
L. Vandenberghe ECE236C Spring 2019

Homework assignment #5

1. We have discussed the following technique for smoothing a nondifferentiable convex
function f(x): find the conjugate f ∗(y), add a small strongly convex term d(y) to
it, and take the conjugate (f ∗ + d)∗ of the modified conjugate. The Moreau–Yosida
smoothing in lecture 8 is an example with d(y) = (t/2)‖y‖2

2.

In this problem, we work out two other examples. Find (f ∗ + d)∗ for the following
combinations of f and d. In both problems, the variable x is an n-vector and µ is a
positive constant.

(a) f(x) = ‖x‖1 and d(y) = µ
∑n
i=1(1−

√
1− y2

i ).

(b) f(x) = maxi=1,...,n xi and d(y) = µ(
∑n
i=1 yi log yi + log n).

2. Projection on order cone. Ordering constraints x1 ≤ x2 ≤ · · · ≤ xn arise in many
applications. In this problem we discuss the Euclidean projection on the cone defined
by these inequalities, i.e., the problem

minimize 1
2
‖x− a‖2

2

subject to x1 ≤ x2 ≤ · · · ≤ xn.
(1)

This is known in statistics as the isotonic regression problem. It can be written as

minimize 1
2
‖x− a‖2

2

subject to Ax � 0,
(2)

where A is the (n− 1)× n matrix

A =



1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1 0
0 0 0 · · · 0 1 −1


.

The following algorithm is called the Pool Adjacent Violators Algorithm. We use the
following notation. If β is a subset of {1, 2, . . . , n}, then aβ is the subvector of a with
elements indexed by β, and avg(aβ) denotes the average of the elements of the vector
aβ. Thus, if β = {2, 3, 4}, then

aβ = (a2, a3, a4), avg(aβ) =
a2 + a3 + a4

3
.
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Pool Adjacent Violators Algorithm. Initially, l = 1 and β1 = {1}.
For i = 2, . . . , n, execute the following steps.

(a) Set l := l + 1 and define βl = {i}.
(b) While avg(aβl−1

) ≥ avg(aβl), merge the sets βl−1 and βl:

βl−1 := βl−1 ∪ βl, l := l − 1.

An example is shown in Table 1. When the algorithm terminates, the sets β1, . . . , βl
partition {1, 2, . . . , n}. We show that the optimal solution of (1) is given by

xβi = avg(aβi)1, i = 1, . . . , l. (3)

(a) Show that x is optimal for (2) if and only if there exists an (n− 1)-vector z with

Ax � 0, z � 0, zTAx = 0, x+ AT z = a.

(b) Verify that after cycle i = 1, . . . , n in the algorithm, the following properties hold.

i. The sets βi are nonempty sets of consecutive indices in {1, 2, . . . , n} and they
follow each other, i.e., max βk + 1 = min βk+1 for k = 1, . . . , l − 1. Together,
they partition {1, 2, . . . ,max βl}.

ii. The averages of the subvectors aβk are strictly increasing:

avg(aβk) < avg(aβk+1
), k = 1, . . . , l − 1.

iii. The cumulative sums of the vectors aβk − avg(aβk)1 are nonnegative:

cs(aβk) � 0, k = 1, . . . , l,

where cs(u) is defined as

cs(u) =



1 0 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0
1 1 · · · 1 1

 (u− avg(u)1).

(Note that the last element of cs(u) is necessarily zero.)

(c) Show that the optimality conditions in part (a) are satisfied by the vector x
defined in (3) and the (n− 1)-vector z defined by

zβi = cs(aβi), i = 1, . . . , l − 1, (zβ̄l , 0) = cs(aβl),

where β̄l = βl \ {n}.
(d) Explain why the complexity of the algorithm is linear in n.
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i Subvectors aβ1 , . . . , aβl Averages avg(aβ1), . . . , avg(aβl)

1 7 7

2 7 −8 7, −8

7, −8 −1/2

3 7, −8 −6 −1/2, −6

7, −8, −6 −7/3

4 7, −8, −6 18 −7/3, 18

5 7, −8, −6 18 −9 −7/3, 18, −9

7, −8, −6 18, −9 −7/3, 9/2

6 7, −8, −6 18, −9 4 −7/3, 9/2, 4

7, −8, −6 18, −9, 4 −7/3, 13/3

7 7, −8, −6) 18, −9, 4 16 −7/3, 13/3, 16

8 7, −8, −6 18, −9, 4 16 17 −7/3, 13/3, 16, 17

9 7, −8, −6 18, −9, 4 16 17 −10 −7/3, 13/3, 16, 17, −10

7, −8, −6 18, −9, 4 16 17,−10 −7/3, 13/3, 16, 7/2

7, −8, −6 18, −9, 4 16, 17, −10 −7/3, 13/3, 23/3

10 7, −8, −6 18, −9, 4 16, 17, −10 −8 −7/3, 13/3, 23/3, −8

7, −8, −6 18, −9, 4 16, 17, −10, −8 −7/3, 13/3, 15/4

7, −8, −6 18, −9, 4, 16, 17, −10, −8 −7/3, 4

Table 1: The projection of the vector a = (7,−8,−6, 18,−9, 4, 16, 17,−10,−8) on the order
cone is x = (−7/3,−7/3,−7/3, 4, 4, 4, 4, 4, 4, 4).
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