Homework assignment #1

1. Let \(F(x) = Ax + b \) be an affine function, with \(A \) an \(n \times n \)-matrix. What properties of \(A \) correspond to the following conditions on \(F \)? Distinguish three cases: \(A \) is symmetric, \(A \) is skew-symmetric \((A + A^T = 0) \), and a general non-symmetric \(A \).

 (a) **Monotonicity:**
 \[
 (F(x) - F(y))^T (x - y) \geq 0 \quad \forall x, y.
 \]

 (b) **Strict monotonicity:**
 \[
 (F(x) - F(y))^T (x - y) > 0 \quad \forall x, y \neq x.
 \]

 (c) **Strong monotonicity:**
 \[
 (F(x) - F(y))^T (x - y) \geq m \|x - y\|_2^2 \quad \forall x, y,
 \]
 where \(m \) is a positive constant.

 (d) **Lipschitz continuity:**
 \[
 \|F(x) - F(y)\|_2 \leq L \|x - y\|_2 \quad \forall x, y,
 \]
 where \(L \) is a positive constant.

 (e) **Co-coercivity:**
 \[
 (F(x) - F(y))^T (x - y) \geq \frac{1}{L} \|F(x) - F(y)\|_2^2 \quad \forall x, y,
 \]
 where \(L \) is a positive constant.

2. **Barzilai-Borwein step sizes.** The gradient update
 \[
 x^{(k)} = x^{(k-1)} - t_k \nabla f(x^{(k-1)})
 \]
 can be interpreted as a variable metric update
 \[
 x^{(k)} = x^{(k-1)} - H^{-1} \nabla f(x^{(k-1)})
 \]
 with a very simple choice \(H = (1/t_k)I \) for the approximate Hessian. Obviously, with this choice of \(H \) it is generally impossible to satisfy the secant condition
 \[
 Hs = y, \quad y = \nabla f(x^{(k-1)}) - \nabla f(x^{(k-2)}), \quad s = x^{(k-1)} - x^{(k-2)}
 \]
as in a quasi-Newton method. However, the variable metric interpretation suggests two possible choices of t_k, known as the Barzilai-Borwein step sizes. The first choice minimizes the residual $Hs - y$ in Euclidean norm:

$$\hat{t} = \arg\min_t \| (1/t)s - y \|_2^2.$$

The second choice minimizes the norm of $s - H^{-1}y$:

$$\tilde{t} = \arg\min_t \| s - ty \|_2^2.$$

Find expressions for \hat{t} and \tilde{t}, assuming that f is strictly convex (so that $s^Ty > 0$). Show that if $\nabla f(x)$ is Lipschitz continuous with constant $L > 0$ and $\text{dom } f = \mathbb{R}^n$, then $\hat{t} \geq 1/L$ and $\tilde{t} \geq 1/L$. (This follows from the first inequality on page 1-13 and the first inequality on page 1-15 of the lecture notes.)