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ABSTRACT

In this paper, some recent results obtained for vari-
ous aspects of the moving load problem are discussed.
While encompassing a range of problems involving dis-
crete subsystems traversing a primary distributed pa-
rameter system, a simple vehicle crossing a bridge is
used herein to demonstrate various effects and their
relative importance.

1. INTRODUCTION

Forces and/or subsystems moving along a distributed
structural system is a common engineering problem.
The critical issues are the accurate prediction of
displacements, velocities, accelerations, and stresses
throughout the system and characterization of the dy-
namic interactions developed between all of the inter-
acting subsystems. Interest in this class of problems
appears to have originated with the pioneering work of
Willis and Stokes in their analyses of railway bridges
during the mid-19th century, and this particular appli-
cation is still pertinent today in the design of roadbeds
and bridges traversed by high-speed trains. Similar
problems are also encountered in design of elevated
roadways and bridges carrying heavy vehicles, park-
ing garages and aircraft carriers, ballistic systems such
as railguns, high-speed precision machining, magnetic
disk drives, cables supporting humans and materials,
disk brakes, systems subjected to pressure waves, and
so forth. An important characteristic of these systems
is the absence of a steady-state solution to the re-
sponse problem. Thus, the solution is fully defined by
the transient responses of the primary, or continuous,
subsystem and the secondary, or discrete, subsystems,
and many well-known classical methods of analysis are
no longer applicable. Moreover, when the dynamic in-
teractions between subsystems are important, the so-
lution must be obtained by simultaneously solving the

resulting coupled system of partial and ordinary dif-
ferential equations in time. In this paper, some recent
results obtained for various aspects of this problem are
discussed. A simple vehicle traversing a bridge is used
throughout in order to demonstrate various effects and
their relative importance.

2. THE MOVING LOAD PROBLEM AND A

GENERAL METHOD FOR ITS SOLUTION

First, we consider a comprehensive mathematical
statement of the problem of a single vehicle traversing
a bridge and discuss a general approach to its solution.
Let the bridge be modeled as a continuum, and w(x, t)
be the displacement of a continuum point x at time
t. The equation governing vibration of the continuum
can be written in the operator form

Âcw(x, t) = Fc(x, t), x ∈ Ω, (1)

where Âc is a partial differential operator determined
by an accepted model of bridge and Fc is a force acting
on the continuum. Note that boundary conditions are
included in the definition of the operator Âc.

Let the vehicle be modeled as a finite-dimensional sub-
system, and z(t) be a vector of its coordinates. The
equation governing vibration of the vehicle can be ex-
pressed as

Âvz(t) = Fv(t), z(t) ∈ Rn, (2)

where Âv is an ordinary differential operator, n is the
number of DOFs of the finite-dimensional subsystem,
and Fv(t) ∈ Rn is a vector of forces acting on the
finite-dimensional system.

Solutions to equations (1) and (2) are well known to
be

Â
−1

c Fc(x, t) =

∫ t

0

∫

Ω

Gc(x, ξ, t − τ)Fc(ξ, τ) dξ dτ, (3)



Â
−1

v Fv(t) =

∫ t

0

Gv(t − τ)Fv(τ) dτ, (4)

where Gc(x, ξ, t) and Gv(t) are the Green’s functions
of the distributed-parameter and finite-dimensional
subsystems, respectively, which are calculated either
numerically or, if the modal data are available, in
terms of the modal series.

Now, let the subsystems interact, and let the interac-
tion be described by a linear operator ∆̂A. We will
write it in a factored form, ∆̂A = Ψ̂Φ̂ (we will not
discuss the ways of the decomposition of this opera-
tor, since it will draw us away from the main subject,
and note only that such a representation is always
possible, since, e.g., we can consider a trivial decom-
position: Ψ̂ = I (I is the identity operator), Φ̂ = ∆̂A,
and is not unique). Introduce the notation

Â=

[

Âc 0

0 Âv

]

, X =

{

w(x, t)
z(t)

}

, F =

{

Fc(x, t)
Fv(t)

}

.

Then, assuming that Fc(x, t) and Fv(t) are external
forces, the equation governing coupled vibration of the
linear system can be written as

ˆ̃AX ≡ (Â + Ψ̂Φ̂)X = F, (5)

where ˆ̃A denotes the operator governing coupled vi-
bration of the interacting subsystems.

To find a solution X of equation (5), we need the

inverse of the operator ˆ̃A. According to the theorem
on the perturbation of an invertible operator [1–3], the

operator ˆ̃A = Â + Ψ̂Φ̂ is invertible if and only if the
characteristic operator

χ̂ = I + Φ̂Â
−1

Ψ̂ (6)

is invertible. If the characteristic operator is invert-
ible, then

ˆ̃A
−1

= Â
−1

− Â
−1

Ψ̂χ̂−1Φ̂Â
−1

. (7)

It follows from physical considerations that the origi-
nal problem of a moving vehicle always has a solution.

Hence, both ˆ̃A and χ̂ are invertible. By applying the
RHS of equation (7) to the vector of external forces,
we get

X = Â
−1

F − Â
−1

Ψ̂y, (8)

where
y = χ̂−1Φ̂Â

−1

F. (9)

Equation (8) can easily be interpreted. The solution
X is seen to be the vibration of two non-interacting
subsystems subject to the two sets of forces: external

forces F and the interaction forces Ψ̂y. Rewriting (9)
as

χ̂y = Φ̂Â
−1

F

and taking into account equation (6), we find that y
is a solution to the operator equation

y + (Φ̂Â
−1

Ψ̂)y = Φ̂Â
−1

F, (10)

which is usually found in a simpler way than the so-
lution of the original equation governed by the differ-

ential operator ˆ̃A.

As can be seen, the problem of a moving load is de-
composed into two problems: (i) finding the vector
y(t) (the components of which are, up to scaling coef-
ficients, forces of interaction between the subsystems),
which is a solution to the Volterra equation (9) (or
(10)), and (ii) finding the response X(x, t) of the sub-
systems due to given external and interaction forces
by equation (8).

Let us establish the relationship between the vectors
X(x, t) and y(t). Acting on the both sides of equation
(8) by the operator Φ̂, we get

Φ̂X = Φ̂Â
−1

F − Φ̂Â
−1

Ψ̂y.

Comparing this equation with (10), we find that

y(t) = Φ̂X(x, t). (11)

Note that, in the preceding discussion, we considered
a general case of interacting subsystems to emphasize
the fact that the approach is applicable to any prob-
lem involving linear vibration of coupled interacting
systems. Considering different problems, we arrive at
different interaction operators and, thus, to different
operator equations (10). This approach was applied
earlier to the problem of vibration of a continuous sys-
tem carrying finite-dimensional subsystems at fixed
points [2–5]. In that case, the operators Φ̂ and Ψ̂ do
not depend on time, and the characteristic operator χ̂
is a matrix of size equal to the rank of the interaction.

The extension of this approach to the moving load
problem was first discussed in [6], where it was ap-
plied to the problem of vibration of a beam traversed
by an SDOF conservative oscillator. Later, it was ap-
plied in [7] to the case of an arbitrary moving finite-
dimensional subsystem. In this case, the coordinates
of points where the subsystems interact are functions
of time; i.e., the interaction operator and, hence, Φ̂
and Ψ̂ are time-dependent operators. In the case of an
SDOF moving oscillator, the characteristic operator is
a Volterra integral equation of the second kind [6]; in
the general case of an MDOF vehicle model interact-
ing with the continuum at m points, we arrive at a



system of m Volterra equations in the m-dimensional
vector y(t).

To illustrate the preceding discussion, we present the
factorization of the interaction operator and the re-
sulting Volterra equation for the case of a conserva-
tive SDOF oscillator of mass m0 moving with constant
speed v along a one-dimensional continuum (beam).
As shown in [6], the interaction operator can be rep-
resented as the product of the column operator Ψ̂ and
the row operator Φ̂ given by

Ψ̂ =

{

δ(x − vt)
−1

}

, Φ̂ = k[π̂x(vt),−1],

where k is the stiffness of the spring connecting the
moving mass to the continuum, δ(x) is the Dirac delta-
function, and π̂x(vt) is the operator substituting vt for
x, π̂x(vt)f(x) = f(vt). Taking these and equations
(3), (4), (6) into account, we find that the character-
istic operator is the the integral Volterra operator

χ̂y(t) ≡ y(t)+k

∫ t

0

[Gc(vt, vτ, t−τ)+Gv(t−τ)]y(τ) dτ,

where Gv(t) is the Green’s function of the mass m0,
Gv(t−τ) = (t−τ)/m0. The RHS of the integral equa-
tion (10) is determined by the external forces acting
on both subsystems. Note that, in this approach, the
weight of the moving subsystem is assumed to be an
external force, such that the RHS of (10) is always
nonzero.

The advantage of the approach based on the Volterra
equations is that it allows us to get the solution in
a unique, general, and concise form. Given that the
Green’s operators of the continuum and the moving

subsystem(s), and, hence, the inverse operators Â
−1

c

and Â
−1

v , are known (can be efficiently calculated),
the solution of the moving vehicle problem is given by
equations (8), (9).

An equivalent approach, which avoids solving the
Volterra equations, exists. In practice, the Green’s
functions are usually calculated in terms of modal se-
ries. Expanding the responses of the continuum and
finite-dimensional system in terms of their eigenfunc-
tions and using N continuum eigenfunctions to ap-
proximate the continuum response, we can write X
in the form X = φ(x)q(t), where φ(x) denotes a
block matrix containing eigenfunctions of both con-
tinuum and finite-dimensional subsystem, and q(t) is
an (N + n)-vector of modal coordinates. By virtue of
(11), the vector y(t) is also expressed in terms of q(t)
as y = Φ̂φq. Substituting this expression into equa-
tion (10) or (8) (both equations should result in the
same equations in q) and using the modal series rep-
resentation for the Green’s functions, we get a system

of N + n integral equations in the modal coordinates
qj(t), j = 1, . . . , N + n. It can be shown that, by dif-
ferentiating the equations obtained, we get a set of
ODEs in qj . We will not derive the set of ODEs for
the general case here; however, they were given in [7].

Summarizing the results of this section, we see that:

(i) Any moving vehicle problem can be solved by ap-
plying the unique method described above for arbi-
trary bridge and vehicle models if the Green’s opera-
tors of both subsystems can be efficiently calculated
(modal data are available). The problem of finding
the response of the system reduces to solving a set of
Volterra equations in the interaction forces between
the bridge and vehicle. The latter problem can be
reduced to solving a set of ODEs in the modal coordi-
nates of the expansion of the system response in terms
of the bridge and vehicle eigenfunctions.

(ii) In the framework of the above approach, there is
no fundamental difference whether the moving vehicle
is modeled as an SDOF oscillator or an MDOF sys-
tem. Both problems are formulated and solved in the
same way, with the difference being only in the compu-
tational complexity (N +1 versus N +n second-order
equations).

3. MOVING LOAD MODELS

In this section, we describe various models for moving
loads employed in the literature for analyzing the vi-
bration of bridges traversed by vehicles and discuss
limits of their applicability. Our goal is to try to
understand which parameters of the moving vehicle
problem are most important from the standpoint of
bridge vibration, and in which cases we should use
more complicated, rather than simple, vehicle mod-
els. The latter issue is very important for the following
reasons: Although, as noted previously, the solution of
the moving vehicle model can be obtained by applying
the same method independent of vehicle model con-
sidered, the computational complexity increases with
the growth in dimension of the MDOF system used
for modeling the vehicle. Moreover, the use of com-
plicated vehicle models considerably complicates the
subsequent analysis of the results of numerical exper-
iments in view of the large number of parameters in-
volved.

Rewrite equation (1) governing vibration of the con-
tinuum due to a moving load in the form

Âcw(x, t) = fc(x, t) + fext(x, t), (12)

where fc(x, t) is a vector of forces acting on the contin-
uum from the moving load and fext(x, t) are external



forces acting on the continuum. Here, though, we as-
sume that the vehicle weight is included in the force
fc(x, t). In addition to this equation, we must spec-
ify the law of motion of the load along the continuum;
e.g., indicate the function x = ζ(t) showing position of
the load on the continuum at time t (if there are mul-
tiple points where the forces from the moving vehicle
are applied, ζ(t) is a vector). Since we are interested
in the effect of the moving load, rather than other
factors, on the bridge vibration, we assume in the fol-
lowing that fext(x, t) = 0. We also assume that the
vehicle moves with a constant speed v and enters the
bridge at t = 0, such that ζ(t) = vt.

The various moving load models are defined by differ-
ent forms of the function fc(x, t) on the RHS of (12).

1. In the moving force model, the force is assumed to
be constant and equal to the vehicle weight,

fc(x, t) = Pδ(x − vt),

where P is the vehicle weight. This is the simplest
vehicle model, since we have only two parameters: ve-
hicle weight and speed. The bridge and vehicle do
not interact, and we have N equations in the time-
dependent coefficients of the expansion of the con-
tinuum response which is in terms of the continuum
eigenfunctions.
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Figure 1: Dependence of the maximum deflection of
the dimensionless simply supported beam, subject to
a moving force, on the dimensionless speed of the trav-
eling force.

Figure 1 [8] shows the ratio of the maximum deflec-
tion of the dimensionless simply supported beam to
the maximum static deflection of the beam due to the
same force applied to the beam midpoint vs. speed of
the traveling force, where the dashed line shows the
amplitude of the beam free vibration after the force
leaves the beam. The value β1 = 1 of the dimen-

sionless speed parameter corresponds to the “critical
speed” v1 for which the force traverses the beam for
the time equal to the half-period of the fundamental
beam vibration, Tp = T1/2. As can be seen, the max-
imum deflection of the beam is about 70% more than
the static deflection and is attained for v ≈ 0.6v1.
However, this speed is unlikely to be seen in bridge
applications. Our analysis of experimental results re-
ported in the literature shows that Tp > 5(T1/2), such
that the upper bound for β1 is less than 0.2. As can be
seen from Fig. 1, the maximum dynamic deflection of
the beam in this speed range does not exceed 10–15%
of the static deflection.

2. The moving mass model accounts for the inertial
effect of the moving load. Formally, the moving mass
model does not fall into the category discussed pre-
viously, since there is no real interaction between the
bridge and the mass. However, we can apply these
methods by modeling the moving mass as an oscilla-
tor with large spring stiffness. The force is given by

fc(x, t) =

(

P − m
d2w(vt, t)

dt2

)

δ(x − vt).

The difference between solutions of the moving force
and moving mass models grows with increasing speed.
For speeds of interest in bridge applications, which
are classified as low, the models yield nearly identical
results.

3. In the moving oscillator model, the mass m0 is at-
tached to the continuum through a spring and dash-
pot,

fc(x, t) = [P + k(z(t) − w(vt, t))

+c(ż(t) − ẇ(vt, t))] δ(x − vt), (13)

where k and c are spring and dashpot coefficients and
z(t) is the vertical displacement of the mass. In this
case, we have an additional degree of freedom and,
thus, need an additional equation of motion,

mz̈ = −k(z(t) − w(vt, t)) − c(ż(t) − ẇ(vt, t)). (14)

Note that, z(t) = 0 corresponds to the position of the
static equilibrium of the spring-mass system as the
spring is loaded by the vehicle weight.

The moving oscillator model takes into account the
dynamics of the interaction of the bridge with the
moving vehicle and, thus, more accurately models a
real problem. In this case, we also face the inter-
esting problem of what happens when the oscillator
frequency matches the fundamental frequency of the
bridge.

4. Finally, the moving MDOF model accounts for the
facts that (i) the vehicle is not a lumped mass but



rather consists of several elastically interacting compo-
nents and (ii) it interacts with the structure carrying
it at several contact points. Formally, the equation for
the contact force can be written here much the same as
for the SDOF oscillator (13), assuming that the force
fc is an m-vector, where m is the number of contact
points, k and c are stiffness and damping matrices of
the vehicle interaction with the ground, P is the vec-
tor of weight distribution over the contact points, z is
an m vector of “contact” coordinates, and the delta-
function is replaced by an m-vector of delta-functions
of appropriate arguments. Equation (14) is replaced
by a system of n second-order differential equations
governing vehicle vibration, where n is the number of
degrees of freedom of the vehicle model. The solution
procedure for both models is the same, the only differ-
ence being that the number of differential equations is
greater.

Thus, there is little difference between the moving os-
cillator and moving MDOF system problems from the
standpoint of their formulation and solution. The ad-
vantage of the MDOF formulation is that it allows one
to more accurately model a real vehicle. Its basic dis-
advantage is that the results obtained are difficult to
analyze because of the large number of the parameters
involved.

3.1 Comparison of Vehicle Models for the Case

of a Smooth Road Surface and Zero Initial Con-

ditions

As already noted, in bridge related applications the so-
lutions to the moving force and moving mass problems
are almost identical. It turns out that, if we consider
a smooth bridge profile without any road surface ir-
regularities and assume zero initial conditions for the
bridge and vehicle, the solutions to the moving oscil-
lator and moving MDOF system problems are very
close to the former solutions as well, even for the case
when the vehicle eigenfrequencies are close to those of
the bridge. This conclusion is substantiated by results
of our numerical experiments as well as by results re-
ported in the literature and is explained as follows: If
the initial conditions are zero and the bridge surface is
smooth, no sizeable vehicle vibrations are excited due
to the finiteness of the passage time and relatively
small amplitude of the bridge vibration (compared
to the vehicle vibration excited by typical road sur-
face irregularities). Then, the dynamic components of
the contact forces are small compared to the vehicle
weight, and the bridge vibration is determined mainly
by the vehicle weight.

Two next two examples illustrate this. For the vehicle,
we used the quarter-car model considered in [9] with
the following mass distribution: m1 = 3.6×104 kg (car
body) and m2 = 4.0×103 kg (axle group). The sus-

pension and tire stiffness coefficients were taken less
than those in [9] to reduce the eigenfrequencies of the
vehicle (i.e., to make them closer to those seen in prac-
tice): k1 = 8.0×106, and k2 = 2.4×107 N/m. The
body-bounce and axle-hop frequencies of this model
are 2.05 Hz and 14.3 Hz, respectively. We intention-
ally set damping in the vehicle model equal to zero,
since the difference between the moving oscillator and
moving force (mass) models is the most pronounced
in the undamped case.

The bridge was modelled as a simply supported, uni-
form, proportionally damped Euler–Bernoulli beam
with mass per unit length ρ = 1.2×104 kg/m and
bending stiffness EI = 1.275×1011 Nm2 [7, 9]. We
considered two beams the lengths of which, 19 m and
50 m, respectively, were chosen to make their funda-
mental frequencies match the vehicle eigenfrequencies.
The short-span bridge has a fundamental frequency of
14.2 Hz, which is very close to the vehicle axle-hop
frequency. The fundamental frequency of the long-
span bridge is 2.05 Hz, which perfectly matches the
frequency of the vehicle body bounce. The damping
in both bridge models was set equal to approximately
2%, which is typical.

The solutions to the moving 2DOF oscillator travers-
ing the short-span and long-span beams at a speed of
25 m/s are depicted in Figs. 2 and 3, respectively,
by the solid line. The corresponding moving force so-
lutions (dotted line) were obtained by replacing the
2DOF model by the moving constant force equal to
the vehicle weight. The dashed lines correspond to
the moving mass solutions (the 2DOF model is re-
placed by the moving, rigidly attached, body of mass
equal to the mass of the whole vehicle).
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Figure 2: Mid-span deflection of the short-span beam
due to different vehicle models traversing the beam at
the speed 25 m/s (smooth surface)
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Figure 3: Mid-span deflection of the long-span beam
due to different vehicle models traversing the beam at
the speed 25 m/s (smooth surface)

As can be seen, the variance among all three solutions
is small from a practical standpoint and can be ne-
glected. The dynamic load factor (DLF), defined here
as the maximum ratio of the dynamic component of
the contact force to the vehicle weight, is very small
(several per cent) in both cases, which explains why
the solutions for the 2DOF model and moving force
model are very close. Note that we have considered
the “worst” cases, where the vehicle and bridge eigen-
frequencies match well. For beams of other lengths,
the variation in the three solutions will be even less.

Two basic conclusions can be derived from the above
discussion and illustrations.

1. In the case of smooth bridge surface and zero ini-
tial conditions, we can use the the simplest moving
force model to get an adequate approximation to the
moving vehicle problem. As noted in the DIVINE re-
port [10], “for a smooth profile, the influence of the
truck suspension is insignificant.”

2. The case of smooth bridge surfaces is of little in-
terest, which implies that we must account for road
surface irregularities and consider nonzero initial con-
ditions. Indeed, the values of both the DLF and the
DI, which is defined as [11]

DI =
(δdyn − δstatic)

δstatic

× 100%

(where δdyn and δstatic are peak dynamic and static
deflections, respectively), are around several per cent
in this case. On the other hand, results of field or
numerical experiments presented in some publications
(e.g., [10–12]) report considerably greater values of the
DI (more than 100%). These large values cannot be
obtained in the framework of an MDOF vehicle model

traversing a bridge with a smooth surface.

3.2 The Case of Rough Bridge Surface

We see from the above discussions that high-
magnitude bridge vibration cannot result from a
smooth bridge surface and zero initial conditions. The
case of non-zero bridge initial conditions has been ex-
amined in [13]. It was shown there that the magnitude
of the force acting on the bridge from the oscillator
depends linearly on the vehicle velocity and eigenfre-
quency. Given low vehicle velocities, considerable in-
teraction forces may arise only in the case of a high
vehicle eigenfrequency. In this case, though, a high-
magnitude force cannot cause high-magnitude bridge
vibration [13] since the fundamental bridge frequency
is generally much lower. Thus, although nonzero beam
initial conditions may result in considerable dynamic
effects in certain circumstances, it is unlikely that
they, by themselves, can cause high-magnitude bridge
response.

Note that the only source of non-zero vehicle initial
conditions is road irregularities on the approaches to
the bridge. Thus, we may conclude that high values of
the DI measured in some field experiments can be ex-
plained only by the presence of road irregularities on
the bridge and its approaches. Then it follows that
the examination of the effect of road irregularities is
crucial to the analysis of high-magnitude bridge vibra-
tion.

Consider the applicability of the moving vehicle mod-
els discussed above to the case of a rough or uneven
bridge surface. It is evident that the moving force
model is not applicable at all since, by definition, the
force acting on the bridge is constant (i.e., does not
depend on the road profile). The moving mass model
is not appropriate either. Indeed, it is an idealization
of the moving oscillator model obtained by assuming
infinitely large stiffness of the coupling between the
vehicle and road and is not appropriate in problems
where the interaction with the road plays an impor-
tant role. Although the force acting on the bridge from
the mass depends on the road profile, it has nothing
to do with the contact forces arising in real vehicles.
The former is the inertia force and depends only on
the mass velocity (for a given mass and road profile),
whereas real contact forces describe vehicle–road in-
teraction and depend on the vehicle suspension and
tire characteristics. Moreover, as shown in [13], the
moving mass model is physically incorrect if the func-
tion describing the road profile is not smooth (i.e., the
slope has jumps), in particular when the initial con-
ditions of the bridge with simple supports on its ends
are nonzero.

Then, it follows that only oscillator models (SDOF os-



cillator or MDOF system) can be used for modelling a
vehicle traversing the bridge with nonsmooth road sur-
face. Generally, the MDOF model is more appropri-
ate: irregularities of different sizes excite vehicle vibra-
tions at different frequencies, and the MDOF model
is capable of capturing this phenomenon. However, in
many applications, the use of an SDOF vehicle model
is still justified and results in almost no loss of accu-
racy. This is especially true if we are interested in
high-magnitude bridge vibration. The point is that
bridge vibration with high magnitude can arise only
when there is a high-magnitude component in the con-
tact force with its frequency matching the fundamen-
tal frequency of the bridge. In this case, other com-
ponents of the contact force associated with vehicle
vibrations at different frequencies have little effect on
the bridge and can be neglected (even if they are not
small). Hence, we can replace the MDOF model by an
SDOF oscillator with the appropriate eigenfrequency.
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Figure 4: Mid-span deflection of the short-span beam
due to a vehicle moving at the speed 25 m/s and enter-
ing the beam after passing a short-wavelength pothole
obtained with the use of the 2DOF model and 1DOF
axle-hop oscillator.

The two following figures illustrate this. We used
the same—short-span and long-span—beam models
for the bridge and the same 2DOF vehicle model as
in the previous illustrations. The bridge profiles were
assumed smooth, but we placed a pothole (surface ir-
regularity with the shape described by the cosine func-
tion) on the bridge approach immediately before its
left end to excite vehicle vibration.

It can be shown that the magnitude of the contact
force arising from the passage of a pothole by an SDOF
oscillator depends on the oscillator eigenfrequency, ve-
locity and the pothole width, is described by a unique
function of one variable, and depends linearly on the

pothole depth. This function can be used to evalu-
ate Fourier coefficients of the contact forces arising
in the MDOF case. For a given vehicle and veloc-
ity, shorter potholes excite mainly axle-hop vibration,
whereas longer potholes result in large body bounce.
For the 2DOF models used in our experiments and a
velocity of v = 25 m/s, potholes of width 0.5–2 m ex-
cite mainly axle-hop vibration; for potholes of width
5–8 m, axle hop is negligibly small, but the body-
bounce is close to the maximum.
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Figure 5: Mid-span deflection of the long-span beam
due to a vehicle moving at the speed 25 m/s and enter-
ing the beam after passing a long-wavelength pothole
obtained with the use of the 2DOF model and 1DOF
body-bounce oscillator.

High-magnitude vibrations of the short-span and long-
span beams considered can take place only if the fre-
quency of the contact force is around 2 and 14 Hz,
respectively, and the magnitude of this force is large
enough. To model this, we placed a pothole 70 cm
wide and 0.5 cm deep on the short-span beam and
a pothole 5 m wide and 2 cm deep on the long-span
beam. The solutions obtained by means of the 2DOF
model are depicted by the thin solid lines. For compar-
ison, the bold lines show the solutions corresponding
to the case where there are no potholes. As can be
seen, in both cases, the magnitude of the bridge vi-
brations is considerably higher than in the “smooth”
case, with DLFs being equal to 27% and 43% (DIs
more than 100% in both cases), respectively.

To check the quality of the approximation by a
reduced model, the 2DOF model was decomposed
into two independent—axle-hop and body-bounce—
oscillators, and each problem was re-examined. In the
case of the short-span bridge (Fig. 4), the 2DOF oscil-
lator was replaced by the axle-hop oscillator, and, for
the long-span bridge (Fig. 5) by the body-bounce os-
cillator. The corresponding solutions are depicted in



the figures by the dashed lines. As can be seen, they
perfectly coincide with the solutions obtained with the
use of the full model.

Thus, when examining high-magnitude bridge vibra-
tion, it often suffices to consider SDOF oscillator ve-
hicle models, which not only reduces computational
effort, but also facilitates the analysis of the results.
Replacement of an MDOF model by an SDOF oscilla-
tor is not a trivial exercise, especially in the case of a
non-proportionally damped vehicle. The technique for
this decomposition will be fully discussed in a future
paper [14].

4. CONCLUSION

We have examined the problem of a moving load or
subsystem traversing a continuum by, first, developing
a comprehensive mathematical statement of the prob-
lem and then providing a general method for its solu-
tion. The moving loads were classified to the nature of
their interactions with the continuum, and the appli-
cability and limitations of each were discussed for both
smooth and rough surfaces on the continuum. In the
context of the highway bridge problem, we concluded
from our studies that high magnitude bridge vibra-
tion cannot result from the case of a smooth bridge
surface and zero initial conditions, even when a nat-
ural frequency of the vehicle coincides with a mode
of the bridge. The high-magnitude bridge responses
observed in field tests can be explained by irregulari-
ties such as potholes on the bridge or its approaches,
and only oscillator models, SDOF or MDOF depend-
ing upon the particular circumstances, can be used to
effectively model these problems.
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