L. Vandenberghe ECE236C Spring 2019
Homework assignment #5

1. We have discussed the following technique for smoothing a nondifferentiable convex
function f(z): find the conjugate f*(y), add a small strongly convex term d(y) to
it, and take the conjugate (f* + d)* of the modified conjugate. The Moreau—Yosida
smoothing in lecture 8 is an example with d(y) = (¢/2)]y]|3.

In this problem, we work out two other examples. Find (f* 4+ d)* for the following
combinations of f and d. In both problems, the variable x is an n-vector and p is a
positive constant.

(a) f(x) = ||z, and d(y) = p >, (1 — /1 —47).
(b) f(z) = maxj=1__nx; and d(y) = p(Xi, yilogy; + logn).

2. Projection on order cone. Ordering constraints r; < zo < --- < 1z, arise in many
applications. In this problem we discuss the Euclidean projection on the cone defined
by these inequalities, i.e., the problem

minimize |z — a3 )
subject to z; < 29 < --- < 1y,

This is known in statistics as the isotonic regression problem. It can be written as

minimize |z — a|3 2)
subject to Az <0,

where A is the (n — 1) X n matrix

1 -1 0 --0 0 0
0 1 -1 -0 0 0
0 0 1 --0 0 0
A= . S
0 0 0 -+ 1 -1 0
0 0 0 -0 1 —1|

The following algorithm is called the Pool Adjacent Violators Algorithm. We use the
following notation. If 5 is a subset of {1,2,...,n}, then az is the subvector of a with
elements indexed by 3, and avg(ag) denotes the average of the elements of the vector

ag. Thus, if = {2, 3,4}, then

Ao + a3 + ay

ag = (az, as, as), avg(ag) = 3



Pool Adjacent Violators Algorithm. Initially, [ = 1 and f; = {1}.
For i = 2,...,n, execute the following steps.

(a) Set [ :=1+ 1 and define g, = {i}.
(b) While avg(ag,_,) > avg(ag, ), merge the sets 5,_; and 5

Bi—1 = Bi-1 U b, [:=1—-1.

An example is shown in Table 1. When the algorithm terminates, the sets i, ..

partition {1,2,...,n}. We show that the optimal solution of (1) is given by

xg, = avg(ag)l, 1=1,...,1L

'76[

(3)

(a) Show that z is optimal for (2) if and only if there exists an (n — 1)-vector z with

Ax <0, z >0, 2T Az =0, r+ ATz =a.

(b) Verify that after cycle i = 1,...,n in the algorithm, the following properties hold.

i. The sets 3; are nonempty sets of consecutive indices in {1,2,...,n} and they
follow each other, i.e., max Sy + 1 = min ;1 for k =1,...,] — 1. Together,

they partition {1,2,..., max f3;}.

ii. The averages of the subvectors ag, are strictly increasing:
avg(ag,) < avg(ag,,,), k=1,...,1—1
iii. The cumulative sums of the vectors ag, — avg(ag,)1 are nonnegative:
cs(ag,) =0, k=1,...,1,

where cs(u) is defined as

1 0 - 00
1 1 - 00
es(u) =]+ ¢ ot | (u—avg(u)l).
11 ---10
11 --- 1 1

(Note that the last element of cs(u) is necessarily zero.)

(c) Show that the optimality conditions in part (a) are satisfied by the vector z

defined in (3) and the (n — 1)-vector z defined by

zg, = cs(ag,), i=1,...,1—1, (23,,0) = cs(ag,),

where 3 = 3\ {n}.
(d) Explain why the complexity of the algorithm is linear in n.



i Subvectors ag,, ..., ag, Averages avg(ag, ), ..., avg(ag,)

1 7

2 7, -8
-2

3 ~1/2, —6
7, -8, —6 ~17/3

4 7, -8, —6|[18] ~7/3, 18

5 7, -8, —6||18]| 9] ~7/3,18, =9
17, -8, —6][18, —9| ~7/3,9/2

6 |7,—8, —6]|18, —9][4] —7/3,9/2, 4
17, -8, =618, -9, 4| —7/3,13/3

7 7, -8, —6) |18, -9, 4][16] —7/3,13/3, 16

8 17, -8, —6|18, —9, 4|[16][17] —7/3,13/3, 16, 17

9 7,8, 6|18, -9, 4|[16][17]—10] —7/3,13/3, 16, 17, =10
17, -8, —6/|18, —9 H@M —7/3,13/3, 16, 7/2
17, -8, —6||18, -9, 4|16, 17, —10| —7/3,13/3,23/3

10 |7, -8, —6]|18, -9, 4]|16, 17, —10|[ 8]  —7/3,13/3, 23/3, —8
17, -8, 6|18, —9,4|[16,17, —10, =8| —7/3,13/3,15/4
17, -8, —6][18, -9, 4,16, 17, —10, -8  —7/3,4

Table 1: The projection of the vector a = (7, —8,—6,18, 9,4, 16,17, —10, —8) on the order
cone is x = (=7/3,—=7/3,=7/3,4,4,4,4,4,4,4).



