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Radiative characteristics such as the extinction coefficient, the scattering albedo and the 

scattering phase function of fused quartz containing closed cells are determined by using an 

inverse method based on theoretical and experimental bi-directional transmittances. The 

theoretical transmittances are obtained by solving the Radiative Transfer Equation with the 

Discrete Ordinate Method. Improvements have been made over previously reported 

experimental determination of porous fused quartz radiative characteristics by using a more 

accurate phase function and an adaptive quadrature to compute more precisely the 

intensities in the measurement directions. In addition, a two step inverse method to compute 

accurately and simultaneously the radiative parameters has been developed. The results are 

shown to be independent of samples thickness. Exhaustive comparison between experimental 

measurements of hemispherical transmittance and reflectance and computational results 

using the retrieved radiative characteristics shows good agreement. The retrieved absorption 

coefficient of porous fused quartz appears to be more realistic than that reported in our 

earlier publication. 

                                                           
* Ph.D. Student, CETHIL UMR CNRS 5008, Domaine Scientifique de la Doua, Insa de Lyon, Bâtiment Sadi 
Carnot, 9 rue de la Physique, jaona.randrianalisoa@insa-lyon.fr. 
† Assistant Professor, CETHIL UMR CNRS 5008, Domaine Scientifique de la Doua, Insa de Lyon, Bâtiment Sadi 
Carnot, 9 rue de la Physique, dominique.baillis@insa-lyon.fr. 
‡ Assistant Professor, Mechanical and Aerospace Engineering Department, 37-132 Engineering IV, Los Angeles, 
CA 90095-1597, pilon@seas.ucla.edu. 



 2

Nomenclature 

a  bubble radius, m 

b  corrective factor used in Eq. (10)  

cij  matrix elements of the sensitivity coefficients J 

CN  condition number of the sensitivity matrix J 

e  sample thickness, m  

f1, f2  spectral weights of the Henyey-Greenstein phase function ΦHG 

g1, g2  spectral parameters of the Henyey-Greenstein phase function ΦHG 

g  spectral asymmetry factor  

I  spectral radiation intensity, Wm-2sr-1 

IN  iteration number 

J  matrix of the sensitivity coefficients 

k  volumetric absorption coefficient, m-1 

m  fused quartz refractive index 

Mb  quadrature order of the discrete ordinate method 

MN  measurement number 

n  number of unknown parameters including ω, β, f1, g1, and/or g2 

Nb  number of measurement directions 

p  unknown parameter such as ω, β, f1, g1, or g2 

Q  ratio of the measured scattered to the incident radiation fluxes 

r  interface reflectivity 

S  minimization function 

T  spectral transmittance or reflectance, sr-1 

T   average spectral transmittance or reflectance, sr-1 

x  bubble size parameter 

y  spatial coordinate along the sample thickness, m 

w  angular weight of the discrete ordinate method, sr 

α  angle between incident radiation and measurement directions, rad 

β  volumetric extinction coefficient, m-1  
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χ  experimental error, % 

δ   Kronecker delta function 

ε0, ε1, ε2, ε3   coefficients of the third order polynomial estimating Tsca in Eq. (17) 

Φ  spectral phase function 

γ  relaxation factor used in Eq. (5) 

η  cosine of the angle α 

ϕ  azimuthal angle, rad 

κ  fused quartz absorption index 

λ  radiation wavelength, m 

µ  cosine of the angle θ 

νi  weight associated to measurement in the direction i=1 to Nb 

Π  dimensionless sensitivity coefficient 

θ  angle between incident radiation direction and radiation inside the porous medium, rad 

Θ  scattering angle defined in Eq. (21), rad 

∆θ  divergence angle of the incident radiation, rad 

σ  standard deviation 

τ0  optical thickness 

ξ  random number defined between 0 and 1 

ω  volumetric scattering albedo 

 ∆Ω  solid angle, sr 

 

Superscripts 

+  refers to hemispherical transmittance 

-  refers to hemispherical reflectance 

 

Subscripts 

bulk  refers to the continuous phase (quartz) 

coll  refers to collimated radiation 
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d  refers to detection 

e  refers to experimentally measured value 

exact  refers to the exact radiative parameters 

HG  Henyey-Greenstein phase function 

max, min  refers to the higher and lower integration bound in Eq. (30), respectively 

NC  refers to the Nicolau phase function 

sca  refers to the scattered 

t  refers to the theoretical value 

TPF  refers to the truncated phase function 

λ  refers to spectral value 

0  refers to incident radiation 

12  refers to radiation from the air to the air-glass interface 

21  refers to radiation from the glass to the glass-air interface 

I. Introduction 

OAM and cellular materials have practical importance in many applications. Examples range from food 

processes, where foam can disrupt the process, to space and building applications where they are used as insulating 

materials. Thermal radiation in cellular materials is a significant mode of energy transfer in most of these 

applications. Thus, the modeling of radiative transfer in cellular materials has a primary importance for optimizing 

performance in engineering applications. An extensive review of radiative transfer in dispersed media was carried 

out by Viskanta and Mengüç,1 and by Baillis and Sacadura.2 A porous medium is often treated as a continuous, 

homogeneous, absorbing, and scattering medium. In order to evaluate the radiative heat transfer, radiative 

characteristics such as the extinction coefficient, the scattering albedo, and the scattering phase function are 

required. They can be determined by different approaches: 

1) radiative characteristics can be predicted from porosity and bubble size distribution by considering a random 

arrangement of particles by using for example the Mie theory or the geometric optics laws assuming independent 

scattering;3-8 

2) other methods consist of determining the radiative characteristics from a Monte Carlo approach at the 

microscopic scale, taking into account the complex morphology of the porous medium;9-14 

F
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3) finally, other approaches are based on the experimental measurement of reflectance and transmittance of the 

medium on a macroscopic scale combined with an inverse method.15-20 Hemispherical emittance measurements have 

also been exploited to retrieve the radiative characteristics of porous media.21,22 

The present study focuses on radiative characteristics of fused quartz containing bubbles or closed cells as illustrated 

in Fig. 1. Few studies on such media have been reported. Pilon and Viskanta6 have studied the effects of volumetric 

void fraction and bubble size distribution on the radiative characteristics of semitransparent media containing gas 

bubbles. They used the model proposed by Fedorov and Viskanta7 which is based on the anomalous-diffraction 

approximation. Wong and Mengüç12 used a ray-tracing method in a porous medium composed of spherical air 

pockets embedded in a non-absorbing matrix to study the depolarization of the incident radiation. More recently, 

experimental determination of radiative characteristics of fused quartz containing bubbles18 based on an inverse 

method has been carried out. The Henyey-Greenstein phase function model was adopted and theoretical 

transmittance in the experimental directions was interpolated from the solution of the Radiative Transfer Equation. 

The retrieved absorption coefficient of the porous fused quartz was found to be greater than that of dense fused 

quartz which a priori, seems to contradict physical intuition since bubbles entrapped in the glass matrix are 

transparent.23, 24 On the other hand, the larger absorption coefficient could be attributed to trapping of radiation by 

successive inter-reflections within the bubbles18 or to the increases optical path within the glass matrix due to 

reflections at the surface of the bubbles. These apparent contradictions are due to the choice of the phase function 

model used in the calculations of the theoretical bi-directional transmittance and reflectance and will be clarified in 

this paper. 

The present study aims at completing the previous one18 by investigating (1) the influences of the phase function 

model on the retrieved radiative characteristics, (2) the best way to calculate the transmitted intensity in the specific 

measurement directions, and (3) the development of a more efficient identification technique. First, the inverse 

method using experimental and theoretical transmittances is described, including details regarding (i) different forms 

of the minimization and (ii) scattering phase functions, and as well as (iii) the direct computation of the extinction 

coefficient. Then, the experimental setup and the measurements are briefly presented while the theoretical model for 

calculating the bi-directional transmittance and reflectance is explained in detail. Finally, the results are presented 

and discussed. 
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II. Parameter identification method 

A. Description 

The spectral radiative characteristics of semitransparent media are the single scattering albedo ωλ, the extinction 

coefficient βλ and the scattering phase function Φλ which depends on n-2 parameters that will be here denoted by 

(pl)l=3,n. As a result, the n unknown parameters are (pl)l=1,…n=(ω, β, pl=3,n). For a given sample, the parameter 

identification method is based on: 

1) the experimental measurements of the bi-directional reflectance and transmittance (Te) obtained for several 

directions (i), 

2) the theoretical bi-directional reflectance and transmittance (Tt) calculated for the same directions. 

For each wavelength λ, the goal is to determine the radiative parameters (pl)l=1,…n, which minimize a function S 

characterized by the quadratic differences between the experimentally measured bi-directional transmittances Te,i 

and the corresponding numerically calculated value Tt,i for Nb measurement directions: 

 [ ]∑
=

−=
Nb

i
eintiin T)p,...,p(T)p,...,p(S

1

2
1

2
1 ν  (1) 

The bi-directional transmittance or reflectance Τi for normal incident intensity are defined by the following 

expression: 

 
00∆Ω

= I
I

T i
i  (2) 

where Ii is the transmitted or reflected intensity in the direction i and I0 is the intensity of the collimated beam 

normally incident on the sample within the incident solid angle ∆Ω0. The weight νi, associated with the direction i, is 

introduced to decrease the importance of inaccurate measurements. 

The optimization method adopted is the Gauss linearization method25 which minimizes S by setting to zero the 

derivatives of Eq. (1) with respect to each of the unknown parameters. As the system is non-linear, an iterative 

procedure is performed over j iterations: 
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 (3) 

Solutions of the system of Eq. (3) gives the variation parameter j
lp∆  added to the value of each parameter j

lp  

at the jth iteration, i.e., 

 n...,,,lwithppp j
l

j
l

j
l 211 =∆+=+  (4) 

The use of Eq. (4) limits the convergence of the inverse process due to large values of j
lp∆  during the first few 

iterations. In this study, we propose to weight the parameter j
lp∆  with a relaxation factor γ  (1≥γ>0): 

 n...,,,lwithppp j
l

j
l

j
l 211 =∆+=+ γ  (5) 

The converged solution is estimated to be reached when 310−<∆ j
l

j
l p/p . The matrix on the left-hand side of Eq. 

(3) will be termed J. It is composed of the sensitivity coefficients lti p/T ∂∂  calculated from the theoretical model. 

The condition number (CN) of the matrix J can be calculated from the following relation: 

 J.J)J(CN 1−=  (6) 

where J  is the norm of the matrix, calculated from the matrix elements cij as follows: 

 
∑

=
=

=
n

j
ijn,i

cmaxJ
1

1  
(7) 

Note that the condition number CN is always larger than unity. The larger CN is, the more ill-conditioned the 

system. Thus, small uncertainties in the measurements can result in very large changes in the ∆p vector. A large 

condition number occurs when at least two of the sensitivity coefficients are quasi-linearly interdependent and/or 

when at least one is very small or very large compared to the others. The analysis of the sensitivity coefficients and 
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the condition number is an efficient tool for understanding the physical behavior of the problem and for studying the 

feasibility of simultaneous determination of the unknown parameters.26 

B. Measurements weights 

Two common expressions for the weights can be used:17-19 

 Nb to 1i fori == 1ν  (8) 

 Nb to 1i forTei
i == 1ν  (9) 

When using Eq. (8), the minimization gives more importance to the highest measurement values. This is 

inconvenient in the situation where physical information is “hidden” behind small data values. Thus, using Eq. (9) 

enables one to give the same importance to each measurement and appears to be more appropriate. 

Usually, some measurements feature large experimental uncertainties as detailed hereafter in section III. B. Such 

data can potentially contain information about the porous material. It is therefore preferable to decrease the 

importance of that data in the identification procedure rather than to discard them completely. This can be done by 

modifying the weight νi by a corrective factor bi as follows: 

 Nb to 1i forT
b

ei

i
i ==ν  (10) 

The value of the parameter bi depends on the accuracy of the measurements estimated through the experimental 

errors χ discussed in section V.C. In this study, the following values were used for different measurement error 

ranges: 
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The weights given by Eqs. (10) and (11) for different experimental uncertainties are adopted in this study. 

C. Models for the scattering phase function 
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The expression for the phase function plays an important role in describing the appropriate directional scattering 

behavior. In practice, the representation of the scattering phase function as an expansion in Legendre polynomial27 is 

not suitable in the case of highly anisotropic material due to the larger number of unknown parameters.20 Among the 

useful models, the Henyey-Greenstein (HG) approximation28 is the most popular with only one unknown parameter 

gλ: 

 ( ) ( ) 232

2

21

1
/HG

cosgg

g
g,

Θ−+

−
=ΘΦ

λλ

λ
λ  (12) 

where Θ is the angle between the directions of the incident and scattered radiation intensities on a scattering point. 

However, some materials having a more complex anisotropic scattering pattern require the use of a more 

complex scattering function to properly describe the directional scattering behavior. For example, Nicolau et al.19 

proposed a combination of Heyney-Greenstein functions for fibrous media: 

 [ ] ( )λλλλλλλλλλ 2211122121 11 f)g,()f()g,(ff)f,f,g,g,( HGHGNC −+ΘΦ−+ΘΦ=ΘΦ  (13) 

where f1λ and f2λ are the weights associated to the scattering functions ΦHG(Θ, g1λ) and [f1λΦHG(Θ, g1λ)+(1-

f1λ)ΦHG(Θ, g2λ)], respectively. 

According to the previous study19, the simultaneous computation of these parameters combined with the 

extinction coefficient and the scattering albedo remains critical. The reduction of the number of unknown 

parameters (ω, β, f1, f2, g1 and g2) to be simultaneously identified is required. 

This study proposes a new combination of scattering functions called the Truncated Phase Function (TPF) 

depending only on three parameters (f1, g1 and g2): 

 






ΘΦ=ΘΦ

°≤Θ≤°ΘΦ−+ΘΦ=ΘΦ=ΘΦ

elsewhere)g,g,f,(.)g,g,f,(
for)g,()f()g,(f)g,g,f,()g,g,f,( HGHG

2111211

21112111211

030
9001

λλ

λλλλ  (14) 

Figure 2 compares the TPF to the exact Mie scattering phase function29 in the case of an optically large bubble 

(x=2πa/λ=2000) located in a refracting medium (mλ=1.44). The corresponding TPF parameters are f1=0.2, g1=0.98, 

and g2=0.45. One can note that the TPF function can properly approximate the exact phase function. 

The method previously adopted by Nicolau et al.19 is used to normalize this function. The resulting function 

satisfies: 
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 12
1

2110
=ΘΘΘΦ∫ dsin)g,g,f,(

π

λ  (15) 

The asymmetry factor corresponding to this phase function can be determined by:29 

 ΘΘΘΘΦ= ∫ dsincos)g,g,f,(g 21102
1 π

λλ  (16) 

D. Direct estimation of the extinction coefficient 

The collimated transmittance Tcoll in the incident radiation direction which is attenuated only by extinction and 

reflection at interfaces can be written as:28 

 
)eexp(r
)eexp()r(

TTT scaecoll β
β

21
1

2
12

2
12

11 −−

−−
=−=  (17) 

where Te1 refers to the measured transmittance in the incident direction while Tsca1 refers to the scattered 

transmittance toward the same direction. The subscript 1 refers to the first direction of measurement (i=1) which is, 

in this study, the same as the incident radiation direction. The Fresnel reflectivity is denoted r12 at the air-glass 

interface for normal incidence and e is the sample thickness. 

Here, Tsca1 is estimated by a third order polynomial in terms of the measurement direction cosine η (=cosα) i.e., 

01
2

2
3

3 εηεηεηε +++= iiiscaiT  with i=1 and η1=1. The four coefficients ε0, ε1, ε2, and ε3 are obtained by matching the 

conditions: eiscai TT =  for the four directions i=2 to 5. 

After some manipulations of Eq. (17), the extinction coefficient can be expressed as: 
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−= 2
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2
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1411
rT

)r(rT)r(
lne

coll

collβ  (18) 

The extinction coefficient can be directly calculated from Eq. (18). Thus, the set of unknown parameters to be 

simultaneously identified is reduced to ω, f1, g1 and g2. 

III. Experimental Measurements 

A. Experimental Setup 
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The experimental data of spectral bi-directional transmittance and reflectance are obtained from an experimental 

setup including a Fourier-transform infrared spectrometer (FTS 60 A, Bio-Rad Inc) associated with a detector 

(liquid nitrogen cooled MCT detector) mounted on a goniometric system.17-19 The incident radiation emitted by the 

source is modulated after which the resulting spectrum range varies from 1.67 to 14 µm. The collimated beam is 

perpendicularly incident on the sample with a divergence half-angle of ∆θ0=2.21 10-2 rad and a beam size d equal to 

40 mm. We assume that the samples are thin enough (see Section V.A) to guarantee one-dimensional radiation 

transfer. Unfortunately, to the best of our knowledge, no criteria for the ratio of sample thickness to beam diameter 

is available in the literature. Note that measurements were performed with and without a gold coating deposited on 

the edges of the slab. No noticeable effects were recorded indicating that the side boundary conditions have no effect 

on the directional transmittance and reflectance. Therefore, the problem can be treated as one-dimensional. 

The intensity transmitted or reflected by the sample is collected by a spherical mirror which focuses it on the 

detector. The corresponding detection solid angle (∆Ωd) is characterized by a detection half-angle equal to ∆θd=0.33 

10-2 rad. 

Then, the measured bi-directional transmittance in the direction i can be computed from:30 

 ),max(
Q

I
)(I

T
di

ii
ei

000 ∆Ω∆Ω=∆Ω= η
η

 (19) 

where iQ  is the ratio of the radiation flux transmitted or reflected by the sample to that incident on the sample, 

directly estimated from the FTIR measurement in the direction i. The incident and detection solid angles can be 

expressed as ( )00 12 θπ ∆−=∆Ω cos  and ( )dd cos θπ ∆−=∆Ω 12 , respectively.30 

The bi-directional measurements are carried out over Nb=24 directions as shown in Fig. 3: 12 directions in the 

forward hemisphere (transmittances) and 12 directions in the backward hemisphere (reflectances). These directions 

are chosen by combining two Gaussian quadratures aimed at increasing the number of measurements around the 

direction of the incident radiation and suitable for forward and/or backward scattering media.19 Note that Nb must be 

a positive even number. 

B. Measurement uncertainties 

There are two major sources of experimental uncertainties involved in the bi-directional FTIR measurements, 

namely noise and misalignment. Indeed, the measurements become erroneous when the signal to noise ratio is too 
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small. It is the case for our measurements (i) at wavelengths beyond 4.04 µm for which the fused quartz becomes 

optically thick and (ii) far from the incident radiation direction (from 48 ° to 90 ° for transmittances and from 90 ° to 

148 ° for reflectances) where the magnitude of the scattered flux is small. 

Moreover, for the measurement in the 2nd direction (the closest to the incident radiation direction), the signal 

decreases sharply and a slight overestimation of the measured signal occurs due to the diffraction of the incident 

beam from the aperture inside the FTIR spectrometer. Also, the same problem occurs for measurement close to the 

backward specular direction (i.e., 23rd direction). Measuring precisely the specular reflectance is also difficult with 

our goniometric system due to the optical misalignments. 

In order to reduce these uncertainties, the measurements are repeated five times (each one corresponding to a 

new goniometric system alignment) and the resulting average bi-directional transmittances and reflectances are used 

in the inversion procedure. Moreover, only the essential measurements which are required for identification are 

retained. These measurements are presented and analyzed in sections V.B and V.C. 

IV. Theoretical model 

The theoretical spectral bi-directional transmittance and reflectance are computed by solving the Radiative 

Transfer Equation (RTE) based on the assumptions that (1) radiative transfer is one-dimensional, (2) a steady-state 

regime is established, (3) azimuthal symmetry prevails, and (4) medium emission can be disregarded thanks to the 

radiation modulation and the phase sensitive detection. 

A. RTE and boundary conditions 

Under the above assumptions, the RTE can be written as follows:18 

 'd)()',y(I),y(Iy
),y(I

∫
−

ΘΦ=+∂
∂ 1

1
2 µµ

ω
µβ

µ
µ λλ

λ
λ

λ

λ  (20) 

where y indicates the spatial coordinate along the sample thickness and µ is the direction cosine of the intensity with 

respect to the y axis. 

The scattering angle Θ can be expressed in terms of the direction cosines µ and µ′ as:31 

 [ ] 




 −−+=Θ − ϕµµµµ cos)')(('cos / 21221 11  (21) 
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where ϕ is the azimuthal angle which can be taken any arbitrary value in case of azimuthal symmetry.31 

The boundary conditions are obtained by assuming that the interfaces are optically smooth i.e., the surface 

roughness is smaller than the wavelength of the incident radiation and the area associated with the open bubbles at 

the sample surfaces is negligible due to the small void fraction. In fact, the sample surfaces are mechanically 

polished as described in the previous work18 and the open bubbles occupy only 7.5 % of the total sample surface 

exposed to the incident radiation. Then, the boundary conditions associated with the RTE for normal incident 

radiation are:18 

 ( ) ( ) ( ) ( ) 00100 012
2

21 0
>−+−= µµδµµ λµµλλλ ,Irm,Ir,I ,  (22) 

 ( ) ( ) 021 <−= µµµ λλ ,eIr,eI  (23) 

where r12 and r21 are the interfacial reflectivities at the air-glass and glass-air interfaces, respectively. The Kronecker 

delta function is defined as 1
0

=µµδ ,  if µ=µ0 and 0
0

=µµδ ,  otherwise where µ0=1 in the case of normal incident 

radiation. 

When the absorption index κλ is small such as κλ<10-3 which is the case for fused quartz in the spectral range of 

interest from 1.67 to 4.04 µm as one can see in Fig. 4,23, 32-34 the reflectivities r12 and r21 are determined entirely from 

the refractive index mλ  by means of the Fresnel’s equations.28, 31 The air-glass reflectivity r12 for normal incident 

radiation can be calculated as:31 

 
( )
( ) 2

2

12 1
1

+

−
=

λ

λ

m
m

r  (24) 

Due to scattering by bubbles embedded in the continuous phase, the radiation field inside the porous slab does 

not reach the back face of the slab perpendicularly. Thus, the glass-air reflectivity r21 is given by:31 

 








+
−+

+
−=

)(tg
)(tg

)(sin
)(sinr

αθ
αθ

αθ
αθ

2

2

2

2

21 2
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where θ=cos−1µ   is the angle between the internal radiation towards the surface of the slab and the y axis, and α= 

cos−1η  is the angle between the refracted radiation leaving the slab and the incident radiation direction. The angles 

θ and α are related by Snell's law31 expressed as: 

 αθλ sinsinm =  (26) 

B. Method of solution of the RTE 

The Discrete Ordinate Method (DOM)28, 31 is applied to solve the RTE [Eq. (20)]. It consists of replacing the 

integral term in the RTE by a sum over Mb directions namely “quadrature”. Several standard quadratures such as the 

Gaussian, Radau, and Fiveland quadratures35 can be used in the integral calculation. Then, a system of partial 

differential equations is obtained. Previously reported studies on the experimental determination of radiative 

characteristics of open-cell porous media17, 19 neglected the reflection at the interfaces due to the large porosity of 

the medium. Then, a simpler system of equations could be solved analytically by separating the collimated and 

scattered radiation. In the present study however, the system is more complicated due to the reflection at the front 

and back interfaces. Thus, the space is discretized along the y-direction in order to solve numerically the system of 

partial differential equations with the associated boundary conditions [Eqs. (22) and (23)] by using the control 

volume method.36 A linear scheme (diamond) is employed to evaluate the radiative intensity in the middle of the 

control volume knowing the radiative intensities on the control volume boundaries.36 For a number of control 

volumes larger than 190, the numerical results were found to be independent of the number of control volumes,18 

i.e., numerical convergence was reached. 

C. Transmitted and reflected intensity calculations 

The intensities leaving the sample with smooth interfaces can be written as:18 
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where the direction cosine η=cosα with α is the measurement angle while µ=cosθ is related to η through Eq. (26). 
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In general, the measurement angle α is different from one of the quadrature angles θi selected for the numerical 

calculations due to refraction at the interfaces of the slab except for the direct transmission and backscattering 

directions (i.e., for η=±1). To circumvent this difficulty, an interpolation can be used to evaluate the intensity in the 

measurement angle α using the computed intensity in the quadrature directions.18 Different interpolation laws such 

as linear (LL), exponential (EL) and combined exponential-linear laws (ELL) can be used. 

D. Adaptive Composite Quadrature 

Another way of avoiding the above mentioned difficulty related to interpolation is to use an Adaptive Composite 

Quadrature (ACQ)37 to solve Eq. (20). In the present study, the ACQ quadrature depends on the radiation 

wavelength and consists of Mb/2 directions in each hemisphere such that Mb>Nb (Fig. 3). Here also, Mb must be a 

positive even number. 

In the forward hemisphere, the first Nb/2 directions among the Mb/2 directions are related directly to the 

experimental direction through Snell’s Law. Rearranging Eq. (26) yields: 

 ( ){ } Nb/2 to 1i for)sin(cosmsincos ii == −−− ηµ λ
111  (29) 

The weight wi associated to direction i from 1 to Nb/2 can be geometrically interpreted as the solid angle ∆Ωi 

around each direction divided by 2π, i.e.,  

 Nb/2 to 1i forddsinw max,imin,i
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where θi,min and θi,max are the  minimum and maximum polar angles around direction i, respectively. For i=1, 

 µ1,min=1 and w1=∆Ω1/2π=∆Ω0/2π. Thus, we can calculate µi,min, µi,max, and wi for values of i between 2 and Nb/2 

thanks to Eqs. (29) and (30). 

Due to the refraction mismatch between the sample and the surrounding medium, these Nb/2 directions are 

confined under a critical angle defined by: 

 { })m/(sincos
max,Nb λµ 11

2

−=  (31) 
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Then, the Mb/2-Nb/2 remaining directions between µNb/2,max and µNb/2=0 can be defined by using the standard 

quadrature rules. However, since the intensity variation outside the critical angle is quasi-linear, a regular 

discretization is sufficient. 

Therefore, the remaining direction cosines can be expressed as: 
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=∆ 22θπ
θ . The associated weights are given by: 
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The Mb/2 directions in the backward hemisphere and those in the forward hemisphere are symmetrical with 

respect to sample surface, i.e., 
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The theoretical bi-directional transmittance obtained by using the interpolation methods with a Gaussian 

quadrature and the ACQ are compared. The quadrature order considered are Mb=30 and 40. Two cases of refracting, 

absorbing, and scattering but non-emitting medium assuming the HG phase function are considered: (1) mλ=1.41, 

βe=τ0=1, ω=0.9, g=0.75; and (2) mλ=1.40, βe=τ0=2, ω=0.3, g=0.5. 

Figure 5.a shows the computed transmittances in the experimental directions using three different interpolation 

laws, namely linear (LL), exponential (EL) and combined exponential-linear laws (ELL), and the ACQ for 

quadrature orders 30 and 40. Figures 5b and 5c depict the relative differences in directional transmittance obtained 

for each interpolation law with respect to the ACQ quadrature order 40. One can note that the same conclusions can 

be drawn for the two media considered. When the added directions (Mb-Nb) in the ACQ exceed 6, corresponding to 

Mb=30, the solution of the RTE  converges numerically, i.e., it is independent of the number of directions and 

control volumes, the relative difference in transmittance fall below 1 %. The linear interpolation (LL) with 

quadrature order Mb=30 overestimates significantly the intensities near the incident direction, the errors exceed 

1000 % and decrease to 100 % for a quadrature order Mb=40. The exponential interpolation (EL) with quadrature 
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order Mb=30 gives errors reaching 100 % in directions far from the incident direction and from the backward 

direction. These errors decrease down to 20 % for quadrature order Mb=40. The combined exponential-linear law 

(ELL) gives better results. The maximum deviation appears only in the directions around 90 ° and does not exceed 

10 % for quadrature order Mb=40. The results for each interpolation laws can be improved by increasing the 

quadrature order but this approach increases the CPU time and is not convenient for the inverse method. Thus, the 

ACQ quadrature order Mb=30 is adopted in the present study. 

V. Results 

A. Sample characteristics 

Three samples of different thickness (e=5, 6 and 9.9 mm) are studied; all of them feature an average void 

fraction of 4 % and an average bubble radius a equal to 0.64 mm. As one can see in Fig. 1, the bubbles are spherical 

in shape and randomly distributed. The sample thickness e and the fused quartz refractive index mλ are used as input 

data in the identification process. Different correlations for mλ have been suggested in the literature for different 

spectral regions.38-41 The most widely accepted is the Malitson’s correlation which is valid over the spectral range 

from 0.21 to 3.71 µm at 20 °C: 
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The validity of Eq. (35) was also confirmed by Tan41 up to 6.7 µm. Therefore, due to its wide range of validity at 

room temperature, Eq. (35) is used in the present study. The identification of parameters has been performed for 

more than 100 different wavelengths in the spectral region from 1.67 to 4.04 µm. 

B. Sensitivity Coefficients  

In order to investigate the influence of each measurement direction on the inverse method, the sensitivity 

coefficients of the theoretical model based on the TPF phase function [Eq. (14)] are investigated. For illustration 

purposes, we consider three cases of semitransparent media with Fresnel interfaces characterized by: (1) for λ=1.89 

µm, mλ=1.44, βe=τ0=0.5, ω=0.90, f1=0.22, g1=0.98, and g2=0.50; (2) for λ=3.20 µm, mλ=1.40, βe=τ0=1.0, ω=0.70, 

f1=0.21, g1=0.98, and g2=0.45; and (3) for λ=3.96 µm, mλ=1.39, βe=τ0=2.5, ω=0.35, f1=0.17, g1=0.96, and g2=0.35. 

The variations of the absolute dimensionless sensitivity coefficients defined as Π= ( )ltieil p/TT/p ∂∂  for l=β, ω, f1, g1, 

and g2 and i=1 to Nb, are depicted in Figs. 6a to 6c versus the measurement angle α. The sensitivity of the theoretical 
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bi-directional transmittance and reflectance to β increases when the optical thickness increases particularly in the 

incident direction. The sensitivity to ω tends to 0 near the incident direction and increases with the measurement 

angle. This sensitivity decreases slightly as the optical thickness increases but remains significant and close to unity. 

For optically thin medium, the sensitivity to ω has similar trend to that of β. As far as the parameter f1 is concerned, 

the model is sensitive only to directions near the forward and backward directions. The parameter g2 has the lowest 

sensitivity for optically thin medium. On the contrary, the sensitivity coefficient is the largest for the parameter g1, 

especially around the forward and backward directions. 

It is clear that the first direction is essential to determine the extinction coefficient of media with moderate optical 

thickness (τ0=1 and 2.5). In addition, measurements in the scattering directions are required to identify ω  and β for 

τ0=0.5. In the case of optically thin media (τ0 < 1), ω and β  may be linearly dependent resulting in a high condition 

number i.e., an ill-conditioned system, such that their simultaneous estimation appears difficult. Some directions near 

the forward (i=2 to 6) and backward directions (i=Nb-4 to Nb) are certainly sufficient to determine the parameters f1 

and g1. As for ω, the scattering directions are required to identify the parameter g2. 

C.  Influence of the number of measurements and the experimental uncertainties 

To investigate the influence of the number of measurements on the parameters identification, a parametric study 

was performed by considering different combinations of forward and backward measurements such as 12/12, 12/5, 

7/12, 9/7, and 9/9. The first number refers to the number of forward measurements counted from the incident direction 

(η=µ0=1) and the second one corresponds to the number of backward measurements counted from the specular 

direction (η=-1). The relaxation factor γ used in Eq. (5) is chosen equal to 0.5. Instead of using experimental 

measurements where the exact solutions are unknown, we used simulated measurements based on the solutions of Eq. 

(20) by using the TPF model and the radiative characteristics obtained from the identification results (Section V.G): 

(1) λ=1.89 µm, mλ=1.44, βe=τ0=0.5, ω=0.90, f1=0.22, g1=0.98, and g2=0.50; (2) λ=3.20 µm, mλ=1.40, βe=τ0=1.0, 

ω=0.70, f1=0.21, g1=0.98, and g2=0.45; and (3) λ=3.96 µm, mλ=1.39, βe=τ0=2.5, ω=0.35, f1=0.17, g1=0.96, and 

g2=0.35. To take into account the experimental uncertainties, the simulated measurements (Tt) are corrupted by adding 

a normally distributed random errors:42 

 NbtoiforTT itiei 1=+= ξσ  (36) 
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where 0<ξ<1 is a normally distributed random number and σi is the standard deviation for an experimental error χi 

corresponding to an confidence interval of 99 %. The standard deviation σi for direction i is expressed as: 
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where iT  is the average transmittance defined as: 
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The relative error χi associated with the direction i is chosen to be equal to the largest experimental error whose 

origins have been discussed in section III.B. After several measurements, they are estimated as: 
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The exact and corrupted bi-directional transmittances are shown in Figs. 7a to 7c as a function of the measurement 

angle α. As one can see, the largest absolute errors correspond to the directions far from the direction of the incident 

radiation. 

Moreover, two identification approaches are tested: (A1) approach A1 consists of direct computation of β from Eq. 

(18) and simultaneous estimation of ω, f1, g1, and g2 parameters; (A2) approach A2 consists of estimating 

simultaneously β, ω, f1, g1, and g2. The initial values of these parameters are taken identical in both cases. The 

difference between the identified parameters and the exact solutions, the number of iterations (IN), and the condition 

number (CN) are summarized in Tables 1a to 1c.The following conclusions can be drawn: 

1) The parameters ω, f1, and g2 are the most sensitive to the experimental uncertainties. Their deviations from the 

exact solutions increase as the optical thickness increases. On the contrary, the parameter g1 is not influenced by the 

experimental uncertainty and is in good agreement with the exact solution (the deviation is less than 4 % in all cases). 
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2) When an insufficient number of measurements is used such as 12/5, 7/12, and/or 9/7, either the inverse process 

does not converge or it converges toward a wrong solution (the errors can reach 300 %). However, if too many noisy 

measurements are used such as 12/12, the computation leads to large errors that may reach up to 20 % and 60 % 

depending on the optical thickness. In our case, the 9/9 combination gives a good compromise between convergence 

and accuracy for every wavelength, and will be used in the identification using experimental data. 

3) The condition number obtained by simultaneous estimation of all parameters (approach A2), is very large (10+6 

to 10+13) for all the optical thicknesses studied. When the CN is greater than 10+10, the inversion procedure converges 

toward erroneous solutions. On the other hand, the independent computation of the extinction coefficient (approach 

A1) leads to an acceptable condition number (~10+3). 

4) The directly computed extinction coefficient (approach A1) is less precise than that retrieved from the 

approach A2 for small optical thickness (τ0=0.5). This deviation is due to the approximation of the intensity variation 

as a third order polynomial function. 

D. Influence of the parameters’ initial values 

The parameters identification is performed by using the simulated experimental transmittance and reflectance 

described in section V.C with 9 forward and 9 backward measurements. To investigate the effect of the parameters’ 

initial value on the identification results three combinations of initial parameters are considered as reported in Tables 

2a to 2c. In addition, the two identification approaches A1 and A2 previously described are compared. The relative 

difference between the computed and exact parameters, the number of iterations (IN), and the condition number (CN) 

are summarized in Tables 2a to 2c. One can note that the initial guesses for the unknown parameters do not affect the 

results of approach A1 but only the number of iterations, i.e., the CPU time. However, the approach A2 is influenced 

by the parameters’ initial values especially for absorbing materials (τ0=2.5). Therefore, Approach A1 is more stable 

than A2 with respect to the initial guesses for the radiation characteristics to be identified. 

E. The two step inverse process 

The analysis in Sections V.C and V.D show that 9 forward and 9 backward measurements are sufficient for the 

current identification of parameters. The approach A1 using the direct computation of β is more robust than the 

simultaneous parameter estimation (approach A2). It avoids dealing with a very ill-conditioned system which reduces 

the efficiency of the method. However, it is less precise for small optical thickness. The approach A2 is always 

characterized by a large CN and requires a better knowledge of the initial parameters. 
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Moreover, one can note that these two identification schemes are complementary. Thus, this suggests performing 

two successive inversion procedures to optimize the final results. First, a preliminary calculation using approach A1 is 

carried out which provides an approximate value of the unknown parameters. Then, a second identification step based 

on approach A2 is performed using the results from approach A1 as initial guesses. This second step can be done 

without estimating g1 since it can be determined precisely from the first step (see section V.D). By using this two step 

inverse procedure, there are no restrictions either on the parameters’ initial value or on the optical thickness range. 

This two step inversion scheme is applied in the present study. 

F. Influence of the phase function model 

To investigate the effects of the scattering phase function model, the radiative parameters are identified by using 

measurements corresponding to the 6 mm thick sample. The two phase function models considered are the HG and 

the TPF. The identified parameters are summarized in Table 3 for typical wavelengths. The absorption coefficient of 

the fused quartz kbulk= 4πκbulk/λ is also reported on the same table where the absorption index κbulk
 is taken from 

Dombrovsky et al.23 The resulting bi-directional transmittances are shown in Figs. 8a and 8b. 

Table 3 indicates that the phase function model has significant influence on the retrieved radiative characteristics 

especially in the spectral region where fused quartz is transparent (from 1.67 to 2.7 µm and 2.9 to 3.5 µm in this 

study). As for the bi-directional transmittance and reflectance reported in Fig. 8, one can note that the theoretical 

results obtained using the TPF function gives good agreement between the measured and retrieved bi-directional 

transmittance and reflectance while results from the HG function agrees only for the 5 forward (i=1 to 5) and 3 

backward directions (i=Nb-4 to Nb-1). Overall, the HG function fails to properly describe the directional scattering 

behavior of the studied material. 

G. Identified radiative characteristics 

The radiative characteristics (Figs. 9a to 9f) are determined from the three samples of different thickness 

previously described. For comparison, the bulk quartz radiative characteristic and the average results obtained by 

Baillis et al.18 using the HG phase function are also reported. 

First, one can conclude that the retrieved parameters are independent of samples thickness. The observed 

dispersion of data is mainly attributed to the measurement uncertainties. The standard deviation is especially large 

for the parameter g2 reaching about 12 %. 
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Overall, the retrieved radiation characteristics tend to disagree with previously reported data18 except for the 

extinction coefficient which can be estimated properly using the HG function. This is mainly due to the phase 

function model adopted in the theoretical formulations since it was shown to have little effect on the extinction 

coefficient but a significant one on the absorption and scattering coefficients (see section V.F). However, in all 

cases, results using the HG model gives a small scattering albedo associated with a highly forward anisotropic phase 

function and an absorption coefficient 8 to 10 times higher than that of bulk quartz (kbulk). On the contrary, the 

retrieved absorption coefficient using the TPF model is of the same order of magnitude as that of bulk quartz. 

Moreover, the scattering behavior of the porous quartz is generally forward anisotropic with g equal to about 

0.78, its absorption coefficient is slightly smaller than that of the bulk material, and the scattering dominates the 

extinction (ω~0.8-0.9) in the transparency bands of fused quartz. These mean that the bubbles are non-absorbing but 

scatter only radiation and the quartz matrix is the only absorbing substance. 

H. Comparison with hemispherical measurements and influences of experimental uncertainties 

To verify that the retrieved parameters represent accurately the radiative characteristics of the material studied, 

the calculated hemispherical transmittance termed +
tT  and reflectance termed −

tT  based on (1) the current identified 

parameters and (2) the results of Baillis et al.18 are compared with those measured experimentally and denoted +
eT  

and −
eT . The Fourier-Transform InfraRed spectrometer is used in combination with a gold coated integrating sphere 

(CSTM RSA-DI-40D) to measure the spectral hemispherical transmittance +
eT  and reflectance −

eT . The 

experimental errors are evaluated for each sample from five different measurements. Depending on the wavelength, 

errors range from 3 to 8 % for transmittance and from 9 to 16 % for reflectance. The average radiative 

characteristics are introduced in the RTE [Eq. (20)] to compute the hemispherical transmittance and reflectance 

(after integration of the bi-directional transmittance over each hemisphere). The computational errors are evaluated 

as follows: first, Eq. (20) is solved for each sample thickness by using the associated radiative parameters, then the 

standard deviation are determined from the computed hemispherical transmittances and reflectances of different 

thicknesses. The comparisons are reported in Figs. 10a to 10c. Overall, good agreement is observed between the 

measured hemispherical transmittances and reflectances, and their values computed using the radiative 

characteristics retrieved with the TPF function. On the other hand, the numerical results obtained using the radiative 

parameters reported by Baillis et al.18 are always smaller than the hemispherical transmittance +
eT  and reflectance 
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−
eT  measurements. This can be attributed to the underestimation of the scattering albedo and overestimation of the 

absorption coefficient obtained when the HG phase function is adopted. 

Finally, the comparison of numerical results with hemispherical measurements not only enables one to quantify 

the experimental errors but also offers an efficient validation tool. 

VI. Conclusions 

Recently, the experimental determination of radiative characteristics of fused quartz containing bubbles was 

performed using an inverse method based on bi-directional transmittance measurements. The Henyey-Greenstein 

phase function was used in the theoretical model based on the RTE. Due to refraction at both interfaces of the slab, 

the theoretical transmittance and reflectance in the measurement directions were evaluated by using an interpolation 

law. In the present study, several improvements are proposed particularly for (i) the scattering phase function model, 

(ii) the identification procedure, and (iii) the quadrature used in the theoretical calculations. From the above 

discussion, the following conclusions can be drawn: 

1) The importance of the phase function model on the inverse method based on bi-directional transmittance 

measurements has been demonstrated. The use of a common scattering phase function such as the Henyey-

Greenstein function underestimates the scattering coefficient and overestimates the absorption coefficient while 

it properly estimates the extinction coefficient. The present study proposed a more elaborated phase function, 

the so-called Truncated Phase Function (TPF), which depends on three parameters and enables one to take into 

account the complex scattering behavior of the samples. The hemispherical transmittance and reflectance 

computed using these newly retrieved coefficients gives better agreement with the experimental measurements 

than those obtained using the previously reported radiative characteristics. 

2) The interpolation methods used to evaluate the theoretical transmittance in the measurement directions were 

shown to be less accurate than the proposed Adaptive Composite Quadrature (ACQ) unless a high quadrature 

order was used. The use of an adaptive quadrature has been proposed and found to be advantageous in terms of 

both computational time and precision. 

3) The importance of the choice of the measurement directions on the identification results has been highlighted. It 

is recommended to perform the sensitivity coefficients analysis for similar study using bi-directional 

transmittance and reflectance measurements. 
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4) A new inverse method based on a two step inversion procedure is proposed. It uses a preliminary parameters 

estimation step. This technique enables one (i) to avoid the errors induced by the direct computation of the 

extinction coefficient from the collimated transmittance and (ii) to accelerate the convergence. 

5) The radiative characteristics of the porous fused quartz were then identified and shown to be independent of the 

sample thickness. Unlike the results obtained using the Henyey-Greenstein function, the absorption coefficient 

of porous samples of porosity equal to 4 % obtained using the TPF phase function is slightly smaller than that of 

the dense matrix. Compared to the previously published data, the current radiative characteristics appear to be in 

better agreement with the physical intuition. 

6) The limitations of the experimental setup to measure the bi-directional measurements have been pointed out. In 

particular, the influence of the measurement number, the measurement noises, and the alignment uncertainties 

on the results of the inverse method have been observed. In order to obtain more reliable measurements, a more 

sensitive detector is required to improve accuracy. 

7) Finally, the same experimental methodology can be used for other semitransparent materials. 
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Table captions 

Table 1 Influence of measurement number on the identified parameters for different wavelengths. 

Table 2 Influence of the parameters initial values on the identification results for different wavelengths. 

Table 3 Influence of the phase function model on the radiative characteristics for 6 mm sample thickness at different 

wavelengths. 
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Table 1a Influence of bi-directional measurement number (MN) on the identified parameters for λ=1.89 µm, 

mλ=1.44 with the exact parameters: βexact=50 m-1, ωexact=0.9, f1exact=0.22, g1exact=0.98, and g2exact=0.5 and the initial 

parameters β0=70 m-1, ω0=0.5, f10=0.5, g10=0.7, and g20=0.2. 

 ∆β/βexact, % ∆ω/ωexact, % ∆f1/fexact,, % ∆g1/g1exact, % ∆g2/g2exact, % IN CN 

MN a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 

12/12 4.52 13.92 -9.09 -10.41 5.12 5.56 -0.32 -0.16 -5.29 -7.72 24 15 3.1 107 1.1 103

12/5 -2.58 13.92 -7.02 -8.88 -0.47 2.48 -0.46 -0.10 -4.76 -7.27 27 15 9.3 107 1.2 103

7/12 - 13.92 - -10.56 - 6.83 - -0.12 - -12.53 - 35 - 1.5 103

9/7 - 13.92 - -8.32 - 4.66 - 0.07 - 0.37 - 17 - 1.4 103

9/9 2.12 13.92 -6.63 -8.68 3.42 7.57 -0.21 0.15 -2.44 2.38 23 20 2.2 107 1.0 103

 

 

Table 1b Influence of bi-directional measurement number (MN) on the identified parameters: for λ=3.20 µm, 

mλ=1.41 with the exact parameters: βexact=100 m-1, ωexact=0.7, f1exact=0.21, g1exact=0.98, g2exact=0.45 and the initial 

parameters β0=70 m-1, ω0=0.5, f10=0.5, g10=0.7, and g20=0.2. 

 ∆β/βexact, % ∆ω/ωexact, % ∆f1/fexact,, % ∆g1/g1exact, % ∆g2/g2exact, % IN CN 

MN a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 

12/12 1.47 1.98 -13.78 -13.80 21.83 22.19 0.27 0.29 22.32 22.38 25 16 7.3 106 7.2 102

12/5 -132.89 1.98 -30.15 -13.24 -61.10 19.51 -1.50 0.22 -7.23 21.24 31 20 2.8 1011 1.0 103

7/12 1.41 - -16.45 - 21.14 - 0.10 - -0.75 - 34 - 1.1 107 - 

9/7 2.61 1.98 -10.57 -10.67 14.92 14.59 0.25 0.20 14.76 14.48 21 16 7.4 106 9.5 102

9/9 2.19 1.98 -11.92 -11.91 19.14 19.21 0.36 0.35 19.04 19.01 24 14 5.9 106 8.0 102
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Table 1c Influence of bi-directional measurement number (MN) on the identified parameters: for λ=3.96 µm, 

mλ=1.39 with the exact parameters: βexact=250 m-1, ωexact=0.35, f1exact=0.17, g1exact=0.96, g2exact=0.35 and the initial 

parameters β0=70 m-1, ω0=0.5, f10=0.5, g10=0.7, and g20=0.2. 

 ∆β/βexact, % ∆ω/ωexact, % ∆f1/fexact,, % ∆g1/g1exact, % ∆g2/g2exact, % IN CN 

MN a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 

12/12 1.21 1.27 -35.41 -35.33 40.25 40.23 -0.30 -0.26 59.60 59.62 24 14 1.8 106 1.6 102

12/5 -318.91 1.27 -149.57 -32.84 -206.36 36.32 -3.93 -0.36 -75.51 50.59 31 15 2.8 1013 1.8 102

7/12 1.10 1.27 -39.78 58.47 39.50 -102.13 -0.41 -3.46 37.63 -171.85 26 15 1.6 106 2.5 105

9/7 1.40 1.27 -31.94 -32.18 39.18 39.01 -0.14 -0.11 68.78 68.64 38 15 2.0 106 4.4 102

9/9 1.45 1.27 -31.77 -32.04 38.90 38.75 -0.15 -0.12 68.07 68.06 24 15 2.0 106 4.3 102

 

 

Table 2a Influence of the parameters initial values (piv) on the identification results for λ=1.89 µm, mλ=1.44 with 9 

forward and 9 backward measurements and the exact parameters: βexact=50 m-1, ωexact=0.90, f1exact=0.22, g1exact=0.98, 

and g2exact=0.5. The initial parameters are: piv 1: β0= 70 m-1, ω0=0.5, f10=0.5, g10=0.7, and g20=0.2; piv 2: β0=500 m-

1, ω0=0.1, f10=0.8, g10=0.2, and g20=0.1; and piv 3: β0=100 m-1, ω0=0.8, f10=0.1, g10=0.7, and g20=0.2. 

 ∆β/βexact, % ∆ω/ωexact, % ∆f1/fexact,, % ∆g1/g1exact, % ∆g2/g2exact, % IN CN 

piv a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 

1 2.12 13.92 -6.63 -8.32 3.42 4.66 -0.21 0.07 -2.44 0.37 23 17 2.2 107 1.4 103

2 1.22 13.92 -7.47 -8.32 7.80 4.65 -0.04 0.07 4.42 0.37 62 32 1.2 107 1.1 103

3 1.18 13.92 -7.47 -8.30 7.78 4.73 -0.04 0.07 4.40 0.49 25 15 1.2 107 1.2 103
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Table 2b Influence of the parameters initial values (piv) on the identification results for λ=3.20 µm, mλ=1.41 with 9 

forward and 9 backward measurements and the exact parameters: βexact=100 m-1, ωexact=0.7, f1exact=0.21, g1exact=0.98, 

g2exact=0.45. The initial parameters are: piv 1: β0= 70 m-1, ω0=0.5, f10=0.5, g10=0.7, and g20=0.2; piv 2: β0=500 m-1, 

ω0=0.1, f10=0.8, g10=0.2, and g20=0.1; and piv 3: β0=100 m-1, ω0=0.8, f10=0.1, g10=0.7, and g20=0.2. 

 ∆β/βexact, % ∆ω/ωexact, % ∆f1/fexact,, % ∆g1/g1exact, % ∆g2/g2exact, % IN CN 

piv a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 

1 2.19 1.98 -11.92 -10.67 19.14 14.59 0.36 0.20 19.04 14.48 24 16 5.9 106 9.4 102

2 0.04 1.52 -15.06 -15.46 10.88 15.75 -0.19 -0.01 12.95 17.00 50 25 3.3 107 1.4 103

3 -0.04 1.52 -15.10 -15.46 10.76 15.81 -0.20 0.00 12.86 16.99 37 16 3.7 107 1.4 103

 

 

Table 2c Influence of the parameters initial values (piv) on the identification results for λ=3.96 µm, mλ=1.39 with 9 

forward and 9 backward measurements and the exact parameters: βexact=250 m-1, ωexact=0.35, f1exact=0.17, g exact=0.96, 

and g2exact=0.35. The initial parameters are: piv 1: β0= 70 m-1, ω0=0.5, f10=0.5, g10=0.7, and g20=0.2; piv 2: β0=500 m-

1, ω0=0.1, f10=0.8, g10=0.2, and g20=0.1; and piv 3: β0=100 m-1, ω0=0.8, f10=0.1, g10=0.7, and g20=0.2. 

 ∆β/βexact, % ∆ω/ωexact, % ∆f1/fexact,, % ∆g1/g1exact, % ∆g2/g2exact, % IN CN 

piv a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 a.2 a.1 

1 2.19 1.98 -11.92 -10.67 19.14 14.59 0.36 0.20 19.04 14.48 24 16 5.9 106 9.4 102

2 0.04 1.52 -15.06 -15.46 10.88 15.75 -0.19 -0.01 12.95 17.00 50 25 3.3 107 1.4 103

3 -0.04 1.52 -15.10 -15.46 10.76 15.81 -0.20 0.00 12.86 16.99 37 16 3.7 107 1.4 103
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Table 3 Influence of the phase function model on the radiative characteristics for 6 mm sample thickness at different 

wavelengths. 

λ, µm kbulk, m-1 βHG, m-1 βTPF, m-1 ωHG ωTPF kHG, m-1 kTPF, m-1 gHG  gTPF 

1.89 5.94 75.2 78.23 0.47 0.94 39.85 4.06 0.95 0.70 

2.76 151.61 170.74 176.48 0.17 0.27 141.71 128.28 0.93 0.84 

3.96 204.04 262.21 264.18 0.14 0.23 225.50 201.97 0.94 0.81 
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Figure captions 

 

Fig. 1 Photo of the studied samples. 

Fig. 2 Mie scattering function of an optically large bubble of size parameter x=2000 and TPF function characterized 

by f1=0.2, g1=0.98, and g2=0.45. 

Fig. 3 Measurement and ACQ directions  

Fig. 4 Index of absorption of fused quartz from literature. 

Fig. 5a Comparison between transmittances from the interpolation laws (linear law (LL), exponential law (EL), and 

exponential linear law (ELL)) and the ACQ. 

Fig. 5b Relative transmittance deviation of the different interpolation laws (linear law (LL), exponential law (EL), 

and exponential linear law (ELL)) compared to the ACQ for λ=3.20 µm. 

Fig. 5c Relative transmittance deviation of the different interpolation laws (linear law (LL), exponential law (EL), 

and exponential linear law (ELL)) compared to the ACQ for λ=2.74 µm. 

Fig. 6a Dimensionless sensitivity coefficients for λ=1.89 µm. 

Fig. 6b Dimensionless sensitivity coefficients for λ=3.20 µm. 

Fig. 6c Dimensionless sensitivity coefficients for λ=3.96 µm. 

Fig. 7a Simulated exact and corrupted bi-directional transmittances for λ=1.89 µm. 

Fig. 7b Simulated exact and corrupted bi-directional transmittances for λ=3.20 µm. 

Fig. 7c Simulated exact and corrupted bi-directional transmittances for λ=3.96 µm. 

Fig. 8a Influences of the phase function model on the transmittances for the sample e=6 mm at λ=1.89 µm. 

Fig. 8b Influences of the phase function model on the transmittances for the sample e=6 mm at λ=3.96 µm. 

Fig. 9a Identified extinction (β) and absorption (k) coefficients. 

Fig. 9b Identified scattering albedo (ω). 

Fig. 9c Identified scattering parameter f1. 

Fig. 9d Identified scattering parameter g1. 

Fig. 9e Identified scattering parameter g2. 

Fig. 9f corresponding asymmetry factor (<g>). 
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Fig. 10a Comparison between the computed and measured hemispherical transmittance and reflectance for the 

sample e=5 mm. 

Fig. 10b Comparison between the computed and measured hemispherical transmittance and reflectance for the 

sample e=6 mm. 

Fig. 10c Comparison between the computed and measured hemispherical transmittance and reflectance for the 

sample e=9.9 mm. 
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