and able to capture the
sharp discontinuities associated with the propagationrafi@tion front in transient radiation transport.

1 Introduction

Ultra-short pulsed lasers are used in a wide variety of apptins such as thin film property measure-
ments, laser assisted micro-machining, laser removal wfaooination particles from surfaces, optical
data storage, optical ablation and ablation of polymkers [llfra-short pulsed lasers are also used in
remote sensing of the atmosphere, combustion chamberstia@demvironments which involve inter-
action of the laser beam with scattering and absorbinggbestiof different sizes. Another interesting
application of short-pulsed lasers is in biomedical optioanography where their use can potentially
provide physiological and morphological information abthe interior of living tissues and organs in a
non-invasive manner.

All the applications described above require models to iptdthnsient radiation transport in partici-
pating media. In the past, some analytical studies of temtsiadiative transfer have been conducted
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and reviewed by Mitra and Kumari[2]. They examined the trarspf light pulses through absorbing-
scattering media with different approximate mathematicatiels.

The governing equation for transient radiation transfearinabsorbing and scattering medium is the
radiative transfer equation (RTE). The RTE expresses aggibalance in a unit solid angle df2 about
the directions within a wavelength interval A about). It can be written as 3],

101, N Os\
SN (8- = madyy — raly — oan]
cat+( M = kxlpy — kxl)y ooy +

A 1,(8) 2 (5, 8)d9; 1)

whereT, is the intensity in the direction andc, the speed of light in the medium. The linear absorp-
tion and scattering coefficients are denotedsiyando,), respectively. The scattering phase function
®, (§;, ) represents the probability that radiation propagatindhéngolid anglel(2; direction around;

be scattered into the com) around the directios. The RTE is an integro-differential equation involv-
ing seven independent variables and radiation charatitsris,,, <), and®, of materials which may
depend on wavelength, temperature, and location. Thust salitions of the RTE are difficult and exact
analytical solutions exist for only a few simple cadés [3].

The commonly used methods to solve the transient radiatamsfier equation are the Monte Carlo
method, the integral equation solution, the finite volumdhoe (FVM), the radiation element method
(REM) [4]], and the discrete ordinates method (DOM).

The Monte Carlo method is often used to simulate problemshimg radiative heat transfer because
of its simplicity, the ease by which it can be applied to a#rit configurations and its ability to capture

actual and often complex physical conditionis [5]. The Mdbé#elo technique has been used by @tial.

[5] to simulate short-pulsed laser transport in anisotrally scattering and absorbing media. The Monte
Carlo method has also been widely used in biomedical optistniulate steady state laser transport in
biological tissuelld.17]. However, the method has inhertatistical errors due to its stochastic natlie [3].
It is also computationally time consuming and demands aflobmputer memory as the histories of the
photons have to be stored at every instant of time [5].

The backward or reverse Monte Carlo has been developed dtearative approach when solutions are
needed only at particular locations and tinie$ [8, 9]. Thehorkts similar to the traditional Monte Carlo
method, except that the photons are tracked in a time-r@veranner. The method was successfully
applied by Lu and Hsu]9] to simulate transient radiativensggort in a non-emitting, absorbing, and
anisotropically scattering one-dimensional slab subpbtd ultra-short light pulse irradiation.

Analytical solutions of the radiation transfer equationiritegral form for inhomogeneous and non-
scattering medium have been obtained for 1-D [10] and 3-Drgoes [11]. Then, Tan and Hsu [12]

used the integral equation formulation to simulate radéatiansport in 1-D absorbing and isotropically
scattering media with black boundaries exposed to diffusektimated irradiation. The authors extended
the method to solve the same problem in 3-D geometries [18][14] used the integral equation to

compute the temporal reflectivity and transmissivity of Bdisorbing and isotropically scattering slabs
with various scattering albedos and optical thicknessashwdompared well with results obtained using
the Monte Carlo method.

Chai and co-workers [15, 116] used the finite volume methodoteesthe transient RTE. They used

the finite volume technique with the “step” and CLAM spatisatetization schemes to model transient
radiative transfer in 1-D and 3-D geometrigsl[15, 16]. Thihars found that the CLAM scheme captures
the penetration depths of radiation more accurately tharidtep” scheme for the same grid.
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Finally, the discrete ordinates method has been used bgugresearchers to solve the transient RTE.
Sakamiet al. [17] used the DOM to analyze the ultra-short light pulse piggtion in a 2-D anisotrop-
ically scattering medium. Guo and Kumar 18] used it to sateilshort-pulse laser transport in 2-D
anisotropically scattering turbid media. They later egtmhthe technigue to solve for 3-D geometries
and compared the results with Monte Carlo simulation$ [TBgy found that the transient discrete or-
dinates method cannot capture the abrupt changes in thartittance as predicted by the Monte Carlo
method. Guo and co-workers 20,1 21] further used the DOM I §eometries to model transport of
ultrafast laser pulses and fluorescence in heterogeneolagisal tissues for the purpose of detecting
inhomogeneities in otherwise homogeneous tissue.

2 Modified Method of Characteristics

The conventional method of characteristics (or direct mmiag method) is commonly used to solve
hyperbolic partial differential equations which often ocdén compressible fluid flow. It is based on
the Lagrangian formulation, which identifies photons atiahitime ¢ = t; and follows them along
the characteristic at subsequent times as they are traadp@haracteristics are pathlines of photons
in physical space along which information propagates. fhaothe direct method results in accurate
solutions, it has several disadvantages. Time incremdotgy aifferent characteristic curves may be
different and so the solution may be obtained at differantet on each characteristic curve. Also, the
characteristic curves may coalesce or spread apart duentaniform velocities resulting in a highly
distorted grid. The modified method of characteristics @ndther hand, follows photons backward in
space and uses any arbitrary pre-specified set of points, Tl solution is obtained at the same times
at all grid points and overcomes the problems related todgfdrmation (see Ref._[22] and references
therein). Consider a Cartesian coordinate system, thactagistic curve in physical space is defined by,
d—x:csinﬂcosqb, %:csinﬂsinqb, %:ccosﬁ (2)

dt dt dt

By definition, the total derivative of\(x, y, z,t) can be written as,

%_85\ dx 01y dy% dz%
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Then, along the characteristic curveginy, z, t) space, the RTE [Equatiofll (1)] simplifies to,
1 DI, O\ . . 4
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Thus, the spatio-temporal partial integro-differentiguation [[1) is converted intdordinary differential
equations in time, [Equatiof](2)] andtemporal integro-differential equation [Equatidn (4)ig&rel
shows a 3-D computational cell in Cartesian coordinates.

The modified method of characteristics consists of deténgithe coordinateéz,,, .., z,,) of the point
in space from where the particles located at the grid p@iptys, z.) at timet + At originate from at
time ¢ while traveling in direction of polar anglé, and azimuthal angle,,. In other words, for each
point of a specified grid, the pathline is projected rearaahg the characteristic curve to the initial
data surface to determine the initial data point. For examipl Figure[ll, the pointx,, yp, z.) is the
point (z;11, y;+1, 2k+1). The solid line represents the section of the charactexsiive along which the
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Figure 1: Typical computational cell used for inverse marghmethod containing the pathline of the
photons.

photon traveled from locatiotw,,, v, 2, ) to location(z,, y», z.) during the time interval betweerand
t + At.

To solve Equationd]2) td¥4), the radiation intensities terdperatures are initialized at all points in
the computational domain. Then, for a given polar arglean azimuthal angle;, and for all internal
grid points(z,,yp,2.) Where photons are present at time At, the position of the photon at time t is
calculated as,

Tp = Tq — cSin b, cos oAt Yn = Yp — csin b, sin o;At, Zn = z¢ —ccos O, At (5)

The values of the variables, at (x,, yn, z,) and timet are obtained by Lagrangian interpolation using
their values at time at the eight corners of the computational cell in which thepéz,,, y,, z,,) IS
located (Figuré&ll).

Then, Equation{4) is solved forward in time by the fourthesrBunge-Kutta method at locati¢n,, vy,

z.) and timet + At¢. The integral on the right hand side of Equatibh (4) is estidy the 3/8 Simpson
numerical integration. Finally, the boundary conditiome amposed in directions pointing toward the
medium depending on whether the boundary is black, spéguadiffusely reflecting. For directions
leaving the computational domain (outflow), the intensit the boundary are computed just like any
other internal point. The calculations are repeated fothalldiscretized values of polar and azimuthal
angles.

The modified method of characteristics has the followingnredvantages(1) Unlike finite volume
techniques which propagate the information along the doatd axis, the modified method of charac-
teristics propagates information along the photon patslirLike the Monte Carlo method, it respects
the physics of radiative transport resulting in accurateerical results(2) Since the method uses any
arbitrary pre-specified set of points, it can be easily cediplith other numerical techniques such as fi-
nite volume, finite element or finite difference schemessThia valuable feature in situations involving
multiple energy carriers and transport procesg®dt does not require any outflow boundary conditions.
The radiative transport equation is a hyperbolic equatimhiaformation propagates with finite speed,
i.e. the speed of light in the medium. In such equations, thetisolat a point is determined only by the
characteristics from upstream portion of the solution doma

There are also a few disadvantages in using the modified whethoharacteristics to solve the RTE.
The backward projected characteristic curves do not nadsstersect the known solution surface at
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the pre-specified grid points and so the initial data at thekward projected characteristics must be
determined by interpolation. This takes up computatioffakteand introduces interpolation errors into
the solution.

The method described above could be considered as a hybtitbdhbetween the traditional discrete
ordinates and the ray tracing methods. It is similar to tlserdite ordinates method in that the RTE is
solved along arbitrary directions. However, the modifiedhd of characteristics converts the RTE into
ordinary differential equations in time and solved along tharacteristics, as opposed to the conven-
tional implementation of the DOM_[3], where the RTE in therfoof a partial differential equation is
solved along the grid lines. The present approach is corbfata that used by Coelh@ 23] to solve
the RTE using the discrete ordinates method. The authormligted the dependent variablg by the
values at points located at the intersection of the diraabifopropagation of radiation with the grid lines
or surfaces, as opposed to directly using the grid nodessirtdhventional DOM. The present method
also differs from that used by Coelho in the sense that, tbéopls are traced back a distance which they
would travel in one time step rather than all the way to thd tines or surfaces.

Finally, unlike ray-tracing methods, the modified methodlwdiracteristics does not trace photon bundles
from the source to the absorption point or to the boundalmssead photon bundles are traced backward
in space only for the time interval betweeémndt + At. At a new time step, new photon bundles are
traced back from all grid points and this procedure is regmbfdr all time steps.

3 Results and Discussion

For validation purposes, the numerical results obtaingt thie modified method of characteristics for
a set of test cases have been compared with analytical @@utir numerical results reported in the
literature using different numerical schemes. For the sékéarity, spectral dependencies were not con-
sidered in these cases but could have been included withgunadifications in the methodology. The
spectral dependencies can be accounted for by using thdietbaiethod of characteristics at multiple
wavelengths or in combination with band modéls [3]. The testes considered consist of simulations
of transient radiation transfer in absorbing and isotralhjcscattering cold media namely, (1) three-
dimensional media exposed to diffuse irradiation, (2) a fikihe parallel slab irradiated by continuous
collimated radiation, and (3) a 1-D plane parallel slabdiaged by pulsed collimated radiation. For 1-D
problems, a discretization @¥, points along the:—direction andNy discrete directions fof varying
from 0 to = was used. In the case of 3-D problems, a discretizatioN,0k N, x N, along thez, y and
z—directions respectively was used and the angular spageafying from0 to = and¢ varying from0

to 2 was discretized intdvVy x N, directions.

3.1 3-D Transient Radiative Transfer in Scattering, Absorbng, and Emitting Media Exposed to
Diffuse Irradiation

Let us consider the case of a cubic enclosure of a non-emittibsorbing and isotropically scattering
medium of thicknesd.. It is subjected to a transient unit step function emissige/gr on one side
(z = 0) and the other sidez(= L) being cold with optical thickness;, = 1 defined as;, = L where

B = os + k and the scattering albedo = o,/ = 0.1. Initially, the medium is assumed to be at OK
and initial intensities everywhere in the medium are zefremn, at t=0, the intensity at the wail,= 0.0

in all directions pointing into the medium is settd® W/m?.sr. The remaining walls are black and cold
(T = 0K).
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Figure 2: Radiative heat flux distribution at different tisngeft) in a homogeneous 3-D medium with
a diffusely emitting boundary for = 1.0 andw = 0.1, and (right) in a 1-D homogeneous medium
exposed to continuous collimated irradiation.

A grid size of35 x 35 x 35 points along ther, y andz—directions was used. The entire angular space
of # varying from0 to = and ¢ varying from0 to 27 was divided inta30 x 24 discrete directions. Tan
and Hsul[1B] solved the same problem using the integralisoluThe authors verified the reliability of
the integration scheme, namely the DRV method by compahieig tesults with those obtained by using
the YIX method. They used a grid size bf x 17 x 17 volume elements in the, y and z—directions
respectively in all the cases and 1982 angular quadratungspfor the YIX method. Similarly, Chaét

al. [16] solved this problem using the finite volume method. &gl compares the heat flux obtained
using the present method along the center of the cube witetbbtained by (i) Tan and Hsu [13] with
the integral solution using the DRV scheme and (ii) Cétadl. [L6] using a grid size of7 x 17 x 17,

an angular discretization df6 x 12 and making use of the CLAM scheme. In order to quantify the
relative difference in the numerical results, we assumatl tthe values reported by Tan and Hsul [13]
are converged and correspond to the exact solution. Fallysttate, the relative error for the results
reported by Chaet al. [[L6] compared to Tan and Hsu |13] was less tB&i¥ while they were less than
6% for the present method. For the intermediate transientsigbults reported by Chet al. [16] result

in infinite errors beyond the wavefront. Cletial. [L6] found that the finite volume method suffers from
false scattering and cannot capture the wavefront acduréttecontrast, the present method is able to
accurately capture the wavefront. However, there werelargprs of up t®3% at the point right before
the wavefront where the heat flux is small. It was less tfarat all other points. This could be attributed
to the fact that the solution was not converged in terms ofgtiiek size or the number of directions. In
order to minimize the error, a further refinement in the gize svas attempted, but was out of bounds in
terms of memory and processing power for the single processoputer used. Refinement in the grid
size and directions is anticipated to reduce the error.

3.2 1-D Transient Radiative Transfer With Collimated Irrad iation

To solve the radiative transport equation for collimateddration, the intensity is split into two parts,
() the radiation scattered away from the collimated radragnd (ii) the remaining collimated beam
after partial extinction by absorption and scattering glits path. The contribution from emission is
usually negligible compared to the incident and scattemthsity. Thus, the intensity for a gray medium
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is written as,I(r,§,t) = I.(r,8t) + 14(r,8,t) [3]. Consider a plane parallel slab of an absorbing and
isotropically scattering medium with constant and unifaptical properties exposed to time-dependent
collimated radiation. In this case, The collimated intgni, remnant of the incident irradiatiof(r ., t)

is given by [24],1.(z,8,t) = I;(t — z/c)d[5 — &]e~ 7% where$, corresponds taos # = 1. In addition,

the governing equation for the non-collimated radiaticenmsity /; can be written as,

1DIy(z,5,t)
c Dt

Os

47TIi(t—z/c)e*BZH(t—z/c) (6)

— _BIy(=5 1)+ ﬁ/ Lu(z &, £)d9% +
47T A

where H is the Heaviside step functiorHd[(v) = 0if v < 0 andH(u) = 1if uw > 0]. while §

depends only on the polar angle and the boundary conditions afg(z = 0,cos6 > 0,¢) = 0 and

I4(z = L,cos 0 < 0,t) = 0. The heat flux is computed using

q= Aﬂ 1(98Q + Li(ry, t — s/c) exp [_ /O B(r — s’éc)ds’] H(t — s/0)& (7)

Two different incident radiations were considered for cangpn with solutions reported in literature.

Continuous Collimated PulseThe first case is a continuous collimated pulse correspgrdify (¢) = 0
Wim?/sr, fort < 0 andI;(t) = 1 W/m?/sr fort > 0. A converged solution was reached for a spatial
discretization ofV, = 101 points and an angular discretization/@§ = 25 directions. The time interval
At is equal toAz/c whereAz = L/100. The CPU time taken was abo6itseconds on a Pentiu)
2.80 GHz machine for360 time steps. Figure 2 compares the radiative heat fluxesnglatawvith the
present technigue with those obtained by (i) Tan and Hsu (is#]g the integral solution and by (ii)
Chai [15], using the finite volume technique with the CLAM snte and the present technique. As can
be seen, the modified method of characteristics captureshédmp discontinuities better than the finite
volume technique. It should also be noted that Chéi [15] 88@ctontrol volumes and@0 x 1 angles per
guadrant equivalent t&/y = 40 angles ford varying from0 to = compared td 01 nodes andVy = 25

in the present study.

Ultra-Short Collimated Pulse. The second incident radiation profile is a truncated Ganssia
distribution with a peak intensity at = ¢. and pulse width¢, expressed asl;(t) =
Ipexp [-4In2(t —t.)?/t2] for0 <t <2t and I;i(t) =0 fort > 2t. Numerical convergence
was achieved with a discretization 8f, = 101 and Ny = 25 for the case of;, = 0.5 and N, = 201
and Ny = 25 for the case of;, = 5.0. The time intervalAt had little effect on the numerical results as
long asAt < Az/c. Thus, it was set equal tAz/c whereAz = L/(N, — 1) and N, is the number

of gridpoints in thez—direction. After solving for the intensities in all diregtis at every grid point, the
hemispherical reflectandg(¢) and transmittancé(¢) are computed using the following formulae,

0
Rt) = o [ 10, )/ Ty (8)

1
T(t) = [or /0 Ly(L, i )pudpa + It — Lje)e PP H(t — Lje)]/ Iy ©)

The integrals in the formulae for hemispherical reflectaanu transmittance are computed using the 3/8
Simpson numerical rule. The CPU time taken for computingttaesmittance for the case of = 5.0
andw = 1.0 using a spatial discretization &f, = 201 points and an angular discretization/gf§ = 25
was abouttl seconds for a total dimensionless tirie= 40 defined byt* = (ct. The CPU time taken
for computing the reflectance for the caserpf= 0.5 andw = 0.95 using a spatial discretization of
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Figure 3: Time-resolved hemispherical transmittance)(#efd reflectance (right) far, = 5.0,t./t, =3
andgct, = 0.33 .

N, = 101 points and an angular discretization 8§ = 25 directions per octant was aba2it seconds
for a total dimensionless time of = 8.

Figures 4 compares the results of the numerical integrdtiothe transmittance and reflectance of ho-
mogeneous absorbing and isotropically scattering slatassraal by Wul[14] from the analytical solution
of the integral equation with those obtained with the modifieethod of characteristics. The plot on
the left corresponds to the temporal transmittance of addalptical thickness;, = 5.0 and scattering
albedosw = 1.0 andw = 0.5. That on the right corresponds to the reflectance from a dlaiptical
thicknessr = 0.5 and scattering albedos 0195 and0.5. Good agreement is observed for both the trans-
mittance and reflectance, and the mean error was les$thamall cases. Thus the modified method of
characteristics can be used to simulate transport of caéichradiation in a fast and accurate manner.

3.3 Discussion

The results presented confirm the validity of the numerichéme and its capability in handling various
transient problems. It has been shown that the modified rdathoharacteristics is a fast and accurate
technique to simulate transient radiative transfer in €ii8g and scattering media. It can also be easily
modified to handle various other geometries and phase @ng;tthus enabling it to simulate radiative
transfer in more complex situations such as those for bigrakdpplications. The computer program
used to implement the described method has not been optimeigher has a thorough error and sta-
bility analysis been done. Instead, the study has been aanhddmonstrating the applicability of the
method to a range of problems encountered in transienttiaditansfer. A careful study of the errors
introduced due to the Lagrangian interpolation should béopmed. This would be helpful in compar-
ing the accuracy of this method to other methods like theefimiiume method which is prone to false
scattering [[16]. Also, various improvements can be madestwahse the computational tim@) The
number of discrete directions can be reduced or replacedugirgture as commonly used in the dis-
crete ordinate method to accelerate the computation ofritiseattering term(2) To further accelerate
the computations, the radiation wavefront can be trackedcamputations be performed only at points
through which the wave has passé€8) Though the case of a diffusely reflecting boundary condition
was not discussed here, it can be easily implemented as goRekwlaineet al. [25]. Also, specularly
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reflecting boundaries using the modified method of chanaties have been successfully implemented
recently for phonon transpoffIRG}) Also, since the method is fully explicit it can be easily atdajfor
parallel computing. This could be a useful feature in remktanalysis and inverse problems.

4 Concluding Remarks

The modified method of characteristics has been presentedd®eme for solving the radiative transport
equation. It has been shown that the method can handle sapimblems including multidimensional,
transient radiative transport in media exposed to bothingated or diffuse irradiation. The method is
fast and accurate and compares well with those obtained ogiirer methods and reported in literature.
In particular, the method was able to capture the sharpadmhisicontinuities associated with transient
radiative transport. Also, since the method makes use oédirary fixed grid, it can be coupled easily
with other methods to simulate multi-carrier energy tramspr combined transport phenomena.
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