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Abstract
This paper presents the modified method of characteristics for simulating multidimensional transient ra-
diation transfer in absorbing and scattering media. The modified method of characteristics transforms
the integro-differential equation for radiative transferexpressed in terms of both space and time into four
ordinary differential equations with respect to time. It makes use of an arbitrary set of points and, unlike
the conventional method of characteristics follows the photons backward in space along their charac-
teristics curves (or pathline). First, the principle and advantages of the numerical scheme are presented.
Then, test problems for diffuse and collimated irradiationin one- and three-dimensional participating
media with various boundary conditions are considered. Thenumerical results show good agreement
with analytical and numerical solutions reported in literature. The scheme is fast and able to capture the
sharp discontinuities associated with the propagation of aradiation front in transient radiation transport.

1 Introduction

Ultra-short pulsed lasers are used in a wide variety of applications such as thin film property measure-
ments, laser assisted micro-machining, laser removal of contamination particles from surfaces, optical
data storage, optical ablation and ablation of polymers [1]. Ultra-short pulsed lasers are also used in
remote sensing of the atmosphere, combustion chambers and other environments which involve inter-
action of the laser beam with scattering and absorbing particles of different sizes. Another interesting
application of short-pulsed lasers is in biomedical optical tomography where their use can potentially
provide physiological and morphological information about the interior of living tissues and organs in a
non-invasive manner.

All the applications described above require models to predict transient radiation transport in partici-
pating media. In the past, some analytical studies of transient radiative transfer have been conducted
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and reviewed by Mitra and Kumar [2]. They examined the transport of light pulses through absorbing-
scattering media with different approximate mathematicalmodels.

The governing equation for transient radiation transfer inan absorbing and scattering medium is the
radiative transfer equation (RTE). The RTE expresses an energy balance in a unit solid angle ofdΩ about
the direction̂swithin a wavelength intervaldλ aboutλ. It can be written as [3],

1

c

∂Iλ

∂t
+ (̂s · ∇)Iλ = κλIbλ − κλIλ − σsλIλ +

σsλ

4π

∫

4π

Iλ(̂si)Φλ(̂si, ŝ)dΩi (1)

whereIλ is the intensity in thês direction andc, the speed of light in the medium. The linear absorp-
tion and scattering coefficients are denoted byκλ andσsλ, respectively. The scattering phase function
Φλ(̂si, ŝ) represents the probability that radiation propagating in the solid angledΩi direction around̂si

be scattered into the conedΩ around the direction̂s. The RTE is an integro-differential equation involv-
ing seven independent variables and radiation characteristics σsλ, κλ, andΦλ of materials which may
depend on wavelength, temperature, and location. Thus, exact solutions of the RTE are difficult and exact
analytical solutions exist for only a few simple cases [3].

The commonly used methods to solve the transient radiative transfer equation are the Monte Carlo
method, the integral equation solution, the finite volume method (FVM), the radiation element method
(REM) [4], and the discrete ordinates method (DOM).

The Monte Carlo method is often used to simulate problems involving radiative heat transfer because
of its simplicity, the ease by which it can be applied to arbitrary configurations and its ability to capture
actual and often complex physical conditions [5]. The MonteCarlo technique has been used by Guoet al.
[5] to simulate short-pulsed laser transport in anisotropically scattering and absorbing media. The Monte
Carlo method has also been widely used in biomedical optics to simulate steady state laser transport in
biological tissue [6, 7]. However, the method has inherent statistical errors due to its stochastic nature [3].
It is also computationally time consuming and demands a lot of computer memory as the histories of the
photons have to be stored at every instant of time [5].

The backward or reverse Monte Carlo has been developed as an alternative approach when solutions are
needed only at particular locations and times [8, 9]. The method is similar to the traditional Monte Carlo
method, except that the photons are tracked in a time-reversal manner. The method was successfully
applied by Lu and Hsu [9] to simulate transient radiative transport in a non-emitting, absorbing, and
anisotropically scattering one-dimensional slab subjected to ultra-short light pulse irradiation.

Analytical solutions of the radiation transfer equation inintegral form for inhomogeneous and non-
scattering medium have been obtained for 1-D [10] and 3-D geometries [11]. Then, Tan and Hsu [12]
used the integral equation formulation to simulate radiative transport in 1-D absorbing and isotropically
scattering media with black boundaries exposed to diffuse or collimated irradiation. The authors extended
the method to solve the same problem in 3-D geometries [13]. Wu [14] used the integral equation to
compute the temporal reflectivity and transmissivity of 1-Dabsorbing and isotropically scattering slabs
with various scattering albedos and optical thicknesses which compared well with results obtained using
the Monte Carlo method.

Chai and co-workers [15, 16] used the finite volume method to solve the transient RTE. They used
the finite volume technique with the “step” and CLAM spatial discretization schemes to model transient
radiative transfer in 1-D and 3-D geometries [15, 16]. The authors found that the CLAM scheme captures
the penetration depths of radiation more accurately than the “step” scheme for the same grid.
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Finally, the discrete ordinates method has been used by various researchers to solve the transient RTE.
Sakamiet al. [17] used the DOM to analyze the ultra-short light pulse propagation in a 2-D anisotrop-
ically scattering medium. Guo and Kumar [18] used it to simulate short-pulse laser transport in 2-D
anisotropically scattering turbid media. They later extended the technique to solve for 3-D geometries
and compared the results with Monte Carlo simulations [19].They found that the transient discrete or-
dinates method cannot capture the abrupt changes in the transmittance as predicted by the Monte Carlo
method. Guo and co-workers [20, 21] further used the DOM in 3-D geometries to model transport of
ultrafast laser pulses and fluorescence in heterogeneous biological tissues for the purpose of detecting
inhomogeneities in otherwise homogeneous tissue.

2 Modified Method of Characteristics

The conventional method of characteristics (or direct marching method) is commonly used to solve
hyperbolic partial differential equations which often occur in compressible fluid flow. It is based on
the Lagrangian formulation, which identifies photons at initial time t = t0 and follows them along
the characteristic at subsequent times as they are transported. Characteristics are pathlines of photons
in physical space along which information propagates. Though the direct method results in accurate
solutions, it has several disadvantages. Time increments along different characteristic curves may be
different and so the solution may be obtained at different times on each characteristic curve. Also, the
characteristic curves may coalesce or spread apart due to non-uniform velocities resulting in a highly
distorted grid. The modified method of characteristics on the other hand, follows photons backward in
space and uses any arbitrary pre-specified set of points. Thus, the solution is obtained at the same times
at all grid points and overcomes the problems related to griddeformation (see Ref. [22] and references
therein). Consider a Cartesian coordinate system, the characteristic curve in physical space is defined by,

dx

dt
= c sin θ cos φ,

dy

dt
= c sin θ sinφ,

dz

dt
= c cos θ (2)

By definition, the total derivative ofIλ(x, y, z, t) can be written as,

DIλ

Dt
=

∂Iλ

∂t
+
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+
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∂Iλ

∂y
+

dz

dt

∂Iλ

∂z
(3)

Then, along the characteristic curves in(x, y, z, t) space, the RTE [Equation (1)] simplifies to,

1

c

DIλ

Dt
= −κλIλ − σsλIλ + κλIbλ +

σsλ

4π

∫

4π

Iλ(̂si)Φλ(̂si, ŝ)dΩi (4)

Thus, the spatio-temporal partial integro-differential Equation (1) is converted into3 ordinary differential
equations in time, [Equation (2)] and1 temporal integro-differential equation [Equation (4)]. Figure 1
shows a 3-D computational cell in Cartesian coordinates.

The modified method of characteristics consists of determining the coordinates(xn, yn, zn) of the point
in space from where the particles located at the grid point(xa, yb, zc) at timet + ∆t originate from at
time t while traveling in direction of polar angleθn and azimuthal angleφm. In other words, for each
point of a specified grid, the pathline is projected rearwardalong the characteristic curve to the initial
data surface to determine the initial data point. For example, in Figure 1, the point(xa, yb, zc) is the
point (xi+1, yj+1, zk+1). The solid line represents the section of the characteristic curve along which the
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Figure 1: Typical computational cell used for inverse marching method containing the pathline of the
photons.

photon traveled from location(xn, yn, zn) to location(xa, yb, zc) during the time interval betweent and
t + ∆t.

To solve Equations (2) to (4), the radiation intensities andtemperatures are initialized at all points in
the computational domain. Then, for a given polar angleθn, an azimuthal angleφl, and for all internal
grid points(xa,yb,zc) where photons are present at timet + ∆t, the position of the photon at time t is
calculated as,

xn = xa − c sin θn cos φl∆t, yn = yb − c sin θn sinφl∆t, zn = zc − c cos θn∆t (5)

The values of the variablesIλ at (xn, yn, zn) and timet are obtained by Lagrangian interpolation using
their values at timet at the eight corners of the computational cell in which the point (xn, yn, zn) is
located (Figure 1).

Then, Equation (4) is solved forward in time by the fourth order Runge-Kutta method at location(xa, yb,
zc) and timet + ∆t. The integral on the right hand side of Equation (4) is estimated by the 3/8 Simpson
numerical integration. Finally, the boundary conditions are imposed in directions pointing toward the
medium depending on whether the boundary is black, specularly or diffusely reflecting. For directions
leaving the computational domain (outflow), the intensities at the boundary are computed just like any
other internal point. The calculations are repeated for allthe discretized values of polar and azimuthal
angles.

The modified method of characteristics has the following main advantages:(1) Unlike finite volume
techniques which propagate the information along the coordinate axis, the modified method of charac-
teristics propagates information along the photon pathlines. Like the Monte Carlo method, it respects
the physics of radiative transport resulting in accurate numerical results.(2) Since the method uses any
arbitrary pre-specified set of points, it can be easily coupled with other numerical techniques such as fi-
nite volume, finite element or finite difference schemes. This is a valuable feature in situations involving
multiple energy carriers and transport processes.(3) It does not require any outflow boundary conditions.
The radiative transport equation is a hyperbolic equation and information propagates with finite speed,
i.e., the speed of light in the medium. In such equations, the solution at a point is determined only by the
characteristics from upstream portion of the solution domain.

There are also a few disadvantages in using the modified method of characteristics to solve the RTE.
The backward projected characteristic curves do not necessarily intersect the known solution surface at
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the pre-specified grid points and so the initial data at the backward projected characteristics must be
determined by interpolation. This takes up computational effort and introduces interpolation errors into
the solution.

The method described above could be considered as a hybrid method between the traditional discrete
ordinates and the ray tracing methods. It is similar to the discrete ordinates method in that the RTE is
solved along arbitrary directions. However, the modified method of characteristics converts the RTE into
ordinary differential equations in time and solved along the characteristics, as opposed to the conven-
tional implementation of the DOM [3], where the RTE in the form of a partial differential equation is
solved along the grid lines. The present approach is comparable to that used by Coelho [23] to solve
the RTE using the discrete ordinates method. The author determined the dependent variableIλ by the
values at points located at the intersection of the direction of propagation of radiation with the grid lines
or surfaces, as opposed to directly using the grid nodes in the conventional DOM. The present method
also differs from that used by Coelho in the sense that, the photons are traced back a distance which they
would travel in one time step rather than all the way to the grid lines or surfaces.

Finally, unlike ray-tracing methods, the modified method ofcharacteristics does not trace photon bundles
from the source to the absorption point or to the boundaries.Instead photon bundles are traced backward
in space only for the time interval betweent andt + ∆t. At a new time step, new photon bundles are
traced back from all grid points and this procedure is repeated for all time steps.

3 Results and Discussion

For validation purposes, the numerical results obtained with the modified method of characteristics for
a set of test cases have been compared with analytical solutions or numerical results reported in the
literature using different numerical schemes. For the sakeof clarity, spectral dependencies were not con-
sidered in these cases but could have been included without any modifications in the methodology. The
spectral dependencies can be accounted for by using the modified method of characteristics at multiple
wavelengths or in combination with band models [3]. The testcases considered consist of simulations
of transient radiation transfer in absorbing and isotropically scattering cold media namely, (1) three-
dimensional media exposed to diffuse irradiation, (2) a 1-Dplane parallel slab irradiated by continuous
collimated radiation, and (3) a 1-D plane parallel slab irradiated by pulsed collimated radiation. For 1-D
problems, a discretization ofNz points along thez−direction andNθ discrete directions forθ varying
from 0 to π was used. In the case of 3-D problems, a discretization ofNx ×Ny ×Nz along thex, y and
z−directions respectively was used and the angular space ofθ varying from0 to π andφ varying from0

to 2π was discretized intoNθ × Nφ directions.

3.1 3-D Transient Radiative Transfer in Scattering, Absorbing, and Emitting Media Exposed to
Diffuse Irradiation

Let us consider the case of a cubic enclosure of a non-emitting, absorbing and isotropically scattering
medium of thicknessL. It is subjected to a transient unit step function emissive power on one side
(z = 0) and the other side (z = L) being cold with optical thicknessτL = 1 defined asτL = βL where
β = σs + κ and the scattering albedoω = σs/β = 0.1. Initially, the medium is assumed to be at 0K
and initial intensities everywhere in the medium are zero. Then, at t=0, the intensity at the wall,z = 0.0

in all directions pointing into the medium is set to1.0 W/m2.sr. The remaining walls are black and cold
(T = 0K).
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Figure 2: Radiative heat flux distribution at different times (left) in a homogeneous 3-D medium with
a diffusely emitting boundary forτ = 1.0 andω = 0.1, and (right) in a 1-D homogeneous medium
exposed to continuous collimated irradiation.

A grid size of35 × 35 × 35 points along thex, y andz−directions was used. The entire angular space
of θ varying from0 to π andφ varying from0 to 2π was divided into30 × 24 discrete directions. Tan
and Hsu [13] solved the same problem using the integral solution. The authors verified the reliability of
the integration scheme, namely the DRV method by comparing their results with those obtained by using
the YIX method. They used a grid size of17 × 17 × 17 volume elements in thex, y andz−directions
respectively in all the cases and 1982 angular quadrature points for the YIX method. Similarly, Chaiet
al. [16] solved this problem using the finite volume method. Figure 2 compares the heat flux obtained
using the present method along the center of the cube with those obtained by (i) Tan and Hsu [13] with
the integral solution using the DRV scheme and (ii) Chaiet al. [16] using a grid size of17 × 17 × 17,
an angular discretization of16 × 12 and making use of the CLAM scheme. In order to quantify the
relative difference in the numerical results, we assumed that the values reported by Tan and Hsu [13]
are converged and correspond to the exact solution. For steady-state, the relative error for the results
reported by Chaiet al. [16] compared to Tan and Hsu [13] was less than2.5% while they were less than
6% for the present method. For the intermediate transients, the results reported by Chaiet al. [16] result
in infinite errors beyond the wavefront. Chaiet al. [16] found that the finite volume method suffers from
false scattering and cannot capture the wavefront accurately. In contrast, the present method is able to
accurately capture the wavefront. However, there were large errors of up to83% at the point right before
the wavefront where the heat flux is small. It was less than6% at all other points. This could be attributed
to the fact that the solution was not converged in terms of thegrid size or the number of directions. In
order to minimize the error, a further refinement in the grid size was attempted, but was out of bounds in
terms of memory and processing power for the single processor computer used. Refinement in the grid
size and directions is anticipated to reduce the error.

3.2 1-D Transient Radiative Transfer With Collimated Irrad iation

To solve the radiative transport equation for collimated irradiation, the intensity is split into two parts,
(i) the radiation scattered away from the collimated radiation and (ii) the remaining collimated beam
after partial extinction by absorption and scattering along its path. The contribution from emission is
usually negligible compared to the incident and scattered intensity. Thus, the intensity for a gray medium
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is written as,I(r , ŝ, t) = Ic(r , ŝ, t) + Id(r , ŝ, t) [3]. Consider a plane parallel slab of an absorbing and
isotropically scattering medium with constant and uniformoptical properties exposed to time-dependent
collimated radiation. In this case, The collimated intensity Ic, remnant of the incident irradiationIi(rw, t)

is given by [24],Ic(z, ŝ, t) = Ii(t − z/c)δ[̂s− ŝc]e
−βz whereŝc corresponds tocos θ = 1. In addition,

the governing equation for the non-collimated radiation intensityId can be written as,

1

c

DId(z, ŝ, t)
Dt

= −βId(z, ŝ, t) +
σs

4π

∫

4π

Id(z, ŝi, t)dΩi +
σs

4π
Ii(t − z/c)e−βzH(t − z/c) (6)

whereH is the Heaviside step function [H(u) = 0 if u < 0 and H(u) = 1 if u ≥ 0]. while ŝ
depends only on the polar angleθ, and the boundary conditions areId(z = 0, cos θ > 0, t) = 0 and
Id(z = L, cos θ < 0, t) = 0. The heat flux is computed using

q =

∫

4π

Id(̂s)̂sdΩ + Ii(rw, t − s/c) exp

[

−

∫ s

0

β(r − s′ŝc)ds′
]

H(t − s/c)̂sc (7)

Two different incident radiations were considered for comparison with solutions reported in literature.

Continuous Collimated Pulse.The first case is a continuous collimated pulse corresponding toIi(t) = 0

W/m2/sr, for t < 0 andIi(t) = 1 W/m2/sr for t ≥ 0. A converged solution was reached for a spatial
discretization ofNz = 101 points and an angular discretization ofNθ = 25 directions. The time interval
∆t is equal to∆z/c where∆z = L/100. The CPU time taken was about6 seconds on a Pentium4,
2.80 GHz machine for360 time steps. Figure 2 compares the radiative heat fluxes obtained with the
present technique with those obtained by (i) Tan and Hsu [12]using the integral solution and by (ii)
Chai [15], using the finite volume technique with the CLAM scheme and the present technique. As can
be seen, the modified method of characteristics captures thesharp discontinuities better than the finite
volume technique. It should also be noted that Chai [15] used300 control volumes and20× 1 angles per
quadrant equivalent toNθ = 40 angles forθ varying from0 to π compared to101 nodes andNθ = 25

in the present study.

Ultra-Short Collimated Pulse. The second incident radiation profile is a truncated Gaussian
distribution with a peak intensity att = tc and pulse width tp expressed asIi(t) =

I0 exp
[

−4 ln 2(t − tc)
2/t2p

]

for 0 < t < 2tc and Ii(t) = 0 for t ≥ 2tc Numerical convergence
was achieved with a discretization ofNz = 101 andNθ = 25 for the case ofτL = 0.5 andNz = 201

andNθ = 25 for the case ofτL = 5.0. The time interval∆t had little effect on the numerical results as
long as∆t ≤ ∆z/c. Thus, it was set equal to∆z/c where∆z = L/(Nz − 1) andNz is the number
of gridpoints in thez−direction. After solving for the intensities in all directions at every grid point, the
hemispherical reflectanceR(t) and transmittanceT (t) are computed using the following formulae,

R(t) = −2π

∫

0

−1

Id(0, µ, t)µdµ/I0 (8)

T (t) = [2π

∫

1

0

Id(L,µ, t)µdµ + Ii(t − L/c)e−βLH(t − L/c)]/I0 (9)

The integrals in the formulae for hemispherical reflectanceand transmittance are computed using the 3/8
Simpson numerical rule. The CPU time taken for computing thetransmittance for the case ofτL = 5.0

andω = 1.0 using a spatial discretization ofNz = 201 points and an angular discretization ofNθ = 25

was about41 seconds for a total dimensionless timet∗ = 40 defined byt∗ = βct. The CPU time taken
for computing the reflectance for the case ofτL = 0.5 andω = 0.95 using a spatial discretization of
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Figure 3: Time-resolved hemispherical transmittance (left) and reflectance (right) forτL = 5.0, tc/tp = 3

andβctp = 0.33 .

Nz = 101 points and an angular discretization ofNθ = 25 directions per octant was about21 seconds
for a total dimensionless time oft∗ = 8.

Figures 4 compares the results of the numerical integrationfor the transmittance and reflectance of ho-
mogeneous absorbing and isotropically scattering slabs obtained by Wu [14] from the analytical solution
of the integral equation with those obtained with the modified method of characteristics. The plot on
the left corresponds to the temporal transmittance of a slabof optical thicknessτL = 5.0 and scattering
albedosω = 1.0 andω = 0.5. That on the right corresponds to the reflectance from a slab of optical
thicknessτ = 0.5 and scattering albedos of0.95 and0.5. Good agreement is observed for both the trans-
mittance and reflectance, and the mean error was less than5% in all cases. Thus the modified method of
characteristics can be used to simulate transport of collimated radiation in a fast and accurate manner.

3.3 Discussion

The results presented confirm the validity of the numerical scheme and its capability in handling various
transient problems. It has been shown that the modified method of characteristics is a fast and accurate
technique to simulate transient radiative transfer in absorbing and scattering media. It can also be easily
modified to handle various other geometries and phase functions, thus enabling it to simulate radiative
transfer in more complex situations such as those for biomedical applications. The computer program
used to implement the described method has not been optimized neither has a thorough error and sta-
bility analysis been done. Instead, the study has been aimedat demonstrating the applicability of the
method to a range of problems encountered in transient radiation transfer. A careful study of the errors
introduced due to the Lagrangian interpolation should be performed. This would be helpful in compar-
ing the accuracy of this method to other methods like the finite volume method which is prone to false
scattering [16]. Also, various improvements can be made to decrease the computational time:(1) The
number of discrete directions can be reduced or replaced by quadrature as commonly used in the dis-
crete ordinate method to accelerate the computation of the in-scattering term.(2) To further accelerate
the computations, the radiation wavefront can be tracked and computations be performed only at points
through which the wave has passed.(3) Though the case of a diffusely reflecting boundary condition
was not discussed here, it can be easily implemented as done by Rukolaineet al. [25]. Also, specularly
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reflecting boundaries using the modified method of characteristics have been successfully implemented
recently for phonon transport [26].(4) Also, since the method is fully explicit it can be easily adapted for
parallel computing. This could be a useful feature in real time analysis and inverse problems.

4 Concluding Remarks

The modified method of characteristics has been presented asa scheme for solving the radiative transport
equation. It has been shown that the method can handle various problems including multidimensional,
transient radiative transport in media exposed to both collimated or diffuse irradiation. The method is
fast and accurate and compares well with those obtained using other methods and reported in literature.
In particular, the method was able to capture the sharp spatial discontinuities associated with transient
radiative transport. Also, since the method makes use of anyarbitrary fixed grid, it can be coupled easily
with other methods to simulate multi-carrier energy transport or combined transport phenomena.
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