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Abstract— Techniques for reducing interchannel interference
(ICI) of orthogonal frequency division multiplexing (OFDM)
systems under a fast fading channel are presented. Combined
frequency domain equalization and bit-interleaved coded modu-
lation (BICM) are investigated. Using the fact that ICI energy
is concentrated in adjacent subchannels, the complexity of the
frequency domain equalization can be significantly reduced
without much performance degradation. New bit metrics for
the BICM are derived to improve the performance when the
frequency domain equalizer and BICM are used together. Com-
puter simulation demonstrates the robustness of the suggested
techniques even when the normalized Doppler frequency is higher
than 0.1.

I. I NTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is
known as an effective modulation technique in highly fre-
quency selective channel conditions. The entire transmission
channel of the OFDM systems is divided into many narrow
subchannels, and each subchannel is modulated by orthogonal
subcarriers [1]. In time-selective channel environments, on
the other hand, time variations of the channel within an
OFDM symbol interval lead to a loss of subchannel orthog-
onality, resulting in interchannel interference (ICI) and an
irreducible error floor in conventional OFDM receivers [2].
The performance degradation due to ICI becomes significant
as normalized Doppler frequency increases, which is the
ratio of maximum Doppler frequency shift to the subchannel
bandwidth [3].

In [4], a simplified frequency domain equalization is sug-
gested to reduce ICI. The complexity of the equalizer can be
reduced significantly by using the fact that the energy of the
ICI is concentrated in adjacent subchannels – in other words,
only a few adjacent subchannels are major interferers to a
desired subchannel. Bit-interleaved coded modulation (BICM)
is first introduced in [6], and further analyzed in [7]. The per-
formance of the coded modulation over a fast fading channel
can be improved by bit-wise interleaving at the encoder output,
and by using an appropriate soft-decision metric as an input to
a Viterbi decoder. Even though the metric is suboptimal, the
BICM outperforms the conventional trellis-coded modulation
(TCM) over a fast fading channel , mainly due to the additional
diversity induced by the bit-wise interleaver.

In this paper both frequency domain equalization and BICM
techniques are combined for robust and reliable reception in
OFDM systems in a fast fading channel environment. A new
design method for simplified frequency domain equalization
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Fig. 1. A baseband equivalent model for an OFDM system.

using the minimum mean-squared error (MMSE) criterion is
obtained. Also, new bit metrics are derived to improve the
performance of the BICM in the presence of the equalizer.

This paper is organized as follows. In Section II, the
overall system model is described and properties of ICI are
investigated. A simplified MMSE equalizer and bit metrics
for BICM are designed in Section III. The performance of the
suggested techniques is demonstrated by computer simulation
in Section IV, and finally conclusions are made in Section V.

II. SYSTEM MODEL AND PROPERTIES OFICI

In this section the mathematical model of an OFDM system
for a time-varying channel is described. Properties of ICI
are shown, and these properties will be used for designing
a hardware-efficient MMSE equalizer in the next section.

A. System Model under Time-Varying Channel

Fig. 1 shows an overall baseband equivalent model for an
OFDM system. The output of IFFTxn at timen is given by

xn =
1√
N

N−1∑
m=0

Xmej2πnm/N , (1)

where N , and Xm are the number of subchannels of the
OFDM system, and the outputs of encoder at subchannel
m, respectively. By assuming that the channel consists of L
multipath components, the output of the channel can be given
by [8]

yn =
L−1∑

l=0

hn,lxn−l + wn, (2)

where hn,l and wn represent the channel impulse response
(CIR) of lth path and additive white Gaussian noise (AWGN)



at timen, respectively. From (1),yn can be written as

yn =
1√
N

N−1∑
m=0

XmH(m)
n ej2πnm/N , (3)

where H
(m)
n ≡

L−1∑
l=0

hn,le
−j2πlm/N is the Fourier transform

of the channel impulse response for subchannelm at timen.
After removing the cyclic prefix, the output of the fast Fourier
transform (FFT) is

Ym =
1√
N

N−1∑
n=0

yne−j2πnm/N . (4)

By inserting (3) into (4),Ym can be rewritten as [4]

Ym = αmXm + βm + Wm, (5)

where

Wm =
1√
N

N−1∑
n=0

wne−j2πnm/N

αm =
1
N

N−1∑
n=0

H(m)
n

βm =
1
N

N−1∑

k=0,k 6=m

Xk

N−1∑
n=0

H(k)
n e−j2π(m−k)n/N . (6)

Here,Wm, αm, andβm represent the Fourier transform ofwn,
the multiplicative distortion of a subchannelm, and the ICI
caused by a time-varying channel, respectively. Note thatαm

is the average frequency response of the CIR over one OFDM
symbol period. In other words, in a time-invariant channel
H

(k)
n is not a function ofn, and αm simply becomes the

frequency response of CIR as usual.
We can express (5) in a vector-matrix form as

y = Hx + w (7)

where y = [Y0, . . . , YN−1]
T , x = [X0, . . . , XN−1]

T , w =
[W0, . . . , WN−1]

T , and

H =




H0,0 H0,1 · · · H0,N−1

H1,0 H1,1 · · · H1,N−1

...
...

. ..
...

HN−1,0 HN−1,1 · · · HN−1,N−1


 . (8)

Here,Hm,k in (8) is defined as

Hm,k ≡ 1
N

N−1∑
n=0

H(k)
n e−j2π(m−k)n/N . (9)

In an OFDM system over a time-varying channel, the ICI
can be characterized bynormalized Doppler frequencyfdT
where fd is the maximum Doppler frequency andT is the
time duration of one OFDM symbol. Hence we can think of
the normalized Doppler frequency as a maximum cycle change
of the time-varying channel per symbol duration in a statistical
sense.

The βm’s in (5), or off-diagonal elements ofH in (8)
represent the ICI caused by the time-varying nature of the
channel. In a time-invariant channel, one can easily see that
βm is zero, or H becomes a diagonal matrix, due to the
orthogonality of the multicarrier basis waveforms. In a slowly
time-varying channel (i.e. the normalized Doppler frequency
fdT is small), we can assume|βm|2 ≈ 0. On the other hand,
when the normalized Doppler frequency is high, the ICI power
cannot be ignored and produces an irreducible error floor in
conventional OFDM receivers.

B. Property of ICI

In [8], an explicit mathematical expression for ICI power is
derived. By assuming that the multipath intensity profile has
an exponential distribution, and the inverse Fourier transform
of the Doppler spectrum is the zeroth-order Bessel function of
the first kind, the autocorrelation function of the channel is

E
{
hn1,l1h

∗
n2,l2

}
= c·J0

(
2πfdT (n1 − n2)

N

)
·e−l1/Lδ (l1 − l2)

(10)
where c, a normalization constant, is chosen to satisfy
c
∑

le
−l/L = 1, J0(·) denotes the zeroth-order Bessel function

of the first kind. Assuming the data on each subchannel is
uncorrelated, andE{|Xm|2} = 1, the normalized ICI power
of subchannelm caused by subchannelk is [8]

γm,k ≡
N + 2

N−1∑
n=1

(N − n)J0

(
2πfdTn

N

)
cos

(
2πn(m−k)

N

)

N + 2
N−1∑
n=1

(N − n)J0

(
2πfdTn

N

) ,

(11)
and the total ICI power for subchannelm is then given by

γm =
N−1∑

k=0,k 6=m

γm,k. (12)

Fig. 2 shows the distribution of normalized ICI power
among subchannels for differentfdT values. Note that the
overall normalized ICI power level increases as the normalized
Doppler frequency increases. Also note that the ICI power
tends to concentrate in the neighborhood of the desired
subchannel which is set to be zero in the Fig. 2. In other
words, γm,k1 > γm,k2 if |m − k1| < |m − k2| for any
0 ≤ m, k1, k2 ≤ N−1 andk1, k2 6= m. Because the ICI power
decreases significantly as|m − k| increases, it is inefficient
to use the entire set of subchannels to equalize a particular
desired subchannel. This idea is the key for designing a
hardware-efficient equalizer in the next section.

III. R EDUCED-TAP MMSE EQUALIZER AND BICM

The conventional detection of OFDM signals using a single
tap equalizer exhibits relatively good performance at low val-
ues offdT . However, in an environment where the normalized
Doppler frequency is high, orthogonality between subchannels
breaks down, and there is an irreducible error floor due to the
interference induced between subchannels. In this section we
design simplified MMSE equalizers in the frequency domain
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Fig. 2. Distribution of normalized ICI power, N=64

and appropriate bit metrics for BICM. First, a traditional
MMSE equalizer design approach is described, and a new
design method using a reduced-tap MMSE equalizer in the
frequency domain is presented. Then we propose improved
bit metrics for BICM in the presence of the equalizer.

A. Reduced-tap MMSE Equalizer

Our OFDM system model is

y = Hx + w (13)

as given in (7). In this problem, we want to find theN -by-N
equalizer matrixG which minimizes the cost functionE{|x−
x̂|2}, where x̂ = Gy is the equalizer output vector. This is
the classical MMSE design problem, and the solution is given
as

G = RxyRy
−1 (14)

whereR denotes the covariance matrix, which is defined as
Rxy = E

{
xyH

}
andRy = E

{
yyH

}
. Here the superscript

H denotes complex conjugate transpose. The resulting MMSE
is then

MMSE = Tr
(
Rx −RxyR−1

y Ryx

)
(15)

where Rx = E
{
xxH

}
and Ryx = E

{
yxH

}
, and Tr(·)

denotes trace function. AssumingH is known, x is a zero-
mean i.i.d. random vector with varianceσx

2, and w is an
AWGN vector with varianceσw

2, thenRxy is

Rxy = σ2
xH

H, (16)

andRy is
Ry = σ2

xHHH + σ2
wIN , (17)

where IN is the N -by-N identity matrix. Then (14) can be
rewritten as

G = HH

(
HHH +

σw
2

σx
2
IN

)−1

. (18)

Likewise, (15) becomes

MMSE = σ2
xTr (I−GH) (19)

As can be seen from (18), the MMSE equalizer is too
complex to be implemented, especially whenN is a large
number. First, anN -by-N matrix inversion is required to
obtain the equalizer coefficient matrixG, and N2 complex
multipliers are needed to equalizeN symbols.

Using the fact that the ICI power is localized to the
neighborhood of a desired subchannel, only a few neigh-
borhood subchannels can be used for equalization without
much performance penalty. Derivation of theq-tap MMSE
equalizer is similar to the MMSE case. This time, however,
we find the solution for each desired subchannel individu-
ally. The problem is to find the equalizer coefficient vec-
tor gm = [gm,0, . . . , gm,q−1] which minimizes the mean-

squared errorE

{∣∣∣Xm − X̂m

∣∣∣
2
}

where X̂m = gmym and

ym =
[
Y(m−(q−1)/2)N

, . . . , Y(m+(q−1)/2)N

]T
. Here (·)N de-

notes modular function with modulusN . ym is then

ym = Hmx + wm (20)

wherewm =
[
W(m−(q−1)/2)N

, . . . ,W(m+(q−1)/2)N

]T
and

Hm =




H(m−(q−1)/2)N ,0 · · · H(m−(q−1)/2)N ,N−1

...
...

...
Hm,0 · · · Hm,N−1

...
...

...
H(m+(q−1)/2)N ,0 · · · H(m+(q−1)/2)N ,N−1




.

(21)
From (14), the MMSE solution is

gm= RXmymR−1
ym

, (22)

and, by the same assumption as in the previous section, we
have

RXmym = E
{
XmyH

m

}

= σ2
xh

H
m (23)

wherehm is themth column of the matrixHm, i.e.,

hm =
[
H(m−(q−1)/2)N ,m, . . . , H(m+(q−1)/2)N ,m

]T
. (24)

Also we have

Rym = E
{
ymyH

m

}

= σ2
xHmHH

m + σ2
wIq. (25)

After inserting (23) and (25) into (22), theq-tap equalizer
vectorgm becomes

gm = hH
m

(
HmHH

m +
σ2

w

σ2
x

Iq

)−1

. (26)

Similarly, we have

MMSE = σ2
x

N−1∑
m=0

(1− gmhm). (27)

By choosing an appropriate numberq, we can reduce complex-
ity of the equalizer significantly. For example, whenN = 64,
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Fig. 3. Block diagram of a BICM system

the full-tap MMSE requires 64-by-64 matrix inversion with
4096 complex multipliers, while the 3-tap MMSE equalizer
needs 64 3-by-3 matrix inversions with only 192 complex
multipliers.

B. Bit-Interleaved Coded Modulation

OFDM is an attractive modulation technique for the sys-
tems employing convolutional channel coding because of its
inherent orthogonality between subchannels. When an OFDM
system does not suffer from ICI, each subchannel can be
viewed as an independent flat fading channel. By independent
we mean an impulse channel so that, when transmitting
convolutional codes, the decoder’s trellis has the same number
of states as the transmitter’s. Single carrier systems under
multipath channels, on the other hand, suffer from intersymbol
interference (ISI) so that much more complex algorithms are
required for maximum likelihood decoding.

It is known that the BICM technique, based on a convolu-
tional code followed by bit interleavers, yields higher coding
gain over a Rayleigh fading channel than the original trellis-
coded modulation (TCM) [5], [6]. The diversity of a coded
system can be increased with this approach, and the diversity
is proportional to free binary Hamming distancedfree of the
code, and the error performance is governed by some function
of dfree. First, the BICM decoding method is briefly described.
And then new bit metrics are designed for proper interaction
with the equalizer.

An example of the BICM system is shown in Fig. 3. In
this example, a binary sequencein at time n is encoded
into another binary sequencecn using a rateR = 3

4 ,
convolutional code. The encoder outputs are fed into four
independent ideal interleavers, resulting in a binary vector
cn
′ =

[
c1
n
′
, c2

n
′
, c3

n
′
, c4

n
′]

. A group of 4 bits at the output
of the interleavers is mapped into the 16-QAM signal set
xn. The mapped signal points are digitally pulse shaped, and
transmitted over the channel. At the receiver, a faded noisy
version of the transmitted signalyn can be written as

yn = ρnxn + wn (28)

whereρn is a random variable representing the random am-
plitude of the received signal, andwn is a complex zero-mean
Gaussian random variable with varianceσw

2. The received
signal is then passed through a demodulator, four metric com-
putation units, and metric de-interleavers. Finally, the decision
on the transmitted sequence is taken with the aid of the
Viterbi decoder. At the receiver, the faded, noisy version of the
transmitted symbol is passed through four metric computation
units. An optimal decoder calls for a complicated metric which
takes into account the apriori probabilities of transmission of
all possible transmitted symbols associated with the output bit
ci
n. In selecting a decoding metric, a tradeoff exists between

simplicity of implementation, robustness of the system, and
error performance. In [6], the suboptimal metric

mi

(
yi

n, Sc
i ; ρ

i
n

)
= min

x∈Sc
i

∣∣yi
n − ρi

nx
∣∣2 , c = 0, 1 (29)

is suggested.
We can combine the BICM with theq-tap MMSE equalizer

designed previously to increase diversity as well as signal
to interference noise ratio (SINR). The problem with this
combination is to determine what metrics are appropriate in the
presence of the equalizer. Without the equalizer, the metrics
should be the same as (29), i.e.,

Metric0 ≡ min
x∈Sc

|yn −Hn,nx|2 , c = 0, 1 (30)

whereHn,n in (9) is the channel gain at the subchanneln.
Note that off-diagonal elements ofH in (8) are all zeros since
there is no ICI. However, in the presence of equalizers, Metric0
cannot be used directly since the input of the metric computa-
tion units is not the channel outputyn, but the equalizer output
x̂n. Hence the simplest metrics in the presence of equalizers
could be

Metric1 ≡ min
x∈Sc

|x̂n − x|2 , c = 0, 1. (31)

Metric1, however, does not include the subchannel gain in-
formation which may improve the performance greatly. If we
scale the metrics based on the power of each subchannel, then
we have

Metric2 ≡ min
x∈Sc

|x̂n − x|2 |Hn,n|2, c = 0, 1. (32)

We can improve further by examining the equalizer output,

x̂n = gnyn

= gn (Hnx + wn)
= gnhnxn + gn (wn + w′

n) (33)

where gn = [gn,0, . . . , gn,q−1] is the equalizer coefficient
vector, the channel matrixHn is from (21), andhn is nth

column ofHn. Herew′
n denotes ICI associated withyn. Since

|x̂n − gnhnxn|2 = |gn (wn + w′
n)|2

' |gn|2 |wn + w′
n|2 , (34)

new metrics can be obtained as

Metric3 ≡ 1
|gn|2

min
x∈Sc

|x̂n − gnhnx|2 . (35)



IV. SIMULATION RESULTS

Fig. 4 illustrates the mean-squared error performance of the
MMSE equalizers as a function of SNR whenfdT = 0.1.
In this simulation, the number of subchannelsN is 64, and
1-tap, 3-tap, 5-tap, and full 64-tap MMSE equalizers are
under consideration. Note that the curve of the 64-tap MMSE
equalizer is almost a straight line, meaning that the full-tap
MMSE equalizer does not suffer from an irreducible error
floor due to the ICI unlike other fewer-tap equalizers. Also
note that the error floor decreases as the number of the
equalizer taps increase. Fig. 5 compares BER performance for
different metrics. In this simulation the number of subcarriers
N = 32, the normalized Doppler frequencyfdT=0.4, 4-QAM
modulation, and 64-state convolutional code with rate 1/2
are used. As expected, the performance order is Metric1<
Metric2 < Metric3. At BER=10−4, Metric3 has 1.2 dB gain
over Metric2, and 0.2 dB over Metric1 for the 3-tap MMSE
equalizer. Fig. 6 shows the BER performance under various
conditions. Only the systems having both equalizer and BICM
do not suffer from serious ICI degradation. Note that both ‘1-
tap with BICM’ and ‘BICM only’ has an irreducible error
floor due to the severe ICI impairments.

V. CONCLUSION

As demand for high speed communications under various
mobile scenarios rises, the ICI problem of OFDM systems
become an important issue. In this paper combined techniques
for robust OFDM under fast fading channels are proposed –
reduced-tap frequency domain equalization and bit-interleaved
coded modulation. Complexity reduction compared to the
MMSE equalizer is achieved with little performance penalty
due to the energy concentration property of ICI. A new MMSE
design method for reduced tap equalization, and bit metrics for
BICM are developed. Computer simulation results show that
the proposed technique is robust under very fast fading channel
conditions.
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