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Abstract— We define information theoretic problems in the cooperative detection of 

targets by a distributed wireless sensor network, and in the cooperative transmission of the 
results to a remote user. The dominant constraint in both cases is the energy cost of 
communications, rather than bandwidth or signal processing costs. We show that the 
detection problem can be cast as a rate distortion problem, and bound the region for Gaussian 
sources. We describe how the cooperative transmission problem differs from the usual 
context for space-time codes, and present one practical approach. 

I. INTRODUCTION 

In wireless sensor networks, potentially a very large number of devices cooperate to 
detect an event, and report the results of the detection exercise to some end user, who may be 
remote from the network.  A fundamental constraint in sensor networks is the energy of the 
nodes, which may be limited in their lifetime energy reserves by batteries, and which likely 
have low peak power available for transmission.  Questions then naturally arise as to the 
most efficient means to make reliable detection decisions, and in achieving longer range 
communications.  In section II we set up the cooperative detection (data fusion) problem as a 
rate distortion problem, and in section III present the analytic formulation.  In section IV we 
introduce the cooperative communication problem, and present some simple approaches.  In 
section V we present capacity results, and in section VI suggest one simple coding approach 
that can apply to a large network with varying numbers of cooperating elements.  In section 
VII we present our conclusions.  

 
II. THE DATA FUSION PROBLEM 

We now consider the question: what data rates can be supported for data fusion in a 
sensor network, given a specified tolerable data distortion?  Unfortunately, an exact answer 
to this question is not available in the general case, and thus we have considered the specific 
case of correlated Gaussian sources in this paper.   

The motivation for this problem comes from performing distributed detection of 
phenomena.  It is well known from the theory of distributed detection that higher reliability 
and lower probability of detection error can be achieved when observation data from 
multiple, distributed sources is intelligently fused in a decision making algorithm, rather than 
using a single observation data set [1].  This, coupled with the fact that fabrication 
technological advances have made low-cost sensors incorporating wireless transceivers, 
signal processing and sensing in one integrated package a desirable low-cost option, it is 
inevitable that such devices will be widely used in detection applications such as security, 



monitoring, diagnostic, remote exploration etc.  This has given rise to the development of 
wireless integrated networked sensors (WINS) [2], Figure 1.  

However, the effective deployment of such distributed processing systems introduces 
some significant design issues, most notably: networking and communication protocols, 
transmission channel and power constraints, and scalability, among others [2], [3].  It is also 
evident that some fundamental limits are required to assess the optimality of any system 
design with regard to the “best design”.  Thus, an information theoretic analysis of the 
system is required.  Here we assume that the primary constraint is power. 

A WINS system invokes a multi-terminal analysis, as diagrammed in Figure 1.  
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Figure 1: Wireless Integrated Network Sensor System 

For this type of a system, all the traditional types of multi-terminal channels considered 
in information theory appear: the multiple access channel (communication pathways shown 
in Figure 1 numbered as 1), the broadcast channel (2), the relay and interference channel (3), 
etc. [4].  Additionally, the channel may be fading or more complex.  Unfortunately, in the 
absence of a general information theory of multi-terminal networks, there is, as yet, no 
analytical way of evaluating performance bounds for whole systems, for a specific type of 
task for which the network might be employed, e.g. distributed detection.  Our goal is to 
apply the results known so far to obtain, if not global optimum information limits, at least 
optimality criteria for each of the individual sub-blocks.  In this regard, advances have been 
made with certain simplifying considerations, most notably the rate-distortion bounds for 
multiple, correlated nodes.  The focus so far has been on pathways 1, inside the local loop. 

For the individual local network loops, the problem is one of efficient communication 
and data fusion for detection.  Associated problems such as network boot-strap, algorithms 
determining the minimum number of nodes necessary for reliable detection of a 
phenomenon, etc. have been studied and are not discussed here [3], [5].  Instead the coding 
problem is considered.  The multi-terminal coding theory problem for two correlated 
memoryless sources with separate encoders has been solved by Slepian and Wolf [5].  The 
correlated sources assumption is valid in the WINS case, since for nodes observing the same 
target, the data generated for each sensor is expected to be correlated.  Also, in the WINS 
case, it is apparent that power efficiency can be incorporated by allowing a distortion criteria, 
since there may be several data fusion centers, and since local processing provides a far 
higher power gain than RF transmissions.  Thus, what becomes of interest then is how much 



distortion can be tolerated if the sensor network is to achieve some measure of efficiency in 
distributed detection – in other words, the rate-distortion bound. 

Previous work in this area by Wyner and Ziv [7], Han and Kobayashi [9], [10] and Csizar 
[11] have all focused on special extensions of Slepian and Wolf, but the general rate-
distortion regions characterization problem has remained unsolved.  We have extended the 
special case for two correlated memoryless Gaussian sources (Oohama, [7]) to the n- sources 
case (with partial side information).  In what follows, the notation is adopted from Oohama, 
[7].  The next section presents the analytic formulation of the problem and the main result.   

III. ANALYTIC FORMULATION 

Consider the multi-sensor system as shown below (Figure 2).  
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Figure 2: Data Fusion for a Wireless Networked Sensor System 

A portion of a distributed cluster of sensor nodes (perhaps mobile) is observing a 
phenomenon and generating source data.  Algorithms exist which can determine which nodes 
in the proximity of the phenomenon need to be activated and which can remain dormant [4].  
Once this boot-up process is completed, the node observation data is assumed to be Gaussian 
(for analytical simplicity), with one data node acting as the main data source (e.g. that which 
is closest to the phenomenon), and the remaining nodes generating correlated data.  The 
coding challenge is then to determine appropriate codes and data rates such that the 
gateway/data-fusion center can reproduce the data from the main node using the remaining 
nodes as sources of partial side information, subject to some distortion criteria. 

Thus for a main source, X, and n correlated sources,  Yi, with { }1 1
, ,t t nt t
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stationary Gaussian memoryless sources, for each observation time, t=1, 2, 3, ..., we let the 
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We can write independent copies of { } 1t t
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=
 as 1 2, , ,m
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k=1,2,…,n.  Next, we consider a coding system where data sequences ,m m
kX YL  are 



separately encoded to 1 1( ), ( )m m
kX Yϕ ϕ  and sent to the information processing / data fusion 

center.  The decoder function, ( )1, , ,X nψ ψ ψΨ = L , observes the (n+1)-tuplet 

{ }1 1 1 1( ), ( ), , ( )m m m
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ˆ ˆ ˆ, , ,n m m
nX Y YL .  We let , 1( , , , )n X nR R Rδℑ L  denote the 

set of all such coding and decoding schemes, ( )1, , , ,X nϕ ϕ ϕ ΨL , which can exist with the 
properties mentioned above.  We take :  

[ ) [ ) [ )2 2 2
1 1: 0, , : 0, , , : 0,x n nd X d Y d Y→ ∞ → ∞ → ∞L  

as the distortion measures, which, in our case, is the squared distortion measure, and we let 
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Then for given positive numbers DX, D1,…,Dn, a rate (n+1)-tuplet RX, R1,…,Rn,, is admissible 
if for any 00, ( )n nδ δ> ≥ , there exists a (n+2)-tuplet ( )1 , 1, , , , ( , , , )X n n x nR R Rδϕ ϕ ϕ ψ ∈ ℑL L , such 
that i iD δ∆ ≤ + . 

In our specific case, we do not care about the reproduction of the Yi’s, so the Di’s can be 
large.  Rather, the Yi’s act as helpers to reproduce X by providing side information at the data 
fusion node.  This is the so called n-helper case.  Then for an encoding system using the Yi,’s 
as n-helpers, the rate-distortion region given by: 

( ) ( ){ }1 1 1( , , ) , , : , , is admissibleX n X n X nD D D R R R R R Rℜ =L L L  for a given set of rates and distortion 
measures, is desired.  

Main Result: 

For the special case of the correlated Gaussian source, we can now state the main result that 
we have obtained.  We consider the encoding functions: 

{ } { }1 1: 1, , , : 1, ,,m m
X i i i iX C Y Cϕ ϕ→ ℵ = → ℵ =L L L  to be such that the rate constraints being 

satisfied are: 1 log
i im C R δ≤ + , i=X,1, 2, ...n.  Extending previous results [4]-[10], we show that 

for an admissible rate 1 2( , , , )X nR R R RL , and for some Di’s > 0, the n-helper system data rates 
for correlated Gaussian sources can be fused to yield an effective date rate (with respect to 
source X) satisfying the following lower bound: 
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This is the desired rate distortion region. 

Proof: 

In the interests of brevity, an outline of the main steps of the proof is given.  The method 
of employing joint weakly δ-typical tuplet, based on typical sequences, is used in the proofs 
of the characterization, rather than a measure-theoretic approach [11]. 

We assume that an admissible set of rates exists, and we let ( ) ( ),n n
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By the Gaussian property of the sources, and concavity of the logarithm function, we get: 
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Finally, an upper bound of ( )iG R  is obtained by an extension of the technique for the two 
node case (entropy of the power inequality, monotonicity, Jensen's inequality): 
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Substituting the bounds in the expression for ( )nF D , we obtain: 
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Letting 0δ → , we obtain the final result: 
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IV. THE COOPERATIVE COMMUNICATION PROBLEM 

With many low-power and low-cost sensors available, the goal is to achieve more robust 
and higher rate communications.  For example, we may again consider the situation in Figure 
1, where now communication to the satellite may be accomplished by a cooperating group of 
nodes to overcome their peak power limitations. This problem is of interest for example in 
remote planetary exploration, where the cost of providing power generation on the surface of 
a planet is orders of magnitude greater than for the downlink.  The communication schemes 
to accomplish this goal must be insensitive to the number of transmitters and their location, 
and robust to the transceiver failure or motion. We are also interested in problems where for 
example clusters of nodes on the surface must cooperate to overcome gaps in the multi-hop 
network caused by infelicitous node placement, or node failures.  Thus multiple transmitters 
and receivers may cooperate. 

 
The simplest way to achieve cooperative communication is by multiplexing. Frequency, 

time, code division multiple access (FDMA, TDMA, CDMA), and multiuser orthogonal 
frequency division multiplex (multiuser OFDM) are all feasible approaches. Using these 
methods, channels starting from different  transmitters can work in parallel and 
independently. 

 
Different transmitters could cooperate with each other or process information 

independently. For FDMA, TDMA, if they process information independently, obviously, 
the improvement on the performance over the single transmitter system is that information 
data rate increases by a factor of the number of transmitters. Meanwhile, the bandwidth 
expands by the same factor. Even if coding is used across transmitters, the data rate increases 
by the same factor because the received symbol rate increases by the same factor. Although 
the analyses for CDMA and multiuser OFDM are not so straightforward, there is also an 



increase for the data rate. Thus, in order to deal with a peak power constraint, increased 
communications range or rate can be achieved if the transmitters first share the message to 
transmit, and then all send it. Some weighted combining scheme can be used in the receiver 
array. Using more bandwidth as the number of transmitters is increased is thus a simple way 
to improve energy efficiency, taking advantage of the absence of competing uses. 

 
For fading channels, optimal combining is simple as well. Because each channel is 

uncorrelated, the number of received signals are the number of transmitters times the number 
of receivers. The same optimal combining formula applies to these received signals. 

 
In addition to the bandwidth expansion, it is noted that control signaling overhead is 

necessary. Its function is to allocate and manage channel resources as well as ensure the 
messages of the transmitters are coordinated. For FDMA and  

CDMA, the receiver complexity grows with the numbber of transmitters linearly. For 
TDMA, the receiver speed goes up with the number of transmitters. For multiuser OFDM, 
the number of transmitters doesn't affect the receiver complexity so dramatically. However, 
time and frequency synchronization [12][13] are critical issues that must be dealt with 
carefully.  

 
Multiplexing affects the transmitter design as well. For FDMA and CDMA, each 

transmitter uses a unique frequency band and spreading code, respectively. This uniqueness 
could be implemented by hardware or by software. TDMA and multiuser  

OFDM transmitters are assigned channel resources dynamically, and this results in more 
complicated hardware design. 

 
No matter whether multiplexing is adopted, it is valuable to investigate communications 

with multiple transmitters over the same channel. They are orthogonal communication 
schemes in the sense that multiplexing just deals with how channels are allocated, and doesn't 
care how each channel is used. So, there could be different coding, modulation, etc. at 
different multiplex channels. In our study, we address the communications over the same 
channel. One advantage of this kind of communications is the simplicity of transmitter 
design. Transmitters using the same channel can be almost identical. 

  
We consider two kinds of channels that may be involved. They are the AWGN channel 

and the fading channel with unequal path loss. The availability of channel state information 
affects RF synchronization and the choice of modulation and demodulation schemes. It is 
easy to appreciate the importance of estimating the channel state information for fading 
channels. It includes the magnitude and phase of the channel response, both critical quantities 
in optimal combining. For AWGN channels, there is no path loss. However, due to the 
different path lengths, transmitted signals arrive at the transmitter with different RF phases. 
This phase relationship is part of the channel state information. Here, acknowledge of 
channel state information is characterized into three types, as follows. 

 
We assume channels are not reciprocal. Thus, channel state information must be 

estimated at the receiver side. One approach is to insert a pilot sequence [14][15] periodically 
in each transmitted signal sequence. Because more than one transmitter uses the same 
channel and there is interference between pilot sequences from different transmitters, some 
properties must be satisfied among these pilot sequences so that the channel state information 
for each channel can be estimated. Then, the channel state information is feed back to the 
transmitters explicitly or implicitly. From this channel state information, transmitters can 



adjust their constellation phase with respect to each other so that their signals arrive at the 
receiver in phase. This is called RF synchronization.  

 
It is also possible that the channel state information is not fed back to the transmitter side. 

Thus, the constellation phase cannot be controlled, and RF synchronization cannot be 
achieved. Signals may arrive at the receivers constructively or destructively. Individual 
transmitted signals must be determined at the receiver with the help of channel state 
information. Since the constellation and channel state information are known, the possible 
combined receive signal can be computed, and coherent communication schemes can be used 
if the phase of the combined receive signal can be tracked as well.  

 
When channel state information cannot be estimated, obviously, there is no way to 

achieve RF synchronization. Since the possible clean received signal cannot be determined, it 
would be more feasible to adopt noncoherent communication schemes. 

 

V. CAPACITY RESULTS 

The information theoretic capacity for multiple antennas communications has been 
investigated to by Foschini[16], and Telatar [17] independently. Let us assume there are nT 
transmitters and nR receivers, and there is no feedback link from transmitter to receivers. The 
nT transmitted signal components are taken to be statistically independent Gaussians. The 
virtue of a Gaussian distribution for the transmitted signal is well established, see [18]. Under 
the assumption of uncorrelated noise on each channel, the capacity takes the form [18-20], 

C
Non s

H
r

= +log det( )2
1I GA G   (2) 

where As is the transmitted signal covariance matrix, G is the channel response matrix that 
includes path loss and fading, and No is the noise variance. It is observed that capacity is a 
function of the channel state information G and the transmitted signal covariance matrix As. 
Furthermore, from Hadamard's inequality [21], in order to maximize the capacity, GAsGH 
must be a diagonal matrix. When channels are independent from each other, G and GH are 
diagonal, and As has to be diagonal as well.   

 
For Gaussian channels, it is obvious to see the best power allocation policy is the equal 

power distribution. Several combinations of the numbers of transmitters and receivers are 
briefly discussed here. 

 
1. Receive Diversity:  maximum ratio combining, nT=1, nR=n 
For Gaussian channels,  

 C SNR n= +log [ * ]2 1   (3) 
For unequal path loss fading channels,  

 C SNR= +log [ *|| || ]2
21 G   (4) 

where G is a nx1 vector, and SNR is defined as the ratio of transmit power to the receiver 
noise power.  

 
2. Transmit Diversity  nT=n, nR=1. 
The capacity can be derived from (2). For Gaussian channels,  

 C SNRi
i

= +∑log [ ]2 1   (5) 

where SNRi is defined as the ratio of the i-th transmit power to the receive noise power, 
assuming the noise power is equal at all receivers. For unequal path loss channels,  



C SNRi
i

i= +∑log [ *|| || ]2
21 G   (6) 

where Gi is the channel response from the i-th transmitter to the single receiver. It has a chi-
square distribution with 2 degrees of freedom and a variance that depends on the path loss. 

 
3. Combined Transmit-Receive Diversity. 

The capacity can be computed numerically by Monte Carlo simulation. For n nT R≥ , 
equal transmit power and equal path loss Rayleigh fading channels, the capacity lower bound 
was derived in [17] 
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where χ 2
2

k  is a chi-square distribution with 2k degrees of freedom. 
 
The above discussion for transmit diversity is based on the situation when RF phases are 

not synchronized at the receivers. When their relative phases are adjusted so that they are 
aligned at the receiver, the amplitude of the combined signal is the sum of the constituent 
transmit amplitudes. Therefore, for unequal path loss fading channels, the capacity is  
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The capacity for Gaussian channels is obtained by replacing Gi with 1. For receiver 
diversity, RF synchronization is not a problem because there is only one transmit signal at 
any instant of time. For combined transmit-receive diversity, RF synchronization is almost 
impossible to be achieved simultaneously at all receivers unless transmitters and receivers are 
deliberately located in the fixed channel environment, and can move to any location in the 
varying channel environment. The capacity for RF synchronization is much higher than that 
for RF non-synchronization.  
 

VI. A PRACTICAL APPROACH 

In wireless sensor networks, the number of available transmitters may vary with time. 
Sensor failures or additions are expected to take place. Thus, the communication scheme 
used in the environment must be adaptive with respect to the number of transmitters. Space-
time trellis codes [22] are designed for fixed numbers of transmitters. We propose an 
approach which is easier to implement and more insensitive to the change of the number of 
transmitters. In the approach, the relative constellation phases of transmitters change every 
symbol interval so that signals combined destructively may combine constructively in other 
symbol intervals. Consequently, the channel behaves like a fast fading channel. We have 
conducted a computer search for the best relative phase rotation. There are two transmit 
antennas using BPSK signal constellations and the rate 1/2 repetition code. The channels are 
AWGN channels. The constellation phase of the first transmit antenna is fixed, while the 
second transmit antenna increases its constellation phase by the value of relative phase 
rotation at the second symbol interval. It turns out that the best phase is 180 degrees. In other 
words, the second transmit antenna flips its constellation phase every symbol interval. It is 
interesting that the BER at this point is equal to the BER for one transmit antenna with the 
same total transmit power. If the constraint is on the individual transmit power, which is the 
usual case in wireless sensor network, we will obtain 3dB gain in performance. For three 
transmit antennas, the minimum appears at three points, (0,π), (π,π) and (π,0). These three 
points can be obtained with the same operation. Two constellations change by the same 



phase, while the other changes 180 degree more. When 2 and 3 transmit antenna cases are 
considered together, we can observe the robustness to the number of transmit antennas. 
When one transmit antenna is added to the 2 transmit antenna scenario, the original two 
antennas work in the same way, while the third antenna can choose to flip every symbol 
interval, as the second antenna, or not, as the first antenna. Therefore, the system scales up 
without changing the operation of the existing transmitters. 

 

VII. CONCLUSION 

 
In this work, we have considered the rate distortion problem for a sensor network 

employing data fusion at a node.  The main assumption has been that the n-helper nodes are 
all producing correlated Gaussian data, which has then enabled us to obtain an analytic form 
for the rate distortion bound.  The primary utility of this result is to compare practical data 
fusion schemes with the predicted bounds—in particular, to determine which are the most 
critical and sensitive parameters affecting rate and performance of a data fusion scheme in a 
network sensor system.   

The main limitation of the work is that currently, extensions to the more ‘real-world’ 
scenario of non-Gaussian sources and channels are not obvious.  However, efforts are 
underway to formulate numerically solvable versions for the more realistic scenarios.  Our 
ultimate goal is, in the absence of any tractable analytical expression, to obtain at least an 
iterative algorithm, or a convex optimization form.  Ideally, this would allow us to accurately 
predict maximum rate/ minimum distortion pairs for a wide variety of channels and sources 
for random arrangements of sensors.  We would also like to be able to investigate various 
‘what-if” scenarios in simulation set-ups for particular types of configurations and coding 
implementations.  Thus, we hope eventually to be able to use these bounds to definitively 
compare various data fusion and network communication schemes for wireless sensor 
networks, with regards to their performance and efficiency. 

We have also presented a simple phase rotation scheme that enables a variable number of 
transmitters without a common phase reference to achieve gains over simple non-coherent 
combining, assuming the same channel must be used.  However, much work remains to be 
done in devising schemes with superior performance. Simple capacity calculations indicate 
that substantial gains can be obtained by providing a coherent phase reference, and thus it is 
likely that approaches which devote a significant fraction of the energy to beacons may be 
fruitful.  
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