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Abstract
This paper presents a parametric study of the time-resolved hemispherical reflectance of a plane-parallel
slab of homogeneous, cold, absorbing, and isotropically scattering medium exposed to a collimated
Gaussian pulse. The front surface of the slab is transparent while the back surface is assumed to be
cold and black. The one-dimensional transient radiation transfer equation is solved using the modified
method of characteristics. The parameters explored include (1) the optical thickness, (2) the single scat-
tering albedo of the medium, and (3) the incident pulse width. The study pays particular attention to the
maximum transient hemispherical reflectance and identifies optically thin and thick regimes. It shows
that the hemispherical reflectance is independent of the optical thickness in the optically thick regime. In
the optically thin regime, however, it depends on all three parameters explored. The transition between
the optically thick and thin regimes occurs when the optical thickness is approximately equal to the
dimensionless pulse width. Finally, correlations relating the maximum of the hemispherical reflectance
as a function of the optical thickness, the single scattering albedo of the materials and the incident
pulse width have been developed. These correlations could be used to retrieve radiation characteris-
tics or serve as initial guesses for more complex inversion schemes accounting for anisotropic scattering.

Nomenclature
I Intensity
I0 Peak value incident intensity
L Slab thickness
R Hemispherical reflectance
s Geometric path length
t Time

Greek symbols
β Extinction coefficient
κ Absorption coefficient
µ Director cosine
Φ Scattering phase function
σs Scattering coefficient
θ Polar angle

ω Single scattering albedo
Ω Solid Angle

Subscripts
c Collimated
d Diffuse
i Incident

1. INTRODUCTION

Transient radiation transfer has found numerous applications in (1) laser-assisted microma-
chining, (2) remote sensing of combustion systems, and (3) of biological tissues among others
[1]. The governing equation for radiation transfer in homogeneous, absorbing, non-emitting,
and scattering media is the so-called radiative transfer equation (RTE). For one-dimensional
transient radiation transfer along thez-direction on a gray basis it can be written as [2],
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whereω is the single scattering albedo defined asσs/(κ + σs) where the linear absorption and
scattering coefficients are denoted byκ andσs, respectively. Hereβ is the extinction coefficient
andc is the speed of light in the medium. The scattering phase functionΦ(ŝi, ŝ) represents the
probability that radiation propagating in the solid angledΩi around direction̂si will be scattered
into the conedΩ around the direction̂s.

Established techniques for estimating the absorption and scattering coefficients as well as the
scattering phase function consist of measuring the spectral or total, directional-hemispherical or
directional-directional transmittance and reflectance, with collimated or diffuse incident radia-
tion. First, initial values for the radiation characteristics are assumed and the RTE is solved. The
calculated and measured quantities are compared and a new estimate of the radiation character-
istics is made. This procedure is accomplished in an iterative manner until the set of absorption
and scattering coefficients and scattering phase function minimizes the difference between the
measured and the calculated properties. The major difficulty inherent to the inverse method is
that there is no unique solution for the radiation characteristics. Moreover, due to the iterative
nature of the method, the initial guess for radiation characteristics are of major importance if
one wants a rapid convergence toward the optimum solution.

The present analysis aims at (1) gaining a physical understanding of transient radiation trans-
fer in participating media, (2) performing a parametric study for the time-dependent hemispher-
ical reflectance of a cold plane-parallel slab of an absorbing and isotropically scattering medium
subject to a collimated Gaussian pulse, and (3) developing simple correlations for the maximum
of the time-resolved hemispherical reflectance. The study pays particular attention to the maxi-
mum transient hemispherical reflectance which can easily be measured experimentally using a
time-resolved attenuated total reflectance device [3]. Reflectance is preferred to transmittance
as its magnitude and the associated signal to noise ratio are much larger, without requiring a
powerful radiation source that could heat up or damage the samples. This issue is of particular
concern for non-invasive in vivo sensing of biological tissues.

2. CURRENT STATE OF KNOWLEDGE

Due to the challenges encountered in solving the RTE several simplifying approaches have
been suggested. First, the diffusion approximation has been used extensively in biomedical
applications [3]. Its major advantage resides in the fact that there exist analytical solutions for
the time-resolved hemispherical reflectance for simple geometries [3]. Brewster and Yamada [4]
used the Monte Carlo method to study the effects of single scattering albedo, optical thickness,
anisotropic scattering, and detector field of view on time-resolved transmittance and reflectance
of an optically thick slab subjected to a picosecond collimated pulse. The numerical results
were in good agreement with predictions of the diffusion approximation at long times [4]. The
authors propose to use their findings to retrieve the radiation characteristics of absorbing and
scattering media from transient transmission measurements at long times. However, their study
also indicates that the diffusion theory predictions can be poor at early times, including the
maximum hemispherical reflectance. Other studies have shown that the diffusion approximation
fails to predict the transmittance at early times for all optical thicknesses and also at long times
for optically thin slabs [5]. In addition, Guoet al. [6] showed that the diffusion approximation
fails for both collimated radiation and strong anisotropically scattering media.

Moreover, analytical solutions of the transient RTE in homogeneous, isotropically scattering
plane-parallel slab having a non-reflecting front surface with a blackbody back surface exposed
to a collimated source have been obtained by Pomraning [7] and used by Wu [8] to obtain



expressions for the hemispherical transmittance and reflectance. In addition, Wu [8] used the
integral equation to compute the temporal reflectance and transmittance of 1-D absorbing and
isotropically scattering slabs with various scattering albedos and optical thicknesses that com-
pared well with results obtained using the Monte Carlo method. Tan and Hsu [9] used an
integral formulation to simulate radiative transport in 1-D plane-parallel slab of a homogeneous
absorbing and isotropically scattering medium with a black back surface exposed to diffuse or
collimated irradiation. The authors then extended the method to solve the same problem in
three-dimensional geometries [10].

Numerical techniques have also been used to solve the transient RTE. First, in a series of
papers, Kumar and co-workers solved the transient radiation transfer equation for different
geometries, scattering characteristics, and boundary conditions using various methods, includ-
ing the P1 approximation [11], Monte Carlo [12, 13, 14], discrete-ordinates (DOM) [5, 15, 16],
and radiation element [17] methods and compared their results with predictions based on other
methods or approximations [18] or with experimental data [16]. Moreover, Hsu [14] used the
Monte Carlo method to study the effect of various parameters on the radiation transfer through
a one-dimensional, plane-parallel, cold, absorbing, and isotropically scattering medium. The
author focused on the transient local fluence within the slab by accounting for specular internal
reflection at the slab surfaces. Also, Ayranciet al. [19] used the method of lines solution of
the DOM to predict transmittance of a cubical enclosure of purely scattering media. Recently,
Chaiet al. [20] used the Finite Volume Method to simulate transient radiation transfer in a cube
of absorbing and isotropically scattering medium with different boundary conditions and com-
pared the results with published ones. On the other hand, Boulanger and Charette [21] used the
DOM coupled with the piecewise parabolic advection (PPA) scheme to solve the transient mul-
tidimensional RTE for a collimated light pulse propagating in a semi-infinite, semi-transparent,
non-homogeneous medium. Finally, Lu and Hsu [22] have developed the reverse Monte Carlo
method in order to reduce the excessive computational time of the conventional Monte Carlo
method and applied it to various geometries and scattering media. Similarly, Katika and Pilon
[23] have developed the modified method of characteristics used in the present study. Advan-
tages of this method versus other methods include its use for solving coupled equations using
other numerical schemes, and its ability to capture the sharp discontinuities associated with the
propagation of a radiation front in transient radiation transport.

Unfortunately, it was not possible to obtain analytical expressions [7, 8] for the maximum
reflectance and the time at which it occurs. Instead, a numerical parametric study is performed
using the modified method of characteristics and discussed in the following sections.

3. ANALYSIS

Let us consider transient radiation transfer in a homogeneous absorbing and isotropically
scattering but non-emitting plane-parallel slab of thicknessL. The front surface of the slab
(z = 0) is exposed to a normally collimated and monochromatic incident Gaussian pulse. The
index of refraction of the slab is assumed to be identical to that of the surroundings and equal
to unity. Thus, the entire incident light is transmitted through the front surface and internal
reflection can be ignored. The back surface of the slab (z = L) is treated as black and cold.
This can be implemented by coating the surface with paints or soot particles depending on the
wavelength of interest. Finally, a Gaussian pulse is considered instead of other pulse shapes as
it closely matches the shape produced by lasers or light emitting diodes.



3.1. Governing Equation

To solve the one-dimensional RTE for collimated irradiation, the intensity is split into two
parts: (i) the radiation scattered from the collimated radiation source and (ii) the remaining colli-
mated beam after partial extinction by absorption and scattering along its path. The contribution
from emission by the medium is negligible compared to the incident and scattered intensities,
and consequently the medium can be considered as cold. Thus, the intensity for a gray medium
is written asI(z, µ, t) = Ic(z, µ, t) + Id(z, µ, t). The collimated intensityIc(z, µ, t) at loca-
tion z and timet in directionµ, remnant of any incident irradiationIi(t), is given by [2, 7],
Ic(z, µ, t) = H(t− z/c)Ii(t− z/c)δ(µ−µ0)e

−βz whereδ(µ−µ0) is the Dirac’s delta function,
H(t) is the Heaviside step function and, in the present case,µ0 = 1. Thus the governing equa-
tion for the diffuse radiation intensityId(z, µ, t) along the characteristics curves of the photons
[2, 24] can be written as,
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whereDId/Dt is the total derivative ofId(z, µ, t) along the characteristic curvesdz/dt = cµ.

3.2. Initial and Boundary Conditions

In order to solve the above governing equation, initial and boundary conditions must be
specified. First, the initial intensity at all locations and in all directions at timet = 0 is taken
as zero. At subsequent times, the radiation intensity incident on the front face (atz = 0) is a
truncated Gaussian distribution with a pulse widthtp expressed as,

Ii(t) = I0 exp

[
−4 ln 2

(
t− tc

tp

)2
]

, 0 < t < 2tc and Ii(t) = 0, t ≥ 2tc (3)

In the present study,Ii(t) reaches its maximum valueI0 at timetc = 3tp.

Finally, for the diffuse component,Id, the front is transparent while the back surface is
assumed to be black and cold, i.e.,Id(z = 0, µ > 0, t) = 0 andId(z = L, µ < 0, t) = 0.
The value of the diffuse intensityId(z = 0, µ < 0, t) andId(z = L, µ > 0, t) need not be
considered, because the method of solution uses boundary conditions only for intensity entering
the computational domain [24].

3.3. Method of Solution

The governing Equation (2) and the associated boundary conditions are solved using the
modified method of characteristics [24]. Extensive discussion of this method has been previ-
ously reported [23] and need not be repeated here. Comparison between numerical integral
solutions [8] and the modified method of characteristics were found to be in good agreement
with a mean error of less than 5% forβL = 0.5 andω = 0.05 and0.95 [24]. The same accuracy
is assumed in the present results. A uniform discretization ofNz points along thez−direction
andNθ discrete directions forθ varying from0 to π was used. The time interval∆t had little
effect on the numerical results as long as it satisfied∆t ≤ ∆z/c. Thus,∆t was set equal to
∆z/c where∆z = L/(Nz − 1). After solving for the time-dependent intensities in all the
discrete directions at every point, the time-resolved hemispherical reflectanceR(t) at the front

surface (z = 0) can be computed based on the following definition,R = −2π
0∫
−1

I(0, µ, t)µdµ.



4. RESULTS AND DISCUSSION

A large range of optical thickness (0 ≤ βL ≤ 50), single scattering albedo (0.05 ≤ ω ≤
1), and incident pulse width (0.015 ≤ βctp ≤ 0.15) have been explored. The number of
discrete pointsNz and directionsNθ were varied between 100 and 2000 and between 50 and
450, respectively to obtain converged numerical solutions for each pair of parametersβL and
ω. In all cases, the results were assumed to be numerically converged when doubling bothNz

andNθ produced less than 1% change in the value of the computed maximum hemispherical
reflectance. The integrals were computed using the 3/8 Simpson’s rule. The CPU time taken
for computing the transient hemispherical reflectance for the case ofβL = 0.5 andω = 0.95,
for example, using a spatial discretization ofNz = 101 points and an angular discretization
of Nθ = 25 directions per octant was about21 seconds on a 512 MHz Pentium III for a total
dimensionless time oft∗ (= βct) = 8.

4.1. Effect ofβL and ω

Figure 1shows the typical transient hemispherical reflectance of the plane-parallel slab with
a black back surface as a function ofβct, for ω = 0.7, βL = 0.7, andβctp = 0.15. Since there
is no direct reflection of the incident beam from the front surface, the reflected signal is due to
back scattering of the incident radiation by the slab. The maximum value of the reflectance is
denoted byR1 and occurs at dimensionless timeβct1. For a black back surface, the reflectance
reveals only one maximum as the pulse is absorbed once it reaches the back of the slab.

Moreover,Figure 1 shows the transient hemispherical reflectance as a function of the di-
mensionless timet∗ for different values of the single scattering albedoω and for βL = 0.7
andβctp = 0.15. Similar plots have been obtained for other values ofβL. One can see that
the hemispherical reflectanceR increases asω increases for any given dimensionless timeβct.
This can be attributed to the increase in the scattering coefficient resulting in a larger fraction of
the incident intensity being back-scattered by the medium.

Finally, Figure 1plots the transient hemispherical reflectance as a function of the dimension-
less timeβct for different values ofβL and forω = 0.95 andβctp = 0.15. Similar results have
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Fig. 1 - Hemispherical reflectance as a function ofβct for different values ofω for βL = 0.7 (left) and
for different values ofβL (right) ω = 0.95. In both graphsβctp = 0.15.



been obtained for different values ofω. Figure 1 indicates that as the maximum reflectanceR1

increases withβL up to a critical optical thickness (βL)cr beyond which it is independent of
βL. The highest value for the maximum reflectance is denotedR1,max. One can also note that
(βL)cr for this case is equal to0.15 which, coincidentally, is also the value ofβctp. The effect
of the incident pulse width,βctp, will be discussed in detail in section 4.3.

4.2. Maximum Reflectance

Let us now focus our attention to the value of the maximum reflectanceR1 as a function of
the optical thicknessβL and of the single scattering albedoω. Figure 2shows the peak value
of the transient reflectanceR1 as a function of the optical thicknessβL ranging from 0.01 to 50
for (left) βctp = 0.15 and for (right) five different values of the single scattering albedo between
0.05 and 1. Moreover, optically thin and optically thick regimes can be identified as follows:
Optically Thin Regime, βL ≤ (βL)cr. In this regime,R1 varies linearly with ln(βL) and
increases asω increases and(βL)cr depends on the pulse widthβctp.
Optically Thick Regime, βL > (βL)cr. In this regime,R1 is independent ofβL but increases
with ω. Beyond the critical value(βL)cr, the optical thicknessβL has no effect on the maximum
reflectance, andR1 reaches its maximum denoted byR1,max.

4.3. Effect of the Incident Pulse Width

To investigate the effect of the dimensionless pulse width on the hemispherical reflectance,
different values ofβctp have been investigated, namely 0.15, 0.075, and 0.015.Figure 2 (left)
plots the maximum hemispherical reflectanceR1 versusβL for different values ofβctp atω =
0.7. One can see thatR1 increases asβctp increases for fixed values ofω andβL. This can be
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Fig. 2 - Effect of the dimensionless pulse widthβctp for ω = 0.7 (left) and the effect of the single
scattering albedoω and of the optical thicknessβL for βctp = 0.15 (right) onR1.

attributed to the fact that increasing the pulse width increases the radiant energy in the slab at
any given time and therefore, increases the scattered radiation intensity and the reflectance.

In addition,Figure 2 (right) andFigure 3showR1 as a function ofβL for different values
of the single scattering albedoω. It indicates thatβL reachesβctp the value ofR1 becomes
independent ofβL. This is defined as the optically thick regime because increasingβL no



longer has any effect on the value ofR1. In the optically thick regimeR1 = R1,max.
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Fig. 3 - R1 as a function ofβL andω for βctp = 0.075 (left) and0.015 (right).

Finally, for each value ofω, the values of (βL)cr can be obtained fromR1 versusβL. The
values of (βL)cr vary within 5%. Figure 4shows the average critical optical thickness (βL)cr

as a function of the dimensionless pulse widthβctp for different values ofω. One can see
that for βctp = 0.015 and0.075, the average value of the critical optical thickness (βL)cr is
approximatelyβctp. However, whenβctp increases to 0.15, the average value of (βL)cr falls
belowβctp possibly due to numerical error. Nonetheless, this finding indicates that(βL)cr is
equal toβctp within 10%.
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4.4. Correlations

Developing correlations for transient hemispherical reflectance could be useful as a simple
method for retrieving the optical thickness and the single scattering albedo of a substance. Then,



each regime features its own set of correlations forR1.
Optically Thin Regime, βL ≤ βctp. In this regime the maximum reflectanceR1 varies lin-
early as a function of ln(βL) as indicated by Figure 2 and can be expressed as,

R1(ω, βctp, βL) = C1 ln(βL) + C2 (4)

where the slopeC1(ω, βctp) and the constantC2(ω, βctp) depend on bothω andβctp. Figure
5 illustrates the valuesC1/βctp and C2/ωβctp as functions ofω and βctp, respectively for
βL ≤ βctp. It shows that bothC1 andC2 vary withωβctp according to,
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scattering albedo,ω, and the incident pulse width,βctp, respectively forβL < βctp.

C1 = 0.05ωβctp = 0.05σsctp and C2 = (−0.8βctp + 0.375)σsctp (5)

This confirms that if the slab is non-scattering(σs = 0) its reflectance vanishes. The squared
coefficients of correlation,R2, for C1 andC2 are 0.998 and 0.973, respectively.
Optically Thick Regime, βL > βctp. In this regime, the maximum reflectanceR1,max is
independent ofβL. Figure 6shows the linear increase of the ratioR1,max/βctp as a function of
ω. It establishes thatR1,max = 0.156σsctp for βL > βctp.

4.5. Discussion

First, numerical simulations were performed for different indices of refraction (n = 1, 1.33,
and 1.5) forω = 0.7 andβL = 0.5 while still neglecting internal reflectance. This can be
achieved practically by immersing the device in an index matching fluid whose index of refrac-
tion is the same as that of the slab to be analyzed. As expected from dimensional analysis, the
same values of the transient hemispherical reflectance shown were obtained for the same set of
parameters (ω, βL, βctp).

Moreover, a comparison between the prediction of the above correlations with numerically
computed values ofR1 was performed. The computed maximum hemispherical reflectance
is properly predicted within a maximum absolute error of±0.21%. The maximum relative
error was determined for small values ofR1 which, in any event, might be difficult to measure
experimentally.

Finally, the above correlations could be used to determine the radiation characteristics of
homogeneous absorbing and isotropically scattering media by experimentally measuring the
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maximum of the transient reflectance for slabs having at least two different thicknesses or by
holding tc = 3tp and varying the pulse width of the incident radiation. The slab thickness
or the pulse width are chosen to cover both the optically thin and thick regimes. Note that
this bears some analogy with the method proposed by Yamada and Kurosaki [25] to retrieve the
radiation characteristics of porous materials fromsteady-stateemittance measurements. Indeed,
the authors assumed an isotropic scattering phase function and used the fact that the emittance
of an optically thick and isotropically scattering medium is independent of the optical thickness
and depends only on the single scattering albedo. Thus, the method could also serve to obtain
an initial guess for more complex inversion schemes accounting for anisotropic scattering.

5. CONCLUSIONS

This paper proposes a method to determine the radiation characteristics of homogeneous,
cold, absorbing and isotropically scattering plane-parallel slab with a transparent front surface
and a black back surface from measured time-resolved hemispherical reflectance. It presents
a parametric study focusing on the maximum hemispherical reflectanceR1. Dimensionless
parameters include the optical thickness of the slabβL, the single scattering albedoω, and the
incident pulse widthβctp. Conclusions of the study are as follows:(1) there exist optically
thin and optically thick regimes for the maximum hemispherical reflectanceR1, (2) these two
regimes meet at a critical optical thickness (βL)cr such that (βL)cr ≈ βctp, (3) in the optically
thin regime,R1 increases with increasingβL, ω andβctp, (4) in the optically thick regime,
R1,max is proportional toωβctp and is independent ofβL.

Similar parametric studies could be performed for (i) other pulse shapes, (ii) independently
varyingtc andtp of the Gaussian pulse, (iii) cases when the indices of refraction across the front
surface differ and one needs to account for internal reflection, and (iv) anisotropically scattering
media. Similar trends and correlations are anticipated.
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