Homework assignment #5

1. We have discussed the following technique for smoothing a nondifferentiable convex function f(x): find the conjugate $f^*(y)$, add a small strongly convex term d(y) to it, and take the conjugate $(f^* + d)^*$ of the modified conjugate. The Moreau–Yosida smoothing in lecture 8 is an example with $d(y) = (t/2) ||y||_2^2$.

In this problem, we work out two other examples. Find $(f^* + d)^*$ for the following combinations of f and d. In both problems, the variable x is an *n*-vector and μ is a positive constant.

(a)
$$f(x) = ||x||_1$$
 and $d(y) = \mu \sum_{i=1}^n (1 - \sqrt{1 - y_i^2}).$

(b)
$$f(x) = \max_{i=1,\dots,n} x_i$$
 and $d(y) = \mu(\sum_{i=1}^n y_i \log y_i + \log n)$.

2. Projection on order cone. Ordering constraints $x_1 \leq x_2 \leq \cdots \leq x_n$ arise in many applications. In this problem we discuss the Euclidean projection on the cone defined by these inequalities, *i.e.*, the problem

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \| x - a \|_2^2 \\ \text{subject to} & x_1 \le x_2 \le \dots \le x_n. \end{array}$$
(1)

This is known in statistics as the *isotonic regression problem*. It can be written as

$$\begin{array}{ll}\text{minimize} & \frac{1}{2} \| x - a \|_2^2\\ \text{subject to} & Ax \leq 0, \end{array}$$
(2)

where A is the $(n-1) \times n$ matrix

	[1	-1	0	• • •	0	0	0	
A =	0	1	-1	• • •	0	0	0	
	0	0	1	•••	0	0	0	
	:	÷	÷		÷	÷	:	
	0	0	0	• • •	1	-1	0	
	0	0	0	•••	0	1	-1	

The following algorithm is called the *Pool Adjacent Violators Algorithm*. We use the following notation. If β is a subset of $\{1, 2, ..., n\}$, then a_{β} is the subvector of a with elements indexed by β , and $\operatorname{avg}(a_{\beta})$ denotes the average of the elements of the vector a_{β} . Thus, if $\beta = \{2, 3, 4\}$, then

$$a_{\beta} = (a_2, a_3, a_4), \qquad \operatorname{avg}(a_{\beta}) = \frac{a_2 + a_3 + a_4}{3}.$$

Pool Adjacent Violators Algorithm. Initially, l = 1 and $\beta_1 = \{1\}$. For i = 2, ..., n, execute the following steps.

- (a) Set l := l + 1 and define $\beta_l = \{i\}$.
- (b) While $\operatorname{avg}(a_{\beta_{l-1}}) \ge \operatorname{avg}(a_{\beta_l})$, merge the sets β_{l-1} and β_l :

$$\beta_{l-1} := \beta_{l-1} \cup \beta_l, \qquad l := l-1$$

An example is shown in Table 1. When the algorithm terminates, the sets β_1, \ldots, β_l partition $\{1, 2, \ldots, n\}$. We show that the optimal solution of (1) is given by

$$x_{\beta_i} = \operatorname{avg}(a_{\beta_i})\mathbf{1}, \quad i = 1, \dots, l.$$
(3)

(a) Show that x is optimal for (2) if and only if there exists an (n-1)-vector z with

$$Ax \leq 0, \qquad z \geq 0, \qquad z^T Ax = 0, \qquad x + A^T z = a.$$

- (b) Verify that after cycle i = 1, ..., n in the algorithm, the following properties hold.
 - i. The sets β_i are nonempty sets of consecutive indices in $\{1, 2, \ldots, n\}$ and they follow each other, *i.e.*, $\max \beta_k + 1 = \min \beta_{k+1}$ for $k = 1, \ldots, l-1$. Together, they partition $\{1, 2, \ldots, \max \beta_l\}$.
 - ii. The averages of the subvectors a_{β_k} are strictly increasing:

$$\operatorname{avg}(a_{\beta_k}) < \operatorname{avg}(a_{\beta_{k+1}}), \quad k = 1, \dots, l-1.$$

iii. The cumulative sums of the vectors $a_{\beta_k} - \operatorname{avg}(a_{\beta_k})\mathbf{1}$ are nonnegative:

$$\operatorname{cs}(a_{\beta_k}) \succeq 0, \quad k = 1, \dots, l,$$

where cs(u) is defined as

$$cs(u) = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix} (u - avg(u)\mathbf{1}).$$

(Note that the last element of cs(u) is necessarily zero.)

(c) Show that the optimality conditions in part (a) are satisfied by the vector x defined in (3) and the (n-1)-vector z defined by

$$z_{\beta_i} = \operatorname{cs}(a_{\beta_i}), \quad i = 1, \dots, l-1, \qquad (z_{\bar{\beta}_l}, 0) = \operatorname{cs}(a_{\beta_l}),$$

where $\bar{\beta}_l = \beta_l \setminus \{n\}.$

(d) Explain why the complexity of the algorithm is linear in n.

i	Subvectors $a_{\beta_1}, \ldots, a_{\beta_l}$	Averages $\operatorname{avg}(a_{\beta_1}), \ldots, \operatorname{avg}(a_{\beta_l})$
1	7	7
2	$\boxed{7}$ $\boxed{-8}$	7, -8
	7, -8	-1/2
3	7, -8 -6	-1/2, -6
	7, -8, -6	-7/3
4	7, -8, -6 18	-7/3, 18
5	7, -8, -6 18 -9	-7/3, 18, -9
	7, -8, -6 18, -9	-7/3, 9/2
6	7, -8, -6 18, -9 4	-7/3, 9/2, 4
	7, -8, -6 $18, -9, 4$	-7/3, 13/3
7	7, -8, -6) 18, -9, 4 16	-7/3, 13/3, 16
8	7, -8, -6 $18, -9, 4$ 16 17	-7/3, 13/3, 16, 17
9	7, -8, -6 $18, -9, 4$ 16 17 -10	-7/3, 13/3, 16, 17, -10
	7, -8, -6 $18, -9, 4$ 16 $17, -10$	-7/3, 13/3, 16, 7/2
	$\boxed{7, -8, -6} \boxed{18, -9, 4} \boxed{16, 17, -10}$	-7/3, 13/3, 23/3
10	$\boxed{7, -8, -6} \boxed{18, -9, 4} \boxed{16, 17, -10} \boxed{-8}$	-7/3, 13/3, 23/3, -8
	$\boxed{7, -8, -6} \boxed{18, -9, 4} \boxed{16, 17, -10, -8}$	-7/3, 13/3, 15/4
	$7, -\overline{8, -6}$ 18, -9, 4, 16, 17, -10, -8	-7/3, 4

Table 1: The projection of the vector a = (7, -8, -6, 18, -9, 4, 16, 17, -10, -8) on the order cone is x = (-7/3, -7/3, -7/3, 4, 4, 4, 4, 4, 4).